

CALIBRATION DATA

PROBE CALIBRATION DATA

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn

Client **agc-cert**

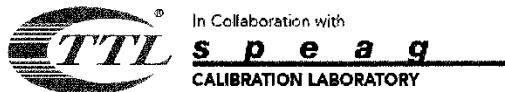
Certificate No: 24J02Z000505

CALIBRATION CERTIFICATE			
Object	EX3DV4 - SN : 3953		
Calibration Procedure(s)	FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes		
Calibration date:	September 05, 2024		
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104291	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104292	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 7307	28-May-24(SPEAG, No.EX-7307_May24)	May-25
DAE4	SN 771	19-Jan-24(SPEAG, No.DAE4-771_Jan24)	Jan-25
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-24(CTTL, No.24J02X005419)	Jun-25
SignalGenerator APSIN26G	181-33A6D0700-1959	26-Mar-24(CTTL, No.24J02X002468)	Mar-25
Network Analyzer E5071C	MY46110673	25-Dec-23(CTTL, No.J23X13425)	Dec-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-12	SN 1174	25-Oct-23(SPEAG, No.OCP-DAK12-1174_Oct23)	Oct-24
Calibrated by:	Name: Yu Zongying	Function: SAR Test Engineer	Signature:
Reviewed by:	Name: Lin Jun	Function: SAR Test Engineer	Signature:
Approved by:	Name: Qi Dianyuan	Function: SAR Project Leader	Signature:
Issued: September 08, 2024			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emft@caict.ac.cn <http://www.caict.ac.cn>

Glossary:


TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization Θ	Θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\Theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\Theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCP_{x,y,z}$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $A_x,y,z; B_x,y,z; C_x,y,z; VR_{x,y,z}; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- *ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- *Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- *Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

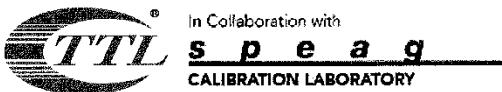
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3953

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.52	0.54	0.48	\pm 10.0%
DCP(mV) ^B	101.3	101.9	101.5	

Modulation Calibration Parameters


UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	173.6	\pm 2.3%
		Y	0.0	0.0	1.0		178.9	
		Z	0.0	0.0	1.0		165.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3953

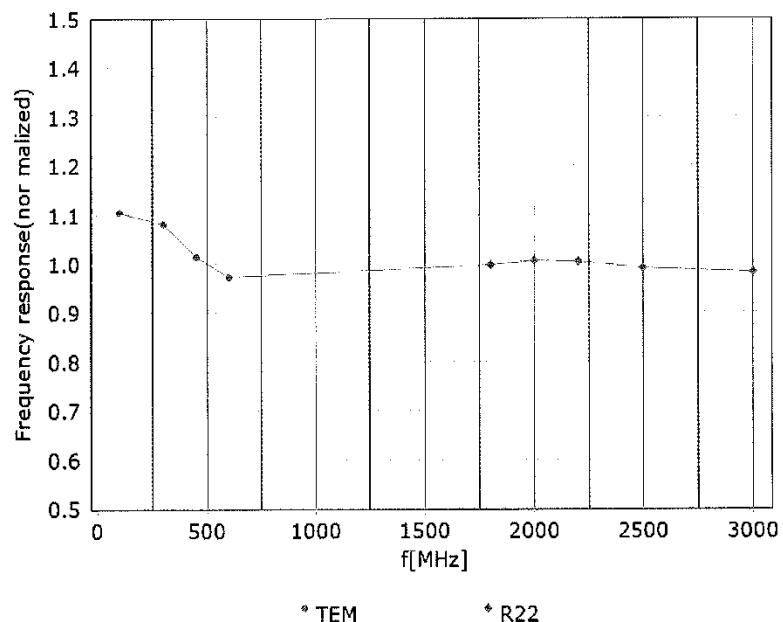
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.38	10.38	10.38	0.16	1.21	±12.7%
835	41.5	0.90	9.95	9.95	9.95	0.15	1.34	±12.7%
900	41.5	0.97	9.90	9.90	9.90	0.15	1.36	±12.7%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.06	±12.7%
1810	40.0	1.40	8.45	8.45	8.45	0.18	1.14	±12.7%
1900	40.0	1.40	8.31	8.31	8.31	0.27	1.00	±12.7%
2000	40.0	1.40	8.27	8.27	8.27	0.23	1.10	±12.7%
2300	39.5	1.67	8.13	8.13	8.13	0.47	0.72	±12.7%
2450	39.2	1.80	7.87	7.87	7.87	0.49	0.73	±12.7%
2600	39.0	1.96	7.70	7.70	7.70	0.54	0.70	±12.7%
5250	35.9	4.71	5.50	5.50	5.50	0.40	1.50	±13.9%
5600	35.5	5.07	4.86	4.86	4.86	0.50	1.30	±13.9%
5750	35.4	5.22	4.98	4.98	4.98	0.50	1.30	±13.9%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



