

# FCC TEST REPORT

## FCC ID:2BOGA-SK23

Report No..... : ZHT-250708128W01-3

Product..... : Mini Camera

Trademark..... : /

Model(s)..... : SK23, HC2, HC23, SK5, SK50, DK6, DK68, CS36, CS52, SY7, SY75, JK34, KT45, QT56, PT67, DG78, NB87, AZ62, XB47, DF43, Y40, Y60, Y19, Y77, EA88, EA13, EA17, AP06, AP39, AP33

Model Difference..... : SK23 and Y40 are test models, while the other models are derivative models. These models are the same in terms of circuit, SK23 and Y40 only differ in camera and appearance shape, while other models and SK23 and Y40 only have different model names. Therefore, the test data of SK23 and Y40 can represent the remaining models.

Applicant..... : Shenzhen Shifang Digital Technology Co., Ltd

Address..... : Room 2619, 26th Floor, Building A, United Plaza, No. 5022, Binhe Avenue, Fushan Community, Futian Street, Futian District, Shenzhen, China

Manufacturer..... : Shenzhen Shifang Digital Technology Co., Ltd

Address..... : Room 2619, 26th Floor, Building A, United Plaza, No. 5022, Binhe Avenue, Fushan Community, Futian Street, Futian District, Shenzhen, China

Prepared by..... : Guangdong Zhonghan Testing Technology Co., Ltd.

Address..... : Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Date of Receipt..... : July 8, 2025

Date of Test(s)..... : July 8, 2025 to Sept. 22, 2025

Date of Issue..... : Sept. 22, 2025

Test Standard(s)..... : FCC Part 15 Subpart E 15.407  
KDB789033 D02 General U-NII Test Procedures New Rules v02r01

Test procedure..... : ANSI C63.10:2013

In the configuration tested, the EUT complied with the standards specified above.

Prepared by:



Leon Li/ Engineer

Reviewed by:



Baret Wu/ Director

Approved by:



Levi Lee/ Manager

**Note:** The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report shall not be reproduced except in full, without prior written approval of ZHT. This document may be altered or revised by ZHT, personnel only, and shall be noted in the revision of the document.

**Table of Contents**
**Page**

|                                                                          |           |
|--------------------------------------------------------------------------|-----------|
| <b>1. VERSION .....</b>                                                  | <b>4</b>  |
| <b>2. SUMMARY OF TEST RESULTS .....</b>                                  | <b>5</b>  |
| <b>2.1 TEST FACILITY .....</b>                                           | <b>6</b>  |
| <b>2.2 MEASUREMENT UNCERTAINTY .....</b>                                 | <b>6</b>  |
| <b>3. GENERAL INFORMATION .....</b>                                      | <b>7</b>  |
| <b>3.1 GENERAL DESCRIPTION OF EUT .....</b>                              | <b>7</b>  |
| <b>3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED .....</b> | <b>9</b>  |
| <b>3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) .....</b>            | <b>9</b>  |
| <b>3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS .....</b>                      | <b>10</b> |
| <b>4. EMC EMISSION TEST .....</b>                                        | <b>12</b> |
| <b>4.1 CONDUCTED EMISSION MEASUREMENT .....</b>                          | <b>12</b> |
| <b>4.1.1 POWER LINE CONDUCTED EMISSION Limits .....</b>                  | <b>12</b> |
| <b>4.1.2 TEST PROCEDURE .....</b>                                        | <b>12</b> |
| <b>4.1.3 DEVIATION FROM TEST STANDARD .....</b>                          | <b>12</b> |
| <b>4.1.4 TEST SETUP .....</b>                                            | <b>13</b> |
| <b>4.1.5 EUT OPERATING CONDITIONS .....</b>                              | <b>13</b> |
| <b>4.2 RADIATED EMISSION MEASUREMENT .....</b>                           | <b>18</b> |
| <b>4.2.1 APPLICABLE STANDARD .....</b>                                   | <b>18</b> |
| <b>4.2.2 CONFORMANCE LIMIT .....</b>                                     | <b>18</b> |
| <b>4.2.3 MEASURING INSTRUMENTS .....</b>                                 | <b>19</b> |
| <b>4.2.4 TEST CONFIGURATION .....</b>                                    | <b>20</b> |
| <b>4.2.5 TEST PROCEDURE .....</b>                                        | <b>21</b> |
| <b>5. POWER SPECTRAL DENSITY TEST .....</b>                              | <b>34</b> |
| <b>5.1 APPLIED PROCEDURES / LIMIT .....</b>                              | <b>34</b> |
| <b>5.2 TEST PROCEDURE .....</b>                                          | <b>35</b> |
| <b>5.3 DEVIATION FROM STANDARD .....</b>                                 | <b>35</b> |
| <b>5.4 TEST SETUP .....</b>                                              | <b>36</b> |
| <b>5.5 EUT OPERATION CONDITIONS .....</b>                                | <b>36</b> |
| <b>5.6 TEST RESULTS .....</b>                                            | <b>36</b> |
| <b>6. 26DB &amp; 6DB &amp; 99% EMISSION BANDWIDTH .....</b>              | <b>37</b> |
| <b>6.1 APPLIED PROCEDURES / LIMIT .....</b>                              | <b>37</b> |
| <b>6.2 TEST PROCEDURE .....</b>                                          | <b>37</b> |
| <b>6.3 EUT OPERATION CONDITIONS .....</b>                                | <b>39</b> |
| <b>6.4 TEST RESULTS .....</b>                                            | <b>39</b> |
| <b>7. MAXIMUM CONDUCTED OUTPUT POWER .....</b>                           | <b>40</b> |
| <b>7.1 PLIED PROCEDURES / LIMIT .....</b>                                | <b>40</b> |

|                                                  | Table of Contents | Page |
|--------------------------------------------------|-------------------|------|
| 7.2 TEST PROCEDURE .....                         | 41                |      |
| 7.3 DEVIATION FROM STANDARD .....                | 41                |      |
| 7.4 TEST SETUP .....                             | 42                |      |
| 7.5 EUT OPERATION CONDITIONS .....               | 42                |      |
| 7.6 TEST RESULTS .....                           | 42                |      |
| <b>8. OUT OF BAND EMISSIONS .....</b>            | <b>43</b>         |      |
| 8.1 APPLICABLE STANDARD .....                    | 43                |      |
| 8.2 TEST PROCEDURE .....                         | 44                |      |
| 8.3 DEVIATION FROM STANDARD .....                | 44                |      |
| 8.4 TEST SETUP .....                             | 44                |      |
| 8.5 EUT OPERATION CONDITIONS .....               | 44                |      |
| 8.6 TEST RESULTS .....                           | 44                |      |
| <b>9. SPURIOUS RF CONDUCTED EMISSIONS .....</b>  | <b>45</b>         |      |
| 9.1 CONFORMANCE LIMIT .....                      | 45                |      |
| 9.3 TEST SETUP .....                             | 45                |      |
| 9.4 TEST PROCEDURE .....                         | 45                |      |
| 9.5 TEST RESULTS .....                           | 46                |      |
| <b>10. FREQUENCY STABILITY MEASUREMENT .....</b> | <b>47</b>         |      |
| 10.1 LIMIT .....                                 | 47                |      |
| 10.2 TEST PROCEDURES .....                       | 47                |      |
| 10.3 TEST SETUP LAYOUT .....                     | 47                |      |
| 10.4 EUT OPERATION DURING TEST .....             | 48                |      |
| 10.5 TEST RESULTS .....                          | 48                |      |
| <b>11. ANTENNA REQUIREMENT .....</b>             | <b>49</b>         |      |
| <b>12. TEST SETUP PHOTO .....</b>                | <b>50</b>         |      |
| <b>13. EUT CONSTRUCTIONAL DETAILS .....</b>      | <b>50</b>         |      |



| Report No.         | Version | Description             | Approved       |
|--------------------|---------|-------------------------|----------------|
| ZHT-250708128W01-3 | Rev.01  | Initial issue of report | Sept. 22, 2025 |
|                    |         |                         |                |



ZHONGHAN



Project No.: ZHT-250708128W01-3

Page 5 of 50

## 2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part15 (15.407) , Subpart E              |                                         |          |        |
|----------------------------------------------|-----------------------------------------|----------|--------|
| Standard Section                             | Test Item                               | Judgment | Remark |
| 15.209(a),<br>15.407 (b)(1)<br>15.407 (b)(8) | Spurious Radiated Emissions             | PASS     |        |
| 15.207                                       | Conducted Emission                      | PASS     |        |
| 15.407 (a)                                   | 26 dB and 99% Emission Bandwidth        | PASS     |        |
| 15.407 (a)(1)                                | Maximum Conducted Output Power          | PASS     |        |
| 15.407(b)(1)                                 | Band Edge                               | PASS     |        |
| 15.407 (a)(1)                                | Power Spectral Density                  | PASS     |        |
| 15.407(b)                                    | Spurious Emissions at Antenna Terminals | PASS     |        |
| 15.203                                       | Antenna Requirement                     | PASS     |        |
| 15.407 (g)                                   | Frequency Stability                     | PASS     |        |
| 15.407 (c)                                   | Automatically Discontinue Transmission  | NOTE(2)  |        |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2)The product meets the requirements of 15.407 (C) standard

Operation in the absence of information to the transmit:

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare )



ZHONGHAN

## 2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Address: Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number: 255941

Designation Number: CN0325

IC Registered No.: 29832

CAB identifier: CN0143

## 2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$  · where expended uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k=2$  · providing a level of confidence of approximately 95 % .

| No. | Item                                | Uncertainty   |
|-----|-------------------------------------|---------------|
| 1   | Conducted Emission Test             | 0.92dB        |
| 2   | RF conducted power                  | $\pm 0.16$ dB |
| 3   | Spurious emissions conducted        | $\pm 0.21$ dB |
| 4   | All radiated emissions (9kHz-30MHz) | $\pm 1.6$ dB  |
| 5   | All radiated emissions (<1GHz)      | $\pm 5.1$ dB  |
| 6   | All radiated emissions (>1GHz)      | $\pm 4.65$ dB |
| 7   | Temperature                         | $\pm 0.5$ °C  |
| 8   | Humidity                            | $\pm 2$ %     |
| 9   | Occupied Bandwidth                  | $\pm 4.96$ %  |
| 10  | Power Spectral Density              | $\pm 0.71$ dB |
| 11  | Temperature uncertainty             | $\pm 0.59$ °C |
| 12  | humidity uncertainty                | $\pm 5.3$ %   |
| 13  | Conducted Adjacent channel power    | $\pm 1.38$ dB |