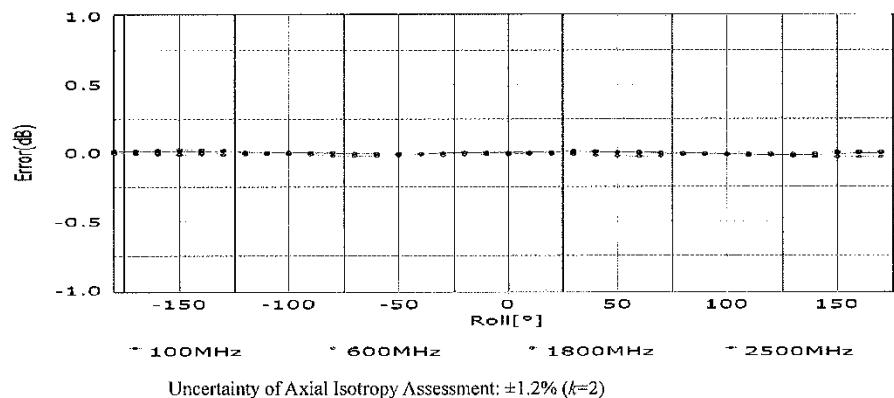
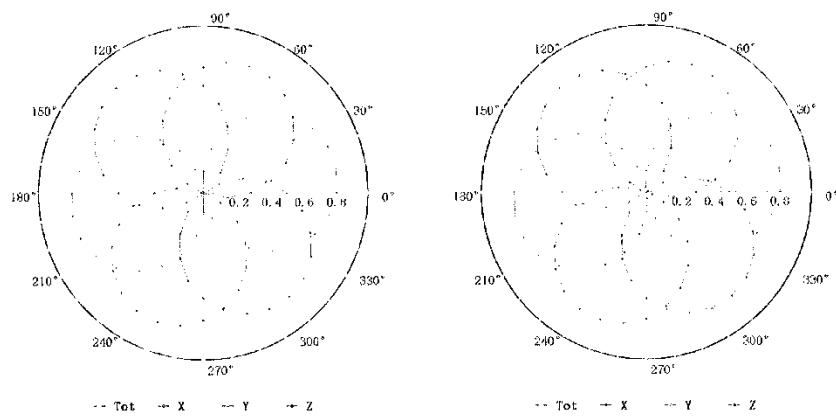
In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 7.4\% (k=2)$