### Decision Rule

- Uncertainty is not included
- Uncertainty is included



ZHONGHAN

## 3. GENERAL INFORMATION

Project No.: ZHT-250708128W01-3

Page 7 of 50

## 3.1 GENERAL DESCRIPTION OF EUT

|                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name:       | Mini Camera                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Model No.:     | SK23, Y40                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Product Description | IEEE 802.11 WLAN Mode Supported | <input checked="" type="checkbox"/> 802.11a/n/ac/ax (20MHz channel bandwidth)<br><input checked="" type="checkbox"/> 802.11n/ac/ax (40MHz channel bandwidth)<br><input checked="" type="checkbox"/> 802.11ac/ax(80MHz channel bandwidth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | Data Rate                       | 802.11a: 6,9,12,18,24,36,48,54Mbps;<br>802.11n/ac/ax(HT20/HT40):MCS0-MCS7;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Modulation                      | OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac/ax;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | Operating Frequency Range       | <input type="checkbox"/> 5180-5240MHz for 802.11a/n(HT20)/ac20)/ax20;<br><input type="checkbox"/> 5190-5230MHz for 802.11n(HT40)/ac40/ax40;<br><input type="checkbox"/> 5260-5320MHz for 802.11a/n(HT20)/ac20/ax20;<br><input type="checkbox"/> 5270-5310MHz for 802.11n(HT40)/ac40/ax40;<br><input type="checkbox"/> 5290MHz for 802.11 ac80/ax80;<br><input type="checkbox"/> 5500-5700MHz for 802.11a/n(HT20)/ac20/ax20;<br><input type="checkbox"/> 5510-5670MHz for 802.11n(HT40)/ac40/ax40;<br><input type="checkbox"/> 5530-5690MHz for 802.11 ac80/ax80;<br><input checked="" type="checkbox"/> 5745-5825 MHz for 802.11a/n(HT20)/ac20/ax20;<br><input type="checkbox"/> 5755-5795 MHz for 802.11a/n(HT40)/ac40/ax40;<br><input type="checkbox"/> 5775MHz for 802.11 ac/ax80;                                                     |
|                     | Number of Channels              | <input type="checkbox"/> 4 channels for 802.11a/n20/ac20/ax20 in the 5180-5240MHz band ;<br>2 channels for 802.11 n40/ac40/ax40 in the 5190-5230MHz band ;<br>1 channels for 802.11 ac80 in the 5210MHz band;<br><input type="checkbox"/> 4 channels for 802.11a/n20/ac20/ax20 in the 5260-5320MHz band ;<br>2 channels for 802.11 n40/ac40/ax40 in the 5270-5310MHz band ;<br><input type="checkbox"/> 11 channels for 802.11a/n20/ac20/ax20 in the 5500-5700MHz band ;<br>5 channels for 802.11 n40/ac40/ax40 in the 5510-5670MHz band ;<br>3 channels for 802.11 ac80/ax80 in the 5530-5690MHz band ;<br><input checked="" type="checkbox"/> 5 channels for 802.11a/n20/ac20/ax20 in the 5745-5825MHz band ;<br>2 channels for 802.11 n40/ac40/ax40 in the 5755-5795MHz band;<br>1 channels for 802.11 ac80/ax80 in the 5775MHz band ; |
|                     | Channel List                    | Please refer to the Note 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | Antenna Type and Antenna gain:  | FPC Antenna; 1.7dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Worst Case:                     | 5.8G WIFI 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | Power supply:                   | Input:DC 5 V or DC 3.7 V powered by Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

| 802.11a/n/ac/ax( 20MHz) Frequency Channel |                 |         |                 |         |                 |         |                 |
|-------------------------------------------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------|
| Channel                                   | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
| 149                                       | 5745            | 153     | 5765            | 157     | 5785            | 161     | 5805            |
| 165                                       | 5825            |         |                 |         |                 |         |                 |
|                                           |                 |         |                 |         |                 |         |                 |

### 802.11n(40MHz) Frequency Channel

| 802.11n /ac/ax(40MHz)Frequency Channel |                 |         |                 |         |                 |         |                 |
|----------------------------------------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------|
| Channel                                | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
| 151                                    | 5755            | 159     | 5795            |         |                 |         |                 |
|                                        |                 |         |                 |         |                 |         |                 |

### 802.11ac/ac(80MHz) Frequency Channel

| Channel | Frequency (MHz) |
|---------|-----------------|
| 155     | 5775            |

## 3.2 DESCRIPTION OF TEST MODES

|                                                                                                                                                                                                                                       |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Transmitting mode                                                                                                                                                                                                                     | Keep the EUT in continuously transmitting mode |
| Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data. |                                                |

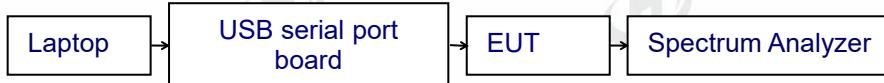
| Pretest Mode | Description                                      |
|--------------|--------------------------------------------------|
| Mode 1       | 802.11a / n20/ac 20/ax 20/ CH149 / CH157 / CH165 |
| Mode 2       | 802.11n 40/ac40/ax 40 CH151/ CH159               |
| Mode 3       | 802.11ac80/ax80 CH155                            |

| For Radiated Emission |                                                                    |
|-----------------------|--------------------------------------------------------------------|
| Final Test Mode       | Description                                                        |
| Mode 1                | 802.11a / n20/ac 20/ax 20/ CH36/ CH40/ CH48/ CH149 / CH157 / CH165 |
| Mode 2                | 802.11n 40/ac40/ax 40 CH151/ CH159                                 |
| Mode 3                | 802.11ac80/ax80 CH155                                              |

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

### 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED


Conducted Emission



Radiated Emission



RF Conducted Emission



### 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment  | Mfr/Brand                                      | Model/Type No. | Series No. | Note |
|------|------------|------------------------------------------------|----------------|------------|------|
| E1   | AC Adapter | Huizhou Jinhu Industrial Development Co., Ltd. | VCBAJACH       | /          | AE   |
| E-2  | Laptop     | Lenovo (Beijing) Co., Ltd                      | ThinkPad E480  | /          | AE   |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
|      |               |              |        |      |
|      |               |              |        |      |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

### 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

#### Radiation Test equipment

| Item | Equipment                                | Manufacturer | Model                   | Serial No. | Last Cal.     | Next Cal.     |
|------|------------------------------------------|--------------|-------------------------|------------|---------------|---------------|
| 1    | Receiver                                 | R&S          | ESCI                    | 100874     | May 6, 2025   | May 5, 2026   |
| 2    | Loop Antenna                             | TESEQ        | HLA6121                 | 58357      | Oct. 11, 2024 | Oct. 10, 2025 |
| 3    | Amplifier                                | Schwarzbeck  | BBV 9743 B              | 00378      | May 6, 2025   | May 5, 2026   |
| 4    | Amplifier                                | Schwarzbeck  | BBV 9718 B              | 00040      | May 7, 2025   | May 6, 2026   |
| 5    | Bilog Antenna                            | Schwarzbeck  | VULB9162                | 00498      | May 15, 2025  | May 14, 2026  |
| 6    | Horn Antenna                             | Schwarzbeck  | BBHA9120D               | 02623      | May 15, 2025  | May 14, 2026  |
| 7    | Horn Antenna                             | A.H.SYSTEMS  | SAS574                  | 588        | Oct. 21, 2024 | Oct. 20, 2025 |
| 8    | Amplifier                                | AEROFLEX     | 100KHz-40GHz            | 097        | Oct. 21, 2024 | Oct. 20, 2025 |
| 9    | Spectrum Analyzer                        | R&S          | FSV40                   | 101413     | Oct. 21, 2024 | Oct. 20, 2025 |
| 10   | Spectrum Analyzer                        | KEYSIGHT     | N9020A                  | MY53420208 | May 7, 2025   | May 6, 2026   |
| 11   | WIDBAND RADIO<br>COMMUNICATION<br>TESTER | R&S          | CMW500                  | 109863     | May 7, 2025   | May 6, 2026   |
| 12   | Single Generator                         | Agilent      | N5182A                  | MY48180575 | May 7, 2025   | May 6, 2026   |
| 13   | Power Sensor                             | MWRFtest     | MW100-RFCB              | /          | May 7, 2025   | May 6, 2026   |
| 15   | CABLE                                    | EMToni       | DA800-NM-<br>NM-11000MM | /          | May 6, 2025   | May 5, 2026   |



ZHONGHAN

Conduction Test equipment

Project No.: ZHT-250708128W01-3

Page 11 of 50

| Equipment                 | Manufacturer | Model               | Serial No.  | Last Cal.   | Next Cal.   |
|---------------------------|--------------|---------------------|-------------|-------------|-------------|
| Receiver                  | R&S          | ESCI                | 100874      | May 6, 2025 | May 5, 2026 |
| LISN                      | R&S          | ENV216              | 102794      | May 6, 2025 | May 5, 2026 |
| ISN CAT 6                 | Schwarzbeck  | NTFM 8158           | 00318       | May 7, 2025 | May 6, 2026 |
| ISN CAT 5                 | Schwarzbeck  | CAT5 8158           | 00343       | May 7, 2025 | May 6, 2026 |
| Capacitive Voltage Probe  | Schwarzbeck  | CVP 9222 C          | 00101       | May 8, 2025 | May 7, 2026 |
| Current Transformer Clamp | Schwarzbeck  | SW 9605             | SW9605 #209 | May 8, 2025 | May 7, 2026 |
| CABLE                     | EMToni       | G223-NM-BNCM-2000MM | /           | May 7, 2025 | May 6, 2026 |

## Conducted Test equipment

| Item | Equipment         | Manufacturer | Model      | Serial No. | Last Cal.      | Next Cal.      |
|------|-------------------|--------------|------------|------------|----------------|----------------|
| 1    | Spectrum Analyzer | R&S          | FSV40      | 101413     | Oct. 21, 2024  | Oct. 20, 2025  |
| 2    | Spectrum Analyzer | KEYSIGHT     | N9020A     | MY53420208 | May 7, 2025    | May 6, 2026    |
| 3    | Power Sensor      | MWRFtest     | MW100-RFCB | /          | May 7, 2025    | May 6, 2026    |
| 4    | Humidity Chamber  | OJN          | OJN-9606   | /          | April 20, 2025 | April 19, 2026 |

## Testing software

| Project            | Software name | Edition        |
|--------------------|---------------|----------------|
| RF Conducted       | MTS 8310      | 2.0.0.0        |
| Conducted Emission | EZ-EMC        | EMC-CON 3A1.1+ |
| Radiated Emission  | EZ-EMC        | FA-03A2 RE+    |

## 4. EMC EMISSION TEST

### 4.1 CONDUCTED EMISSION MEASUREMENT

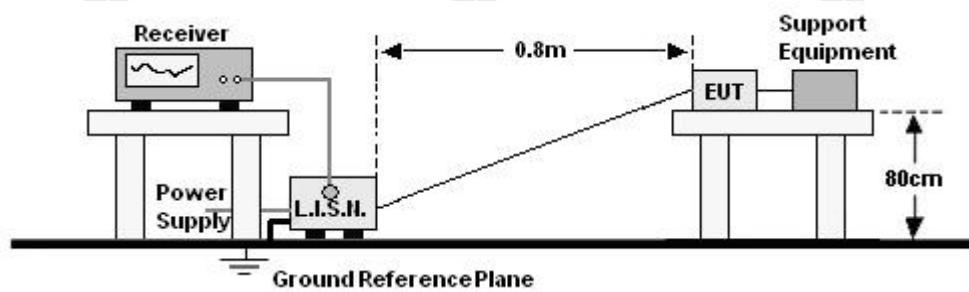
|                       |                                          |
|-----------------------|------------------------------------------|
| Test Requirement:     | FCC Part15 C Section 15.207, RSS-Gen 8.8 |
| Test Method:          | ANSI C63.10:2013                         |
| Test Frequency Range: | 150KHz to 30MHz                          |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sweep time=auto     |

#### 4.1.1 POWER LINE CONDUCTED EMISSION Limits

| FREQUENCY (MHz) | Limit (dBuV) |           | Standard |
|-----------------|--------------|-----------|----------|
|                 | Quasi-peak   | Average   |          |
| 0.15 -0.5       | 66 - 56 *    | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00        | 46.00     | FCC      |
| 5.0 -30.0       | 60.00        | 50.00     | FCC      |

Note:

(1) \*Decreases with the logarithm of the frequency.