In Collaboration with
S p e a g
CALIBRATION LABORATORY

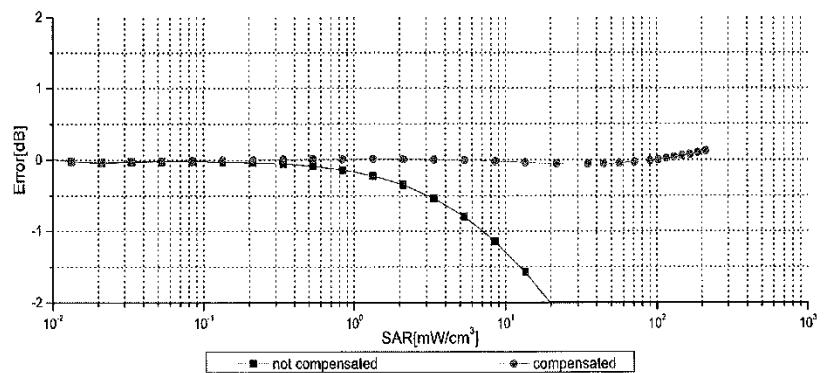
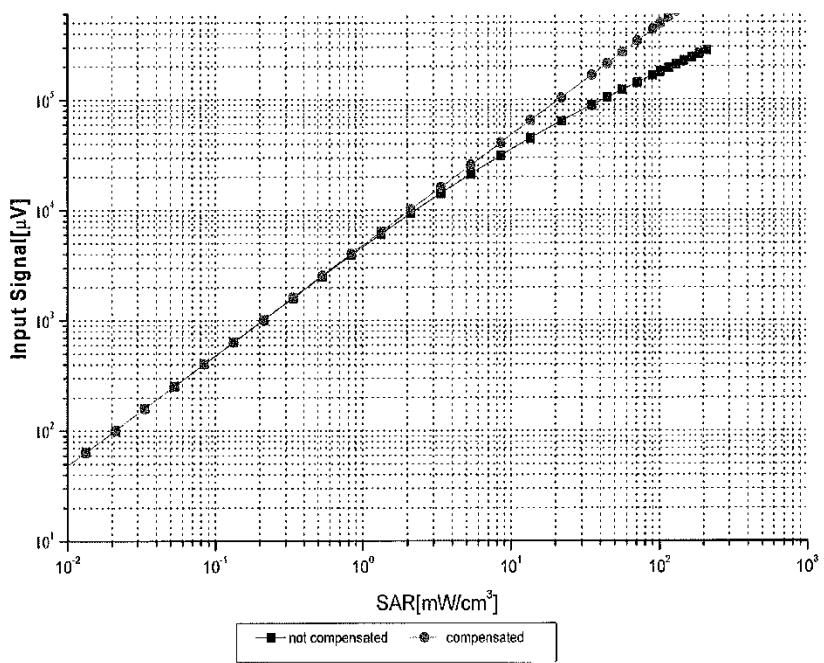


CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

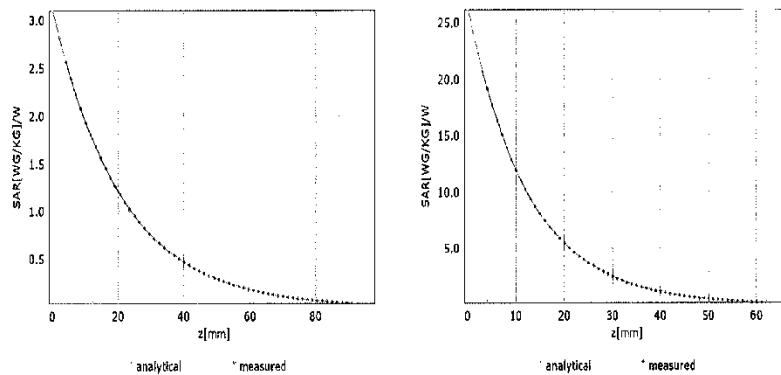



In Collaboration with
S p e a g
CALIBRATION LABORATORY

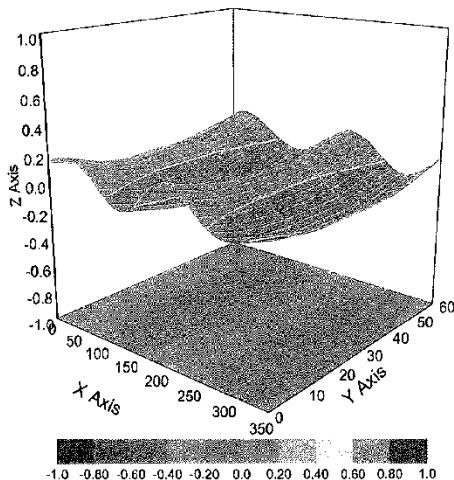
CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: cmf@caict.ac.cn <http://www.caict.ac.cn>

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.9\%$ ($k=2$)


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: $\pm 3.2\% (k=2)$

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: cmf@caict.ac.cn <http://www.caict.ac.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3953

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	33.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

DAE CALIBRATION DATA

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Client : agc-cert
Shenzhen

Certificate No: 25J02Z000301

CALIBRATION CERTIFICATE

Object DAE4 - SN: 1398

Calibration Procedure(s) FF-Z11-002-01
Calibration Procedure for the Data Acquisition Electronics
(DAEx)

Calibration date: May 09, 2025

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	11-Jun-24 (CTTL, No.24J02X005147)	Jun-25

Calibrated by:	Name: Yu Zongying	Function: SAR Test Engineer	Signature:
Reviewed by:	Name: Lin Jun	Function: SAR Test Engineer	Signature:
Approved by:	Name: Qi Dianyuan	Function: SAR Project Leader	Signature:

Issued: May 13, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

- DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$
Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.228 \pm 0.15\% \text{ (k=2)}$	$404.214 \pm 0.15\% \text{ (k=2)}$	$403.669 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.97371 \pm 0.7\% \text{ (k=2)}$	$3.99172 \pm 0.7\% \text{ (k=2)}$	$3.96886 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$47.5^\circ \pm 1^\circ$
---	--------------------------

DIPOLE CALIBRATION DATA

Docusign Envelope ID: 5C52517C-7FBF-49B6-8CC1-F810A827F83F

SAR Reference Dipole Calibration Report

Ref : ACR.139.9.25.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK,
CHONGQING ROAD, HEPING COMMUNITY, FUHAI
STREET
BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ
SERIAL NO.: 2216-DIP0G750-417

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/15/2025

Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.139.9.25.BES.A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Technical Manager	5/19/2025	
Checked & approved by:	Pedro Ruiz	Technical Manager	5/19/2025	
Authorized by:	Kim Rutkowski	Quality Manager	5/19/2025	<p>Signed by: Kimberley RUTKOWSKI 2B989547AD17461...</p>

	Customer Name
Distribution:	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	5/19/2025	Initial release

Page: 2/8

Template ACR.DDD.N.YY.MVG.B ISSUE SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Mechanical Requirements	5
4.2	S11 parameter Requirements	5
4.3	SAR Requirements	5
5	Measurement Uncertainty.....	5
5.1	Mechanical dimensions	5
5.2	S11 Parameter	5
5.3	SAR	5
6	Calibration Results.....	6
6.1	Mechanical Dimensions	6
6.2	S11 parameter	6
6.3	SAR	6
7	List of Equipment	8

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID750
Serial Number	2216-DIP0G750-417
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only, however, being built in accordance to relevant standards, it can be used in others SAR test benches as long as the final user take care that the prescribed S11 and SAR target value are met.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom and using a prescribed spacer, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

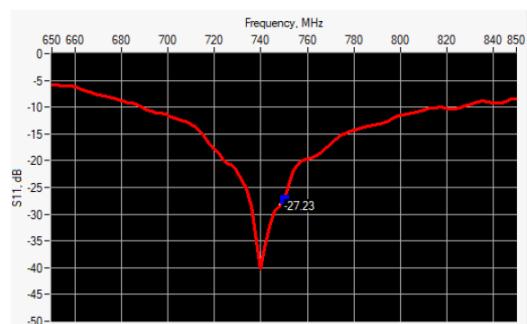
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template ACR.DDD.N.YY.MVG.ISSUE SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
-	176.00 +/- 2%	-	100.00 +/- 2%	-	6.35 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

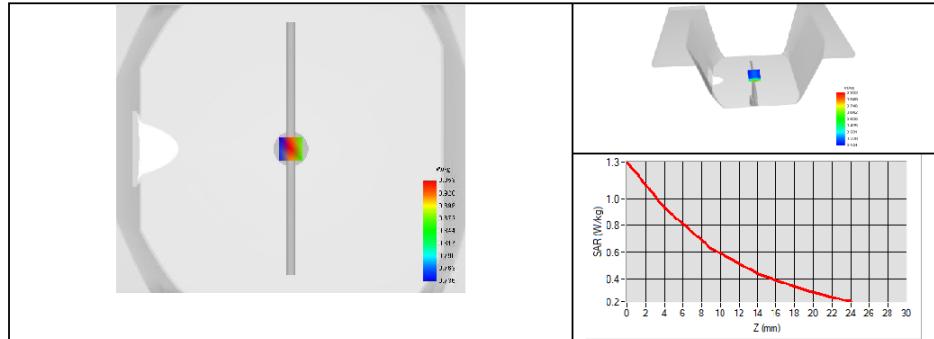
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
750	-27.23	-20	54.5Ω - 0.2jΩ