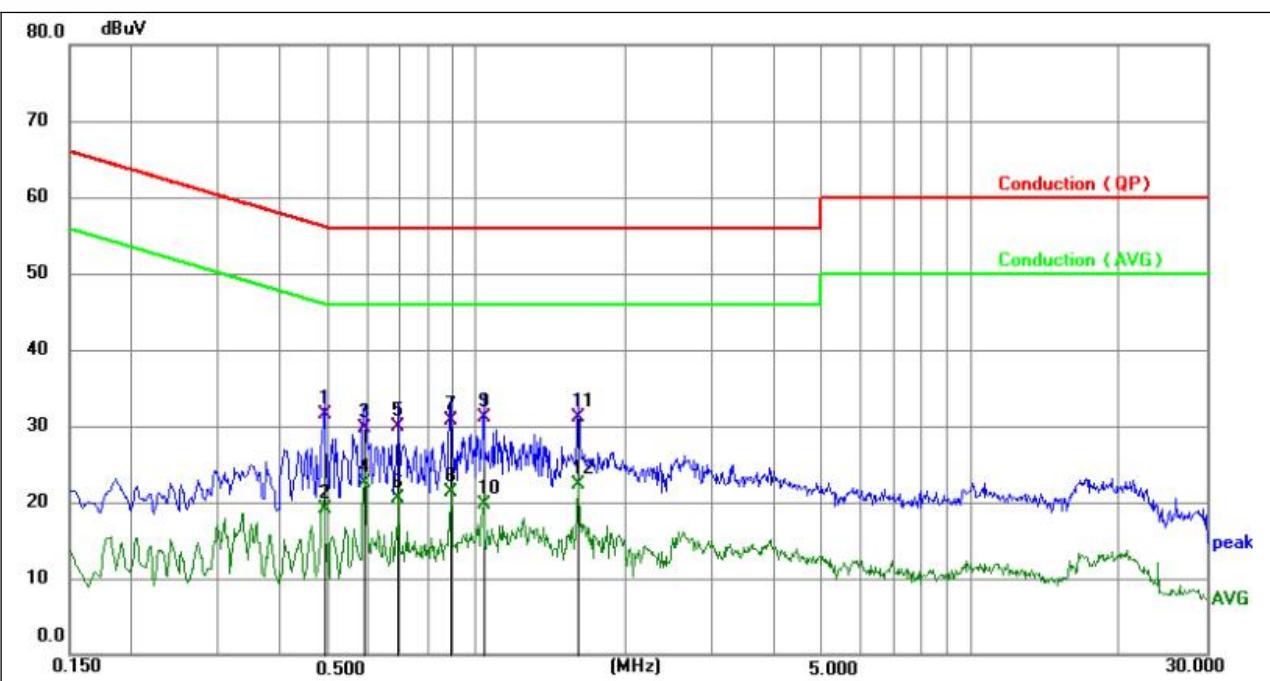

#### 4.1.2 TEST PROCEDURE

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.1.3 DEVIATION FROM TEST STANDARD

No deviation

#### 4.1.4 TEST SETUP

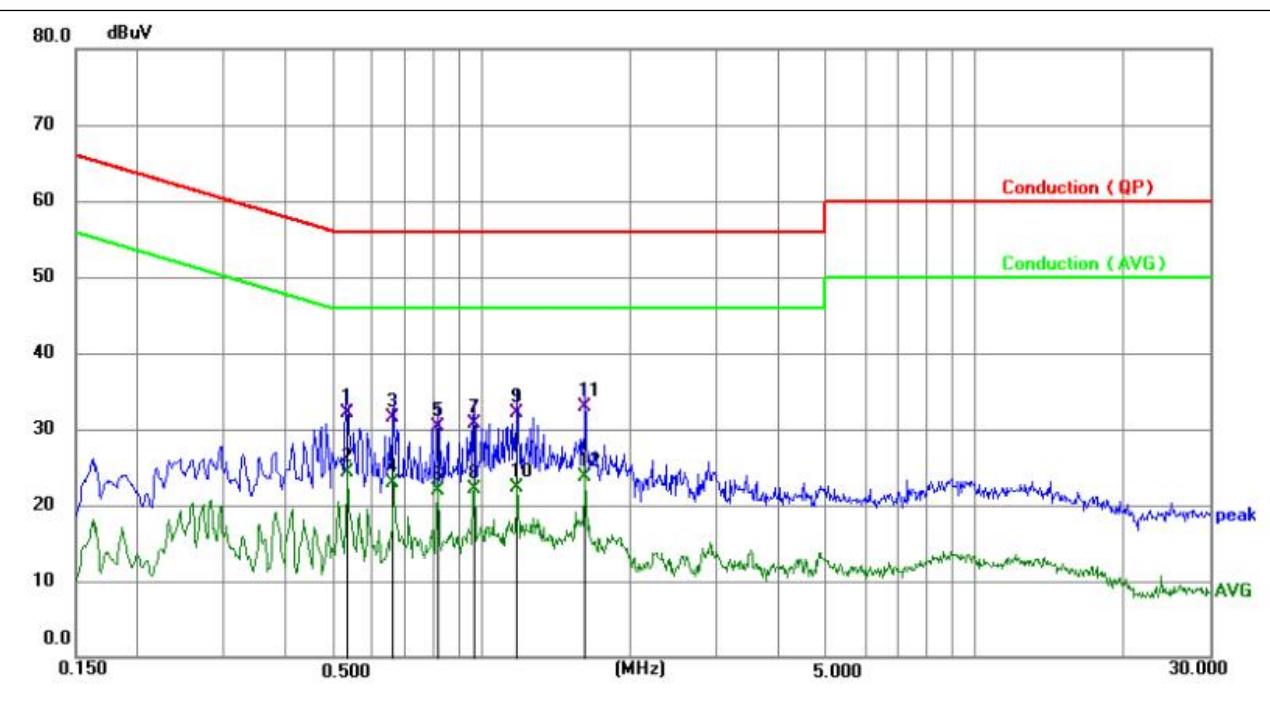



#### 4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

#### 4.1.6 TEST RESULTS

|               |               |                     |     |
|---------------|---------------|---------------------|-----|
| Temperature:  | 24.3°C        | Relative Humidity : | 50% |
| Pressure:     | 101kPa        | Phase :             | L   |
| Test Voltage: | AC 120V/ 60Hz |                     |     |



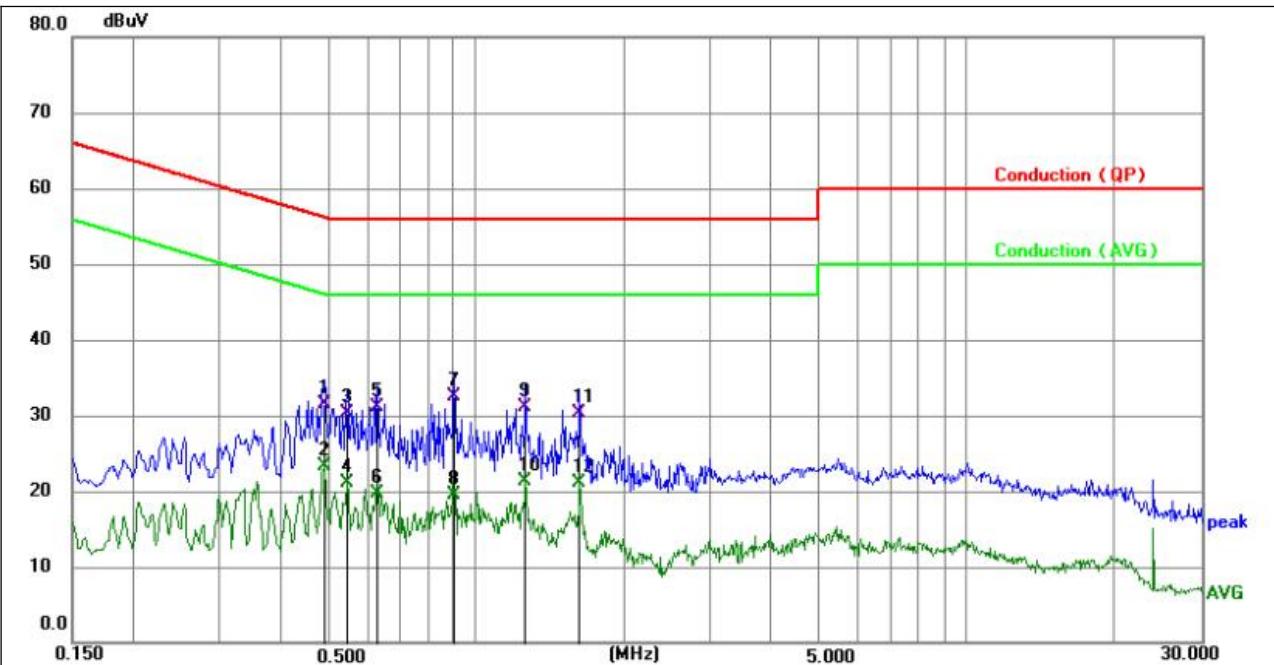

| No. | Frequency (MHz) | Reading (dBuV) | Factor (dB) | Level (dBuV) | Limit (dBuV) | Margin (dB) | Detector | P/F | Remark |
|-----|-----------------|----------------|-------------|--------------|--------------|-------------|----------|-----|--------|
| 1   | 0.4920          | 21.48          | 10.02       | 31.50        | 56.13        | -24.63      | QP       | P   |        |
| 2   | 0.4920          | 9.06           | 10.02       | 19.08        | 46.13        | -27.05      | AVG      | P   |        |
| 3   | 0.5910          | 19.77          | 10.03       | 29.80        | 56.00        | -26.20      | QP       | P   |        |
| 4 * | 0.5910          | 12.52          | 10.03       | 22.55        | 46.00        | -23.45      | AVG      | P   |        |
| 5   | 0.6945          | 19.78          | 10.04       | 29.82        | 56.00        | -26.18      | QP       | P   |        |
| 6   | 0.6945          | 10.38          | 10.04       | 20.42        | 46.00        | -25.58      | AVG      | P   |        |
| 7   | 0.8880          | 20.59          | 10.05       | 30.64        | 56.00        | -25.36      | QP       | P   |        |
| 8   | 0.8880          | 11.32          | 10.05       | 21.37        | 46.00        | -24.63      | AVG      | P   |        |
| 9   | 1.0363          | 20.97          | 10.06       | 31.03        | 56.00        | -24.97      | QP       | P   |        |
| 10  | 1.0363          | 9.73           | 10.06       | 19.79        | 46.00        | -26.21      | AVG      | P   |        |
| 11  | 1.6080          | 21.05          | 10.06       | 31.11        | 56.00        | -24.89      | QP       | P   |        |
| 12  | 1.6080          | 12.20          | 10.06       | 22.26        | 46.00        | -23.74      | AVG      | P   |        |

**Notes:**

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Measurement Level = Reading level + Correct Factor
4. The test data shows only the worst case 802.11ac mode(High Channel:5775MHz)

|               |               |                     |     |
|---------------|---------------|---------------------|-----|
| Temperature:  | 24.3°C        | Relative Humidity : | 50% |
| Pressure:     | 101kPa        | Phase :             | N   |
| Test Voltage: | AC 120V/ 60Hz |                     |     |



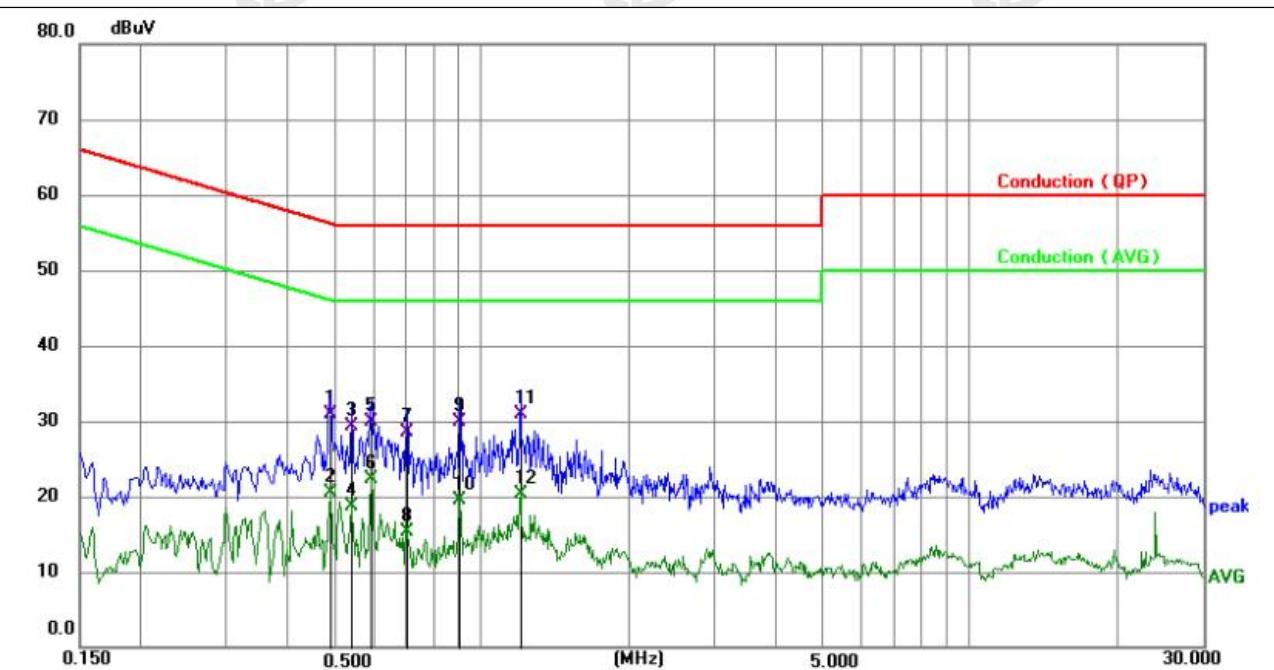

| No. | Frequency (MHz) | Reading (dBuV) | Factor (dB) | Level (dBuV) | Limit (dBuV) | Margin (dB) | Detector | P/F | Remark |
|-----|-----------------|----------------|-------------|--------------|--------------|-------------|----------|-----|--------|
| 1   | 0.5321          | 22.11          | 10.02       | 32.13        | 56.00        | -23.87      | QP       | P   |        |
| 2 * | 0.5321          | 14.24          | 10.02       | 24.26        | 46.00        | -21.74      | AVG      | P   |        |
| 3   | 0.6611          | 21.39          | 10.03       | 31.42        | 56.00        | -24.58      | QP       | P   |        |
| 4   | 0.6611          | 12.88          | 10.03       | 22.91        | 46.00        | -23.09      | AVG      | P   |        |
| 5   | 0.8130          | 20.27          | 10.04       | 30.31        | 56.00        | -25.69      | QP       | P   |        |
| 6   | 0.8130          | 11.77          | 10.04       | 21.81        | 46.00        | -24.19      | AVG      | P   |        |
| 7   | 0.9631          | 20.59          | 10.06       | 30.65        | 56.00        | -25.35      | QP       | P   |        |
| 8   | 0.9631          | 12.02          | 10.06       | 22.08        | 46.00        | -23.92      | AVG      | P   |        |
| 9   | 1.1780          | 22.10          | 10.06       | 32.16        | 56.00        | -23.84      | QP       | P   |        |
| 10  | 1.1780          | 12.31          | 10.06       | 22.37        | 46.00        | -23.63      | AVG      | P   |        |
| 11  | 1.6190          | 22.80          | 10.06       | 32.86        | 56.00        | -23.14      | QP       | P   |        |
| 12  | 1.6190          | 13.58          | 10.06       | 23.64        | 46.00        | -22.36      | AVG      | P   |        |

**Notes:**

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Measurement Level = Reading level + Correct Factor
4. The test data shows only the worst case 802.11ac mode(High Channel:5775MHz).

Model:Y40

|               |               |                     |     |
|---------------|---------------|---------------------|-----|
| Temperature:  | 24.3°C        | Relative Humidity : | 50% |
| Pressure:     | 101kPa        | Phase :             | L   |
| Test Voltage: | AC 120V/ 60Hz |                     |     |




| No. | Frequency (MHz) | Reading (dBuV) | Factor (dB) | Level (dBuV) | Limit (dBuV) | Margin (dB) | Detector | P/F | Remark |
|-----|-----------------|----------------|-------------|--------------|--------------|-------------|----------|-----|--------|
| 1   | 0.4874          | 21.54          | 10.01       | 31.55        | 56.21        | -24.66      | QP       | P   |        |
| 2 * | 0.4874          | 13.25          | 10.01       | 23.26        | 46.21        | -22.95      | AVG      | P   |        |
| 3   | 0.5435          | 20.37          | 10.02       | 30.39        | 56.00        | -25.61      | QP       | P   |        |
| 4   | 0.5435          | 11.01          | 10.02       | 21.03        | 46.00        | -24.97      | AVG      | P   |        |
| 5   | 0.6270          | 21.09          | 10.03       | 31.12        | 56.00        | -24.88      | QP       | P   |        |
| 6   | 0.6270          | 9.61           | 10.03       | 19.64        | 46.00        | -26.36      | AVG      | P   |        |
| 7   | 0.9014          | 22.43          | 10.05       | 32.48        | 56.00        | -23.52      | QP       | P   |        |
| 8   | 0.9014          | 9.47           | 10.05       | 19.52        | 46.00        | -26.48      | AVG      | P   |        |
| 9   | 1.2570          | 20.98          | 10.06       | 31.04        | 56.00        | -24.96      | QP       | P   |        |
| 10  | 1.2570          | 11.22          | 10.06       | 21.28        | 46.00        | -24.72      | AVG      | P   |        |
| 11  | 1.6214          | 20.24          | 10.06       | 30.30        | 56.00        | -25.70      | QP       | P   |        |
| 12  | 1.6214          | 11.03          | 10.06       | 21.09        | 46.00        | -24.91      | AVG      | P   |        |

## Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Measurement Level = Reading level + Correct Factor
4. The test data shows only the worst case 802.11ac mode(High Channel:5775MHz)

|               |               |                     |     |
|---------------|---------------|---------------------|-----|
| Temperature:  | 24.3°C        | Relative Humidity : | 50% |
| Pressure:     | 101kPa        | Phase :             | N   |
| Test Voltage: | AC 120V/ 60Hz |                     |     |



| No. | Frequency (MHz) | Reading (dBuV) | Factor (dB) | Level (dBuV) | Limit (dBuV) | Margin (dB) | Detector | P/F | Remark |
|-----|-----------------|----------------|-------------|--------------|--------------|-------------|----------|-----|--------|
| 1   | 0.4873          | 20.99          | 10.01       | 31.00        | 56.21        | -25.21      | QP       | P   |        |
| 2   | 0.4873          | 10.40          | 10.01       | 20.41        | 46.21        | -25.80      | AVG      | P   |        |
| 3   | 0.5413          | 19.25          | 10.02       | 29.27        | 56.00        | -26.73      | QP       | P   |        |
| 4   | 0.5413          | 8.67           | 10.02       | 18.69        | 46.00        | -27.31      | AVG      | P   |        |
| 5   | 0.5910          | 19.95          | 10.03       | 29.98        | 56.00        | -26.02      | QP       | P   |        |
| 6 * | 0.5910          | 12.35          | 10.03       | 22.38        | 46.00        | -23.62      | AVG      | P   |        |
| 7   | 0.7035          | 18.41          | 10.04       | 28.45        | 56.00        | -27.55      | QP       | P   |        |
| 8   | 0.7035          | 5.20           | 10.04       | 15.24        | 46.00        | -30.76      | AVG      | P   |        |
| 9   | 0.9012          | 19.82          | 10.05       | 29.87        | 56.00        | -26.13      | QP       | P   |        |
| 10  | 0.9012          | 9.45           | 10.05       | 19.50        | 46.00        | -26.50      | AVG      | P   |        |
| 11  | 1.2030          | 20.83          | 10.06       | 30.89        | 56.00        | -25.11      | QP       | P   |        |
| 12  | 1.2030          | 10.27          | 10.06       | 20.33        | 46.00        | -25.67      | AVG      | P   |        |

**Notes:**

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Measurement Level = Reading level + Correct Factor
4. The test data shows only the worst case 802.11ac mode(High Channel:5775MHz)



ZHONGHAN

4.2 RADIATED EMISSION MEASUREMENT

Project No.: ZHT-250708128W01-3

Page 18 of 50

## 4.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209, RSS-247 6.2.1.2, RSS-Gen

## 4.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | (2)         |
| 13.36-13.41       |                     |               |             |

## RSS-Gen 8.10 Restricted frequency bands

| MHz                 | MHz                 | MHz             | GHz           |
|---------------------|---------------------|-----------------|---------------|
| 0.090 - 0.110       | 13.36 - 13.41       | 960 - 1427      | 9.0 - 9.2     |
| 0.495 - 0.505       | 16.42 - 16.423      | 1435 - 1626.5   | 9.3 - 9.5     |
| 2.1735 - 2.1905     | 16.69475 - 16.69525 | 1645.5 - 1646.5 | 10.6 - 12.7   |
| 3.020 - 3.026       | 16.80425 - 16.80475 | 1660 - 1710     | 13.25 - 13.4  |
| 4.125 - 4.128       | 25.5 - 25.67        | 1718.8 - 1722.2 | 14.47 - 14.5  |
| 4.17725 - 4.17775   | 37.5 - 38.25        | 2200 - 2300     | 15.35 - 16.2  |
| 4.20725 - 4.20775   | 73 - 74.6           | 2310 - 2390     | 17.7 - 21.4   |
| 5.677 - 5.683       | 74.8 - 75.2         | 2483.5 - 2500   | 22.01 - 23.12 |
| 6.215 - 6.218       | 108 - 138           | 2655 - 2900     | 23.6 - 24.0   |
| 6.26775 - 6.26825   | 149.9 - 150.05      | 3260 - 3267     | 31.2 - 31.8   |
| 6.31175 - 6.31225   | 156.52475-156.52525 | 3332 - 3339     | 36.43 - 36.5  |
| 8.291 - 8.294       | 156.7 - 156.9       | 3345.8 - 3358   | Above 38.6    |
| 8.362 - 8.366       | 162.0125 - 167.17   | 3500 - 4400     |               |
| 8.37625 - 8.38675   | 167.72 - 173.2      | 4500 - 5150     |               |
| 8.41425 - 8.41475   | 240 - 285           | 5350 - 5460     |               |
| 12.29 - 12.293      | 322 - 335.4         | 7250 - 7750     |               |
| 12.51975 - 12.52025 | 399.9 - 410         | 8025 - 8500     |               |
| 12.57675 - 12.57725 | 608 - 614           |                 |               |

## Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dB <sub>u</sub> V/m) (at 3M) |         |
|----------------|---------------------------------------|---------|
|                | PEAK                                  | AVERAGE |
| Above 1000     | 74                                    | 54      |

Remark :1. Emission level in dB<sub>u</sub>V/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)( dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

## Limits of unwanted emission out of the restricted bands

| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dB <sub>u</sub> V/m) |
|-----------------|-------------------|-------------------------------------------------------|
| 5150~5250       | -27               | 68.2                                                  |
| 5250~5350       | -27               | 68.2                                                  |
| 5470~5725       | -27               | 68.2                                                  |
| 5725~5850       | -27(Note 2)       | 68.2                                                  |
|                 | 10(Note 2)        | 105.2                                                 |
|                 | 15.6(Note 2)      | 110.8                                                 |
|                 | 27(Note 2)        | 122.2                                                 |

## NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

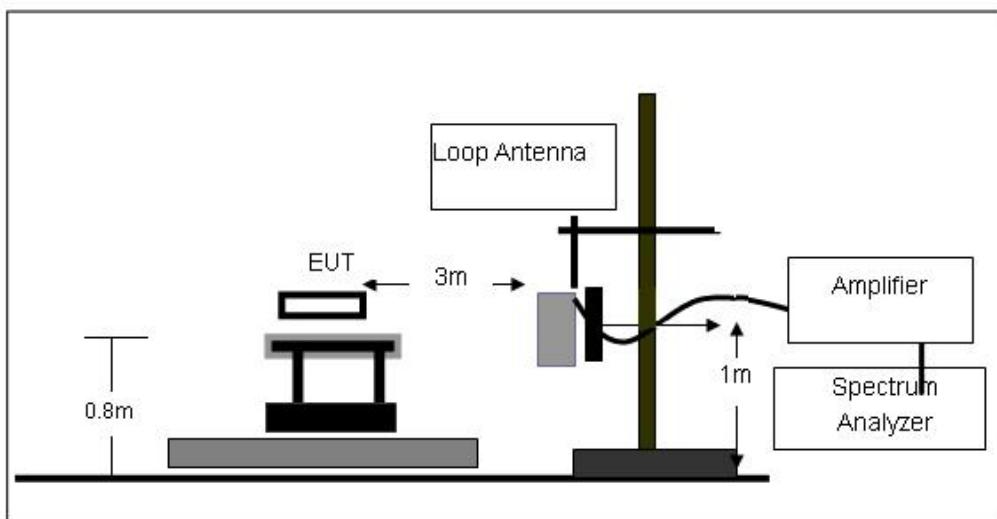
$$E = \frac{1000000\sqrt{30}P}{3} \text{ uV/m, where } P \text{ is the eirp (Watts)}$$

2, According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

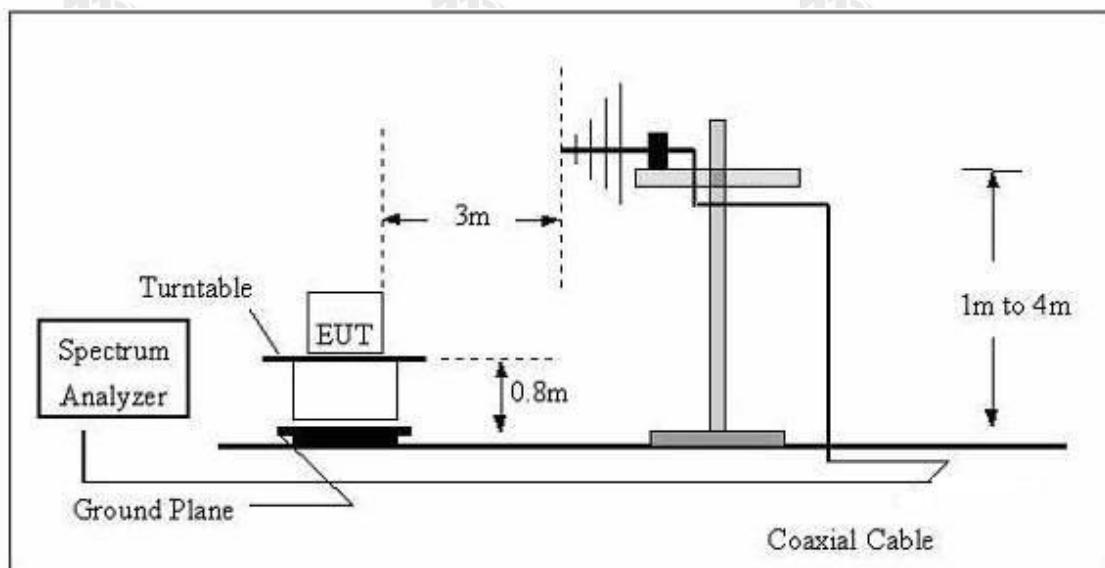
According to RSS-Gen§8.9: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field

strength limits specified in RSS-Gen Issue 5 is not required.

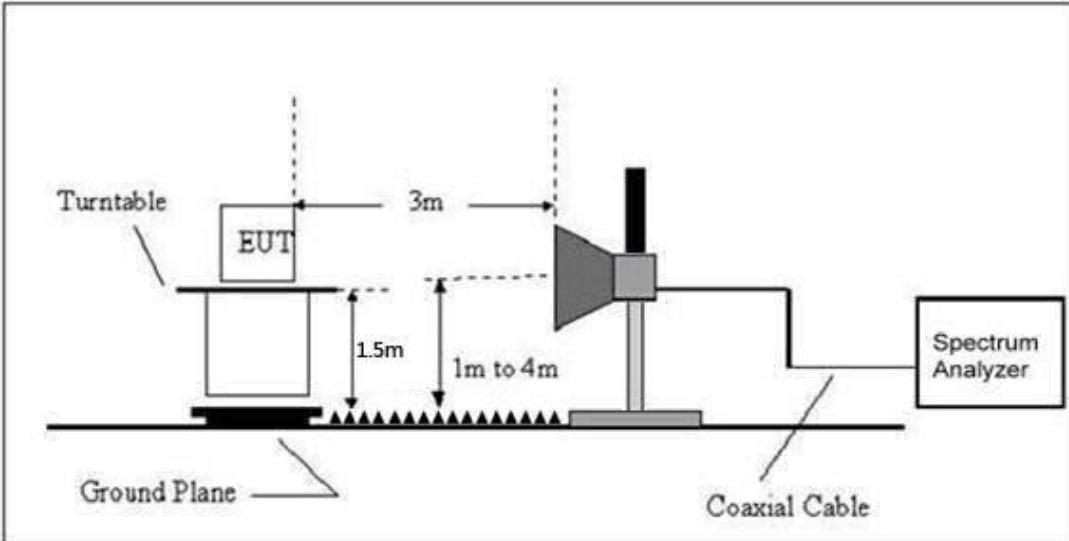
In case the emission fall within the restricted band specified on RSS-Gen Issue 5, then the RSS-Gen Issue 5 limit in the table below has to be followed.


| Frequency (MHz) | Distance (Meters) | Radiated (dB <sub>u</sub> V/m)   | Radiated (uV/m) |
|-----------------|-------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                 | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                 | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                 | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                 | 40.0                             | 100             |
| 88-216          | 3                 | 43.5                             | 150             |
| 216-960         | 3                 | 46.0                             | 200             |
| Above 960       | 3                 | 54.0                             | 500             |

## 4.2.3 MEASURING INSTRUMENTS


The Measuring equipment is listed in the section 6.3 of this test report.

#### 4.2.4 TEST CONFIGURATION


##### 1. For radiated emissions below 30MHz



##### 2. For radiated emissions from 30MHz to 1000MHz



##### 3. Radiated Emission Test-Up Frequency Above 1GHz



#### 4.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 10th carrier harmonic                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

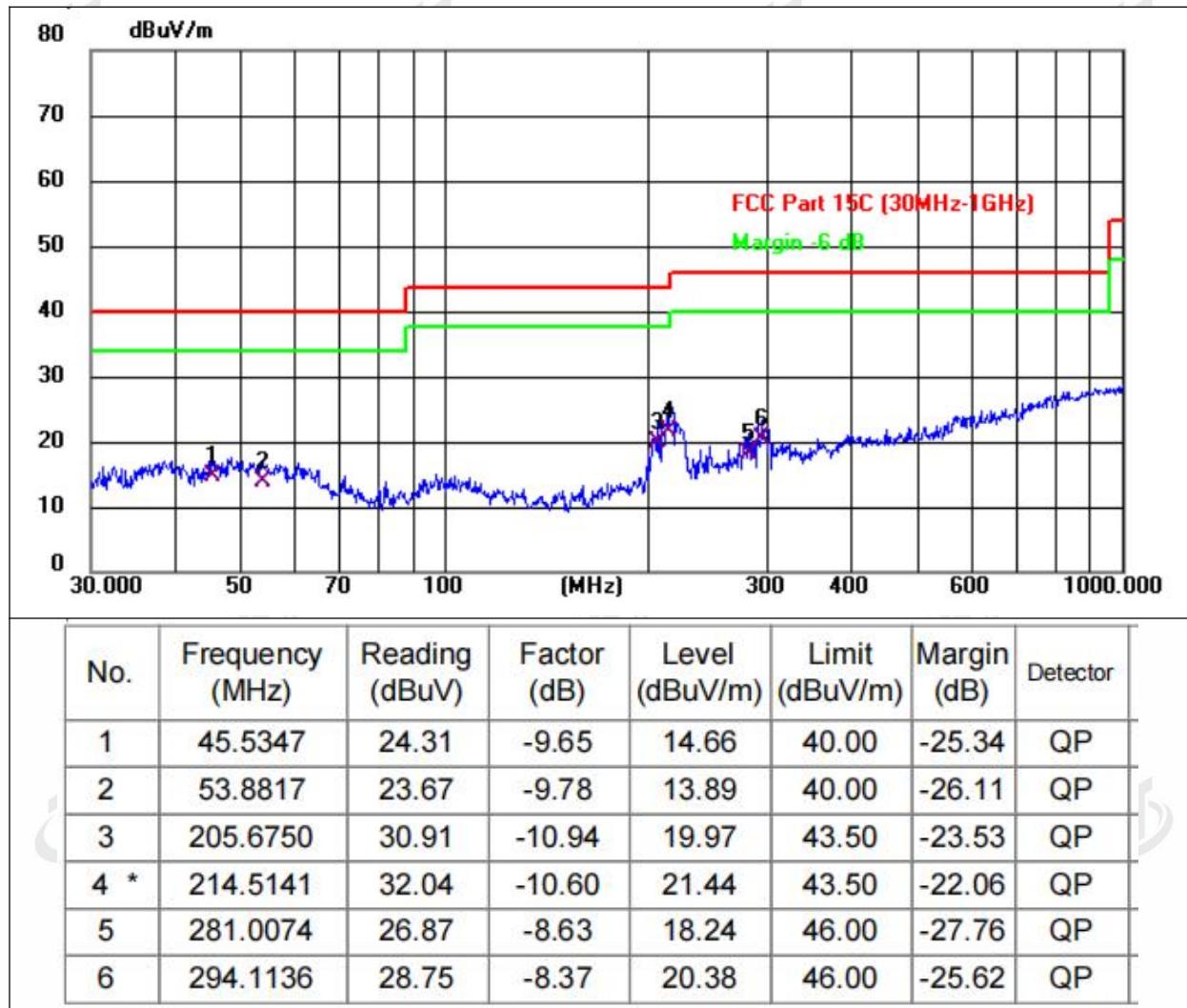
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