6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom by using a prescribed spacer.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 139.9.25 BES A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	4424-EPGO-443
Liquid	Head Liquid Values: $\epsilon\mu'$: 44.6 sigma : 0.88
Distance between dipole center and liquid	15.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoom Scan Resolution	$dx=8\text{mm}/dy=8\text{mm}/dz=5\text{mm}$
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
750 MHz	0.88	8.77	8.49	0.55	5.51	5.55

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2027
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	4424-EPGO-443	05/2025	05/2026
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	183277	05/2022	05/2026
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
Power Meter	Keysight U2000A	SN: MY62340002	10/2024	10/2027
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44235403	10/2024	10/2027

SAR Reference Dipole Calibration Report

Ref : ACR.139.11.25.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK,
CHONGQING ROAD, HEPING COMMUNITY, FUHAI
STREET
BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR REFERENCE DIPOLE
FREQUENCY: 835 MHZ
SERIAL NO.: 1516-DIP0G835-399

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/15/2025

Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.139.11.25.BES A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Technical Manager	5/19/2025	
Checked & approved by:	Pedro Ruiz	Technical Manager	5/19/2025	
Authorized by:	Kim Rutkowski	Quality Manager	5/19/2025	<p>Signed by: Kimberley RUTKOWSKI 2B989547AD17461...</p>

	Customer Name
Distribution:	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	5/19/2025	Initial release

Page: 2/8

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Mechanical Requirements	5
4.2	S11 parameter Requirements	5
4.3	SAR Requirements	5
5	Measurement Uncertainty.....	5
5.1	Mechanical dimensions	5
5.2	S11 Parameter	5
5.3	SAR	5
6	Calibration Results.....	6
6.1	Mechanical Dimensions	6
6.2	S11 parameter	6
6.3	SAR	6
7	List of Equipment	8

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID835
Serial Number	1516-DIP0G835-399
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only, however, being built in accordance to relevant standards, it can be used in others SAR test benches as long as the final user take care that the prescribed S11 and SAR target value are met.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom and using a prescribed spacer, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty ($k=2$) in calibration for the dimension measurement in mm is $+/-0.20$ mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty ($k=2$) in calibration for the dimension measurement in mm is $+/-0.44$ mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty ($k=2$) in calibration for the S11 parameter in linear is $+/-0.08$ with respect to measurement conditions.

5.3 SAR

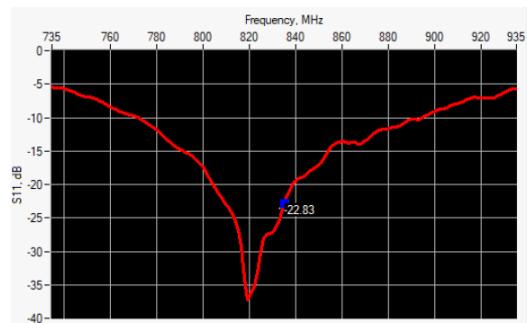
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty ($k=2$) in calibration for the 1g and 10g SAR measurement in W/kg is $+/-19\%$ with respect to measurement conditions.

Page: 5/8

Template ACR.DDD.N.YY.MVG.B ISSUE SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
-	161.00 +/- 2%	-	89.80 +/- 2%	-	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