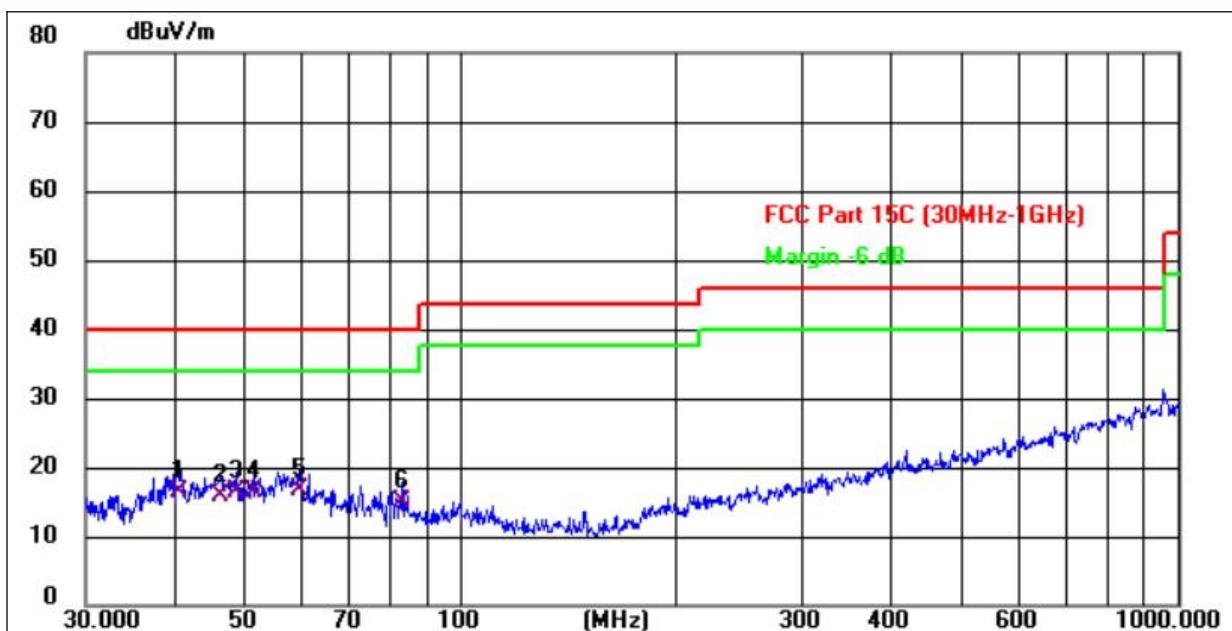
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

| Frequency Band (MHz) | Function | Resolution bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | QP       | 120 kHz              | 300 kHz         |
| Above 1000           | Peak     | 1 MHz                | 1 MHz           |
|                      | Average  | 1 MHz                | 10 Hz           |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =  $10 \cdot \lg(100 \text{ [kHz]} / \text{narrower RBW [kHz]})$ . , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


#### 4.2.6 TEST RESULT(Between 9KHz – 30MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


Between 30MHz – 1GHz

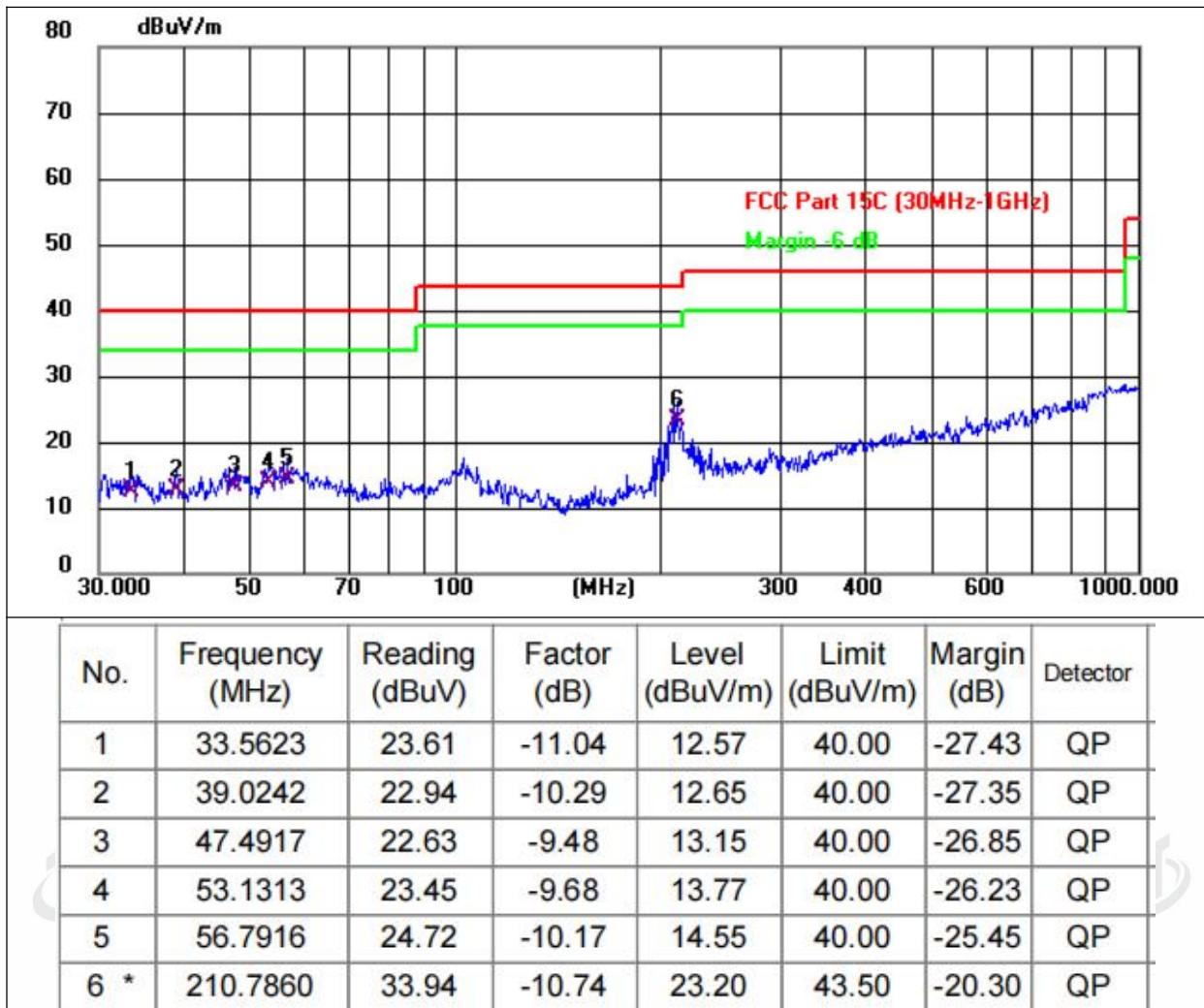
Model: SK23

|               |          |                    |            |
|---------------|----------|--------------------|------------|
| Temperature:  | 25.2 °C  | Relative Humidity: | 50%        |
| Pressure:     | 1010kPa  | Polarization:      | Horizontal |
| Test Voltage: | DC 3.7 V |                    |            |

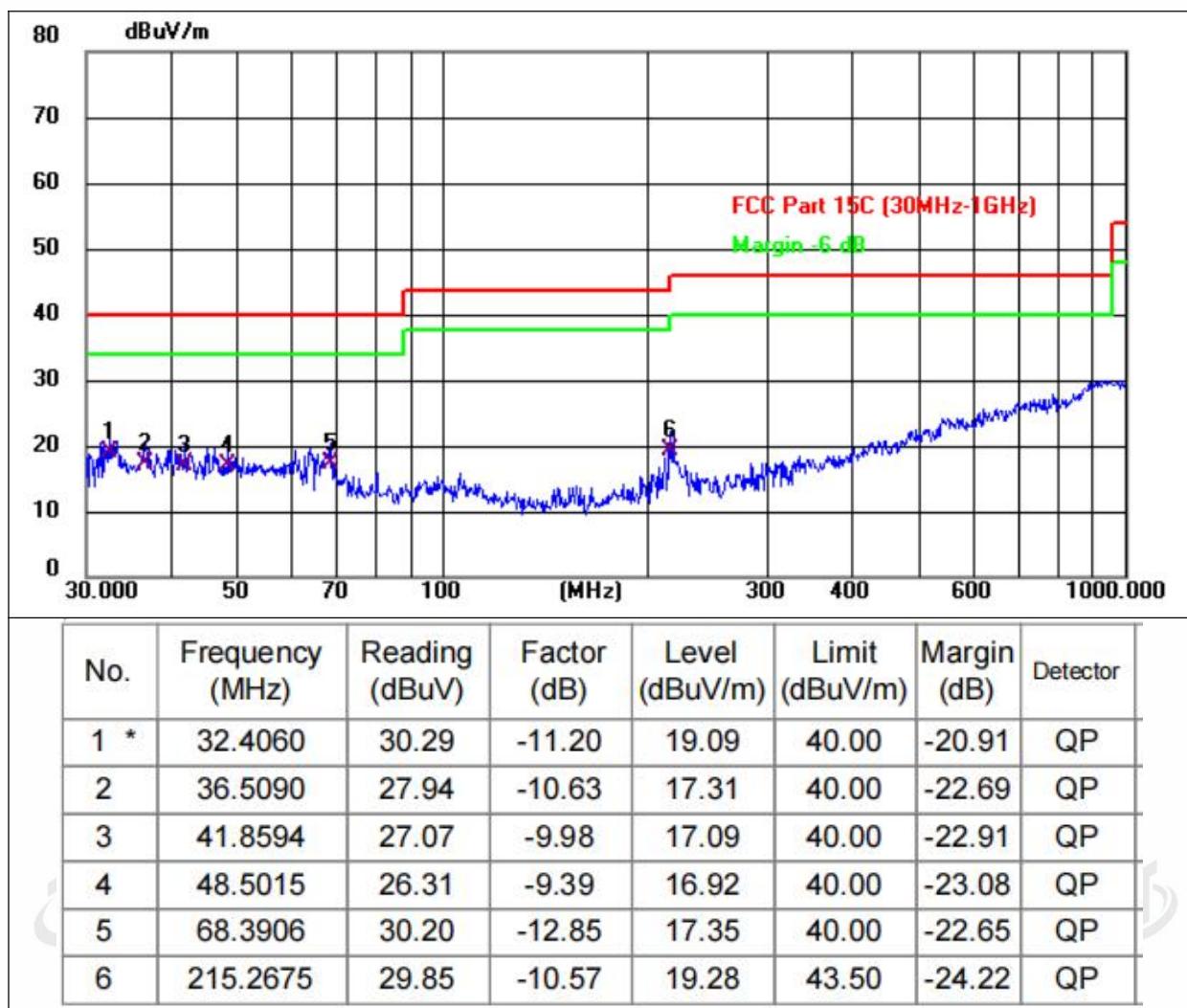


|               |          |                    |          |
|---------------|----------|--------------------|----------|
| Temperature:  | 25.2 °C  | Relative Humidity: | 50%      |
| Pressure:     | 1010kPa  | Polarization:      | Vertical |
| Test Voltage: | DC 3.7 V |                    |          |




| No. | Frequency (MHz) | Reading (dB <sub>BuV</sub> ) | Factor (dB) | Level (dB <sub>BuV/m</sub> ) | Limit (dB <sub>BuV/m</sub> ) | Margin (dB) | Detector |
|-----|-----------------|------------------------------|-------------|------------------------------|------------------------------|-------------|----------|
| 1   | 40.7014         | 26.61                        | -10.09      | 16.52                        | 40.00                        | -23.48      | QP       |
| 2   | 46.3402         | 25.46                        | -9.58       | 15.88                        | 40.00                        | -24.12      | QP       |
| 3   | 48.6720         | 25.68                        | -9.37       | 16.31                        | 40.00                        | -23.69      | QP       |
| 4   | 51.6613         | 25.91                        | -9.47       | 16.44                        | 40.00                        | -23.56      | QP       |
| 5 * | 59.4405         | 27.33                        | -10.53      | 16.80                        | 40.00                        | -23.20      | QP       |
| 6   | 82.9384         | 28.83                        | -13.88      | 14.95                        | 40.00                        | -25.05      | QP       |

**Remarks:**


- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2.The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3.All mode have been tested,The worst mode is 5.2G 802.11ac mode(High Channel:5775MHz).

Model:Y40

|               |          |                    |            |
|---------------|----------|--------------------|------------|
| Temperature:  | 25.2°C   | Relative Humidity: | 50%        |
| Pressure:     | 1010kPa  | Polarization:      | Horizontal |
| Test Voltage: | DC 3.7 V |                    |            |



|               |          |                    |          |
|---------------|----------|--------------------|----------|
| Temperature:  | 25.2 °C  | Relative Humidity: | 50%      |
| Pressure:     | 1010kPa  | Polarization:      | Vertical |
| Test Voltage: | DC 3.7 V |                    |          |


**Remarks:**

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2.The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3.All mode have been tested,The worst mode is 5.2G 802.11ac mode(High Channel:5775MHz).



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 26 of 50

Between 1GHz – 40GHz

|               |          |                    |          |
|---------------|----------|--------------------|----------|
| Temperature : | 24.2°C   | Relative Humidity: | 54%      |
| Pressure :    | 1010 hPa | Test Voltage :     | DC 3.7 V |

## 802.11a

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |
|----------------|-----------|------------------|---------------|---------------|-------------------|-------------------|----------|--------|------------------|
|                | (MHz)     | (dBuV)           | (dB)          | (dB)          | (dB)              | (dBuV/m)          | (dBuV/m) | (dB)   |                  |

## 5745MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17235 | 57.21 | 30.55 | 5.77 | 24.66 | 57.09 | 74 | -16.91 | PK |
| H | 17235 | 42.36 | 30.55 | 5.77 | 24.66 | 42.24 | 54 | -11.76 | AV |
| V | 17235 | 59.21 | 30.33 | 6.32 | 24.55 | 59.75 | 74 | -14.25 | PK |
| V | 17235 | 44.27 | 30.33 | 6.32 | 24.55 | 44.81 | 54 | -9.19  | AV |

## 5785MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17355 | 56.01 | 30.55 | 5.77 | 24.66 | 55.89 | 74 | -18.11 | PK |
| H | 17355 | 41.95 | 30.55 | 5.77 | 24.66 | 41.83 | 54 | -12.17 | AV |
| V | 17355 | 57.94 | 30.33 | 6.32 | 24.55 | 58.48 | 74 | -15.52 | PK |
| V | 17355 | 43.81 | 30.33 | 6.32 | 24.55 | 44.35 | 54 | -9.65  | AV |

## 5825MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17475 | 55.9  | 30.55 | 5.77 | 24.66 | 55.78 | 74 | -18.22 | PK |
| H | 17475 | 42    | 30.55 | 5.77 | 24.66 | 41.88 | 54 | -12.12 | AV |
| V | 17475 | 56.18 | 30.33 | 6.32 | 24.55 | 56.72 | 74 | -17.28 | PK |
| V | 17475 | 41.92 | 30.33 | 6.32 | 24.55 | 42.46 | 54 | -11.54 | AV |

## 802.11n20

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |
|----------------|-----------|------------------|---------------|---------------|-------------------|-------------------|----------|--------|------------------|
|                | (MHz)     | (dBuV)           | (dB)          | (dB)          | (dB)              | (dBuV/m)          | (dBuV/m) | (dB)   |                  |

## 5745MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17235 | 59.86 | 30.55 | 5.77 | 24.66 | 59.74 | 74 | -14.26 | PK |
| H | 17235 | 41.03 | 30.55 | 5.77 | 24.66 | 40.91 | 54 | -13.09 | AV |
| V | 17235 | 55.19 | 30.33 | 6.32 | 24.55 | 55.73 | 74 | -18.27 | PK |
| V | 17235 | 41.46 | 30.33 | 6.32 | 24.55 | 42    | 54 | -12    | AV |

## 5785MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17355 | 59.31 | 30.55 | 5.77 | 24.66 | 59.19 | 74 | -14.81 | PK |
| H | 17355 | 41.05 | 30.55 | 5.77 | 24.66 | 40.93 | 54 | -13.07 | AV |
| V | 17355 | 58.64 | 30.33 | 6.32 | 24.55 | 59.18 | 74 | -14.82 | PK |
| V | 17355 | 42.62 | 30.33 | 6.32 | 24.55 | 43.16 | 54 | -10.84 | AV |

## 5825MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17475 | 55.1  | 30.55 | 5.77 | 24.66 | 54.98 | 74 | -19.02 | PK |
| H | 17475 | 44.21 | 30.55 | 5.77 | 24.66 | 44.09 | 54 | -9.91  | AV |
| V | 17475 | 56.78 | 30.33 | 6.32 | 24.55 | 57.32 | 74 | -16.68 | PK |
| V | 17475 | 44.12 | 30.33 | 6.32 | 24.55 | 44.66 | 54 | -9.34  | AV |



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 27 of 50

## 802.11ac20

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |
| 5745MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17235     | 57.38            | 30.55             | 5.77          | 24.66             | 57.26             | 74     | -16.74 | PK                   |
| H              | 17235     | 43.57            | 30.55             | 5.77          | 24.66             | 43.45             | 54     | -10.55 | AV                   |
| V              | 17235     | 55.82            | 30.33             | 6.32          | 24.55             | 56.36             | 74     | -17.64 | PK                   |
| V              | 17235     | 43.73            | 30.33             | 6.32          | 24.55             | 44.27             | 54     | -9.73  | AV                   |
| 5785MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17355     | 59.88            | 30.55             | 5.77          | 24.66             | 59.76             | 74     | -14.24 | PK                   |
| H              | 17355     | 43.93            | 30.55             | 5.77          | 24.66             | 43.81             | 54     | -10.19 | AV                   |
| V              | 17355     | 57.35            | 30.33             | 6.32          | 24.55             | 57.89             | 74     | -16.11 | PK                   |
| V              | 17355     | 41.8             | 30.33             | 6.32          | 24.55             | 42.34             | 54     | -11.66 | AV                   |
| 5825MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17475     | 56.91            | 30.55             | 5.77          | 24.66             | 56.79             | 74     | -17.21 | PK                   |
| H              | 17475     | 41.9             | 30.55             | 5.77          | 24.66             | 41.78             | 54     | -12.22 | AV                   |
| V              | 17475     | 58.48            | 30.33             | 6.32          | 24.55             | 59.02             | 74     | -14.98 | PK                   |
| V              | 17475     | 43.07            | 30.33             | 6.32          | 24.55             | 43.61             | 54     | -10.39 | AV                   |
| 802.11n40      |           |                  |                   |               |                   |                   |        |        |                      |

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |
| 5755MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17265     | 55.61            | 30.55             | 5.77          | 24.66             | 55.49             | 74     | -18.51 | PK                   |
| H              | 17265     | 41.73            | 30.55             | 5.77          | 24.66             | 41.61             | 54     | -12.39 | AV                   |
| V              | 17265     | 59.56            | 30.33             | 6.32          | 24.55             | 60.1              | 74     | -13.9  | PK                   |
| V              | 17265     | 41.52            | 30.33             | 6.32          | 24.55             | 42.06             | 54     | -11.94 | AV                   |
| 5795MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17385     | 59.56            | 30.55             | 5.77          | 24.66             | 59.44             | 74     | -14.56 | PK                   |
| H              | 17385     | 41.9             | 30.55             | 5.77          | 24.66             | 41.78             | 54     | -12.22 | AV                   |
| V              | 17385     | 59.92            | 30.33             | 6.32          | 24.55             | 60.46             | 74     | -13.54 | PK                   |
| V              | 17385     | 42.28            | 30.33             | 6.32          | 24.55             | 42.82             | 54     | -11.18 | AV                   |

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |
| 5755MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17265     | 55.87            | 30.55             | 5.77          | 24.66             | 55.75             | 74     | -18.25 | PK                   |
| H              | 17265     | 42.9             | 30.55             | 5.77          | 24.66             | 42.78             | 54     | -11.22 | AV                   |
| V              | 17265     | 59.46            | 30.33             | 6.32          | 24.55             | 60                | 74     | -14    | PK                   |
| V              | 17265     | 41.62            | 30.33             | 6.32          | 24.55             | 42.16             | 54     | -11.84 | AV                   |
| 5795MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17385     | 59.19            | 30.55             | 5.77          | 24.66             | 59.07             | 74     | -14.93 | PK                   |
| H              | 17385     | 42.1             | 30.55             | 5.77          | 24.66             | 41.98             | 54     | -12.02 | AV                   |
| V              | 17385     | 57.03            | 30.33             | 6.32          | 24.55             | 57.57             | 74     | -16.43 | PK                   |
| V              | 17385     | 44.14            | 30.33             | 6.32          | 24.55             | 44.68             | 54     | -9.32  | AV                   |



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 28 of 50

## 802.11ac80

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |

## 5775MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17265 | 58.71 | 30.55 | 5.77 | 24.66 | 58.59 | 74 | -15.41 | PK |
| H | 17265 | 41.88 | 30.55 | 5.77 | 24.66 | 41.76 | 54 | -12.24 | AV |
| V | 17265 | 57.85 | 30.33 | 6.32 | 24.55 | 58.39 | 74 | -15.61 | PK |
| V | 17265 | 43.26 | 30.33 | 6.32 | 24.55 | 43.8  | 54 | -10.2  | AV |