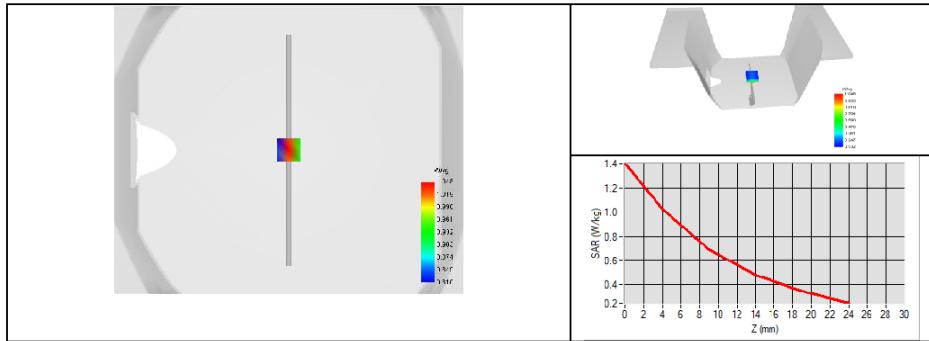
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
835	-22.83	-20	54.9Ω - 5.3jΩ

6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom by using a prescribed spacer.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.139.11.25.BES A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	4424-EPGO-443
Liquid	Head Liquid Values: $\epsilon\mu'$: 44.4 sigma : 0.91
Distance between dipole center and liquid	15.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoom Scan Resolution	$dx=8\text{mm}/dy=8\text{mm}/dz=5\text{mm}$
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
835 MHz	0.97	9.67	9.56	0.63	6.29	6.22

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2027
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	4424-EPGO-443	05/2025	05/2026
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	183277	05/2022	05/2026
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
Power Meter	Keysight U2000A	SN: MY62340002	10/2024	10/2027
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44235403	10/2024	10/2027

SAR Reference Dipole Calibration Report

Ref : ACR.139.12.25.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK,
CHONGQING ROAD, HEPING COMMUNITY, FUHAI
STREET

BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: 4611-DIP1G800-186

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/12/2025

Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.139.12.25.BESA

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Technical Manager	5/19/2025	
Checked & approved by:	Pedro Ruiz	Technical Manager	5/19/2025	
Authorized by:	Kim Rutkowski	Quality Manager	5/19/2025	<div style="display: flex; align-items: center;"> Signed by: <div style="margin-left: 10px;"> Kimberly RUTKOWSKI 2B089547AD17461... </div> </div>

	Customer Name
Distribution:	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	5/19/2025	Initial release

Page: 2/8

Template_ACR.DDD.N.YY.MVG.B ISSUE SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Mechanical Requirements	5
4.2	S11 parameter Requirements	5
4.3	SAR Requirements	5
5	Measurement Uncertainty.....	5
5.1	Mechanical dimensions	5
5.2	S11 Parameter	5
5.3	SAR	5
6	Calibration Results.....	6
6.1	Mechanical Dimensions	6
6.2	S11 parameter	6
6.3	SAR	6
7	List of Equipment	8

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1800
Serial Number	4611-DIP1G800-186
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only, however, being built in accordance to relevant standards, it can be used in others SAR test benches as long as the final user take care that the prescribed S11 and SAR target value are met.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom and using a prescribed spacer, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty ($k=2$) in calibration for the dimension measurement in mm is $+/-0.20$ mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty ($k=2$) in calibration for the dimension measurement in mm is $+/-0.44$ mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty ($k=2$) in calibration for the S11 parameter in linear is $+/-0.08$ with respect to measurement conditions.

5.3 SAR

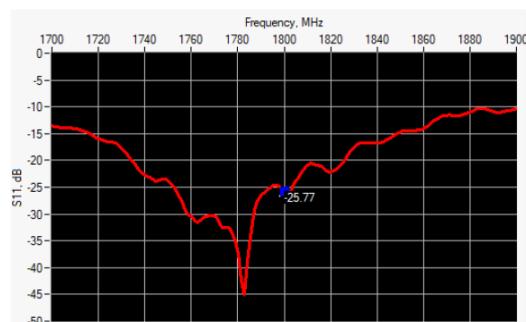
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty ($k=2$) in calibration for the 1g and 10g SAR measurement in W/kg is $+/-19\%$ with respect to measurement conditions.

Page: 5/8

Template ACR.DDD.N.YY.MVG.B ISSUE SAR Reference Dipole vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
-	72.00 +/- 2%	-	41.70 +/- 2%	-	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
1800	-25.77	-20	$45.8\Omega + 2.1j\Omega$

6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom by using a prescribed spacer.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.