## 802.11ax20

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |

## 5745MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17235 | 56.09 | 30.55 | 5.77 | 24.66 | 55.97 | 74 | -18.03 | PK |
| H | 17235 | 41.75 | 30.55 | 5.77 | 24.66 | 41.63 | 54 | -12.37 | AV |
| V | 17235 | 59.51 | 30.33 | 6.32 | 24.55 | 60.05 | 74 | -13.95 | PK |
| V | 17235 | 43.86 | 30.33 | 6.32 | 24.55 | 44.4  | 54 | -9.6   | AV |

## 5785MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17355 | 58.3  | 30.55 | 5.77 | 24.66 | 58.18 | 74 | -15.82 | PK |
| H | 17355 | 41.16 | 30.55 | 5.77 | 24.66 | 41.04 | 54 | -12.96 | AV |
| V | 17355 | 57.26 | 30.33 | 6.32 | 24.55 | 57.8  | 74 | -16.2  | PK |
| V | 17355 | 41.36 | 30.33 | 6.32 | 24.55 | 41.9  | 54 | -12.1  | AV |

## 5825MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17475 | 55.95 | 30.55 | 5.77 | 24.66 | 55.83 | 74 | -18.17 | PK |
| H | 17475 | 41.04 | 30.55 | 5.77 | 24.66 | 40.92 | 54 | -13.08 | AV |
| V | 17475 | 59.14 | 30.33 | 6.32 | 24.55 | 59.68 | 74 | -14.32 | PK |
| V | 17475 | 42.32 | 30.33 | 6.32 | 24.55 | 42.86 | 54 | -11.14 | AV |

## 802.11ax40

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |

## 5755MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17265 | 56.69 | 30.55 | 5.77 | 24.66 | 56.57 | 74 | -17.43 | PK |
| H | 17265 | 44.99 | 30.55 | 5.77 | 24.66 | 44.87 | 54 | -9.13  | AV |
| V | 17265 | 59.78 | 30.33 | 6.32 | 24.55 | 60.32 | 74 | -13.68 | PK |
| V | 17265 | 43.69 | 30.33 | 6.32 | 24.55 | 44.23 | 54 | -9.77  | AV |

## 5795MHz

|   |       |       |       |      |       |       |    |        |    |
|---|-------|-------|-------|------|-------|-------|----|--------|----|
| H | 17385 | 56.59 | 30.55 | 5.77 | 24.66 | 56.47 | 74 | -17.53 | PK |
| H | 17385 | 42.28 | 30.55 | 5.77 | 24.66 | 42.16 | 54 | -11.84 | AV |
| V | 17385 | 55.43 | 30.33 | 6.32 | 24.55 | 55.97 | 74 | -18.03 | PK |
| V | 17385 | 44.57 | 30.33 | 6.32 | 24.55 | 45.11 | 54 | -8.89  | AV |



ZHONGHAN



Project No.: ZHT-250708128W01-3

Page 29 of 50

802.11ax80

| Polar<br>(H/V) | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits | Margin | Detect<br>or<br>Type |
|----------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------|--------|----------------------|
|                | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dB)   | (dB)   |                      |
| 5775MHz        |           |                  |                   |               |                   |                   |        |        |                      |
| H              | 17265     | 58.42            | 30.55             | 5.77          | 24.66             | 58.3              | 74     | -15.7  | PK                   |
| H              | 17265     | 44.48            | 30.55             | 5.77          | 24.66             | 44.36             | 54     | -9.64  | AV                   |
| V              | 17265     | 59.08            | 30.33             | 6.32          | 24.55             | 59.62             | 74     | -14.38 | PK                   |
| V              | 17265     | 44.94            | 30.33             | 6.32          | 24.55             | 45.48             | 54     | -8.52  | AV                   |

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,
- Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
4. All the modes have been tested and recorded worst mode in the report.



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 30 of 50

## RADIATED Band EMISSION MEASUREMENT

|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
|---------------------|----------------------|-----------------|----------------------|--------------------|-----------------|-----------------------|-------------------------|-----------------|-------------|---------------|--------|
| Low Channel 5745MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11a             | H                    | 5650            | 60.64                | 30.22              | 4.85            | 23.98                 | 59.25                   | 74.00           | -14.75      | PK            | PASS   |
|                     | H                    | 5650            | 47.64                | 30.22              | 4.85            | 23.98                 | 46.25                   | 54.00           | -7.75       | AV            | PASS   |
|                     | H                    | 5700            | 59.36                | 30.22              | 4.85            | 23.98                 | 57.97                   | 74.00           | -16.03      | PK            | PASS   |
|                     | H                    | 5700            | 46.17                | 30.22              | 4.85            | 23.98                 | 44.78                   | 54.00           | -9.22       | AV            | PASS   |
|                     | V                    | 5650            | 59.73                | 30.22              | 4.85            | 23.98                 | 58.34                   | 74.00           | -15.66      | PK            | PASS   |
|                     | V                    | 5650            | 46.75                | 30.22              | 4.85            | 23.98                 | 45.36                   | 54.00           | -8.64       | AV            | PASS   |
|                     | V                    | 5700            | 60.40                | 30.22              | 4.85            | 23.98                 | 59.01                   | 74.00           | -14.99      | PK            | PASS   |
|                     | V                    | 5700            | 48.03                | 30.22              | 4.85            | 23.98                 | 46.64                   | 54.00           | -7.36       | AV            | PASS   |
|                     | High Channel 5825MHz |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                     | H                    | 5850            | 62.87                | 30.22              | 4.85            | 23.98                 | 61.48                   | 74.00           | -12.52      | PK            | PASS   |
|                     | H                    | 5850            | 47.56                | 30.22              | 4.85            | 23.98                 | 46.17                   | 54.00           | -7.83       | AV            | PASS   |
|                     | H                    | 5855            | 59.67                | 30.22              | 4.85            | 23.98                 | 58.28                   | 74.00           | -15.72      | PK            | PASS   |
|                     | H                    | 5855            | 46.57                | 30.22              | 4.85            | 23.98                 | 45.18                   | 54.00           | -8.82       | AV            | PASS   |
|                     | V                    | 5850            | 59.05                | 30.22              | 4.85            | 23.98                 | 57.66                   | 74.00           | -16.34      | PK            | PASS   |
|                     | V                    | 5850            | 48.99                | 30.22              | 4.85            | 23.98                 | 47.60                   | 54.00           | -6.40       | AV            | PASS   |
|                     | V                    | 5855            | 59.80                | 30.22              | 4.85            | 23.98                 | 58.41                   | 74.00           | -15.59      | PK            | PASS   |
|                     | V                    | 5855            | 47.78                | 30.22              | 4.85            | 23.98                 | 46.39                   | 54.00           | -7.61       | AV            | PASS   |
|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
| Low Channel 5745MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11n20           | H                    | 5650            | 59.44                | 30.22              | 4.85            | 23.98                 | 58.05                   | 74.00           | -15.95      | PK            | PASS   |
|                     | H                    | 5650            | 46.29                | 30.22              | 4.85            | 23.98                 | 44.90                   | 54.00           | -9.10       | AV            | PASS   |
|                     | H                    | 5700            | 62.96                | 30.22              | 4.85            | 23.98                 | 61.57                   | 74.00           | -12.43      | PK            | PASS   |
|                     | H                    | 5700            | 47.12                | 30.22              | 4.85            | 23.98                 | 45.73                   | 54.00           | -8.27       | AV            | PASS   |
|                     | V                    | 5650            | 61.88                | 30.22              | 4.85            | 23.98                 | 60.49                   | 74.00           | -13.51      | PK            | PASS   |
|                     | V                    | 5650            | 46.36                | 30.22              | 4.85            | 23.98                 | 44.97                   | 54.00           | -9.03       | AV            | PASS   |
|                     | V                    | 5700            | 59.43                | 30.22              | 4.85            | 23.98                 | 58.04                   | 74.00           | -15.96      | PK            | PASS   |
|                     | V                    | 5700            | 48.89                | 30.22              | 4.85            | 23.98                 | 47.50                   | 54.00           | -6.50       | AV            | PASS   |
|                     | High Channel 5825MHz |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                     | H                    | 5850            | 60.02                | 30.22              | 4.85            | 23.98                 | 58.63                   | 74.00           | -15.37      | PK            | PASS   |
|                     | H                    | 5850            | 48.61                | 30.22              | 4.85            | 23.98                 | 47.22                   | 54.00           | -6.78       | AV            | PASS   |
|                     | H                    | 5855            | 60.95                | 30.22              | 4.85            | 23.98                 | 59.56                   | 74.00           | -14.44      | PK            | PASS   |
|                     | H                    | 5855            | 48.79                | 30.22              | 4.85            | 23.98                 | 47.40                   | 54.00           | -6.60       | AV            | PASS   |
|                     | V                    | 5850            | 62.27                | 30.22              | 4.85            | 23.98                 | 60.88                   | 74.00           | -13.12      | PK            | PASS   |
|                     | V                    | 5850            | 47.27                | 30.22              | 4.85            | 23.98                 | 45.88                   | 54.00           | -8.12       | AV            | PASS   |
|                     | V                    | 5855            | 60.73                | 30.22              | 4.85            | 23.98                 | 59.34                   | 74.00           | -14.66      | PK            | PASS   |
|                     | V                    | 5855            | 46.28                | 30.22              | 4.85            | 23.98                 | 44.89                   | 54.00           | -9.11       | AV            | PASS   |



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 31 of 50

|                      | Polar (H/V) | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
|----------------------|-------------|-----------------|----------------------|--------------------|-----------------|-----------------------|-------------------------|-----------------|-------------|---------------|--------|
| Low Channel 5775MHz  |             |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>n40        | H           | 5720            | 62.66                | 30.22              | 4.85            | 23.98                 | 61.27                   | 74.00           | -12.73      | PK            | PASS   |
|                      | H           | 5720            | 46.13                | 30.22              | 4.85            | 23.98                 | 44.74                   | 54.00           | -9.26       | AV            | PASS   |
|                      | H           | 5725            | 60.59                | 30.22              | 4.85            | 23.98                 | 59.20                   | 74.00           | -14.80      | PK            | PASS   |
|                      | H           | 5725            | 47.18                | 30.22              | 4.85            | 23.98                 | 45.79                   | 54.00           | -8.21       | AV            | PASS   |
|                      | V           | 5720            | 60.43                | 30.22              | 4.85            | 23.98                 | 59.04                   | 74.00           | -14.96      | PK            | PASS   |
|                      | V           | 5720            | 47.53                | 30.22              | 4.85            | 23.98                 | 46.14                   | 54.00           | -7.86       | AV            | PASS   |
|                      | V           | 5725            | 62.07                | 30.22              | 4.85            | 23.98                 | 60.68                   | 74.00           | -13.32      | PK            | PASS   |
|                      | V           | 5725            | 47.12                | 30.22              | 4.85            | 23.98                 | 45.73                   | 54.00           | -8.27       | AV            | PASS   |
| High Channel 5795MHz |             |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                      | H           | 5875            | 61.78                | 30.22              | 4.85            | 23.98                 | 60.39                   | 74.00           | -13.61      | PK            | PASS   |
|                      | H           | 5875            | 46.97                | 30.22              | 4.85            | 23.98                 | 45.58                   | 54.00           | -8.42       | AV            | PASS   |
|                      | H           | 5925            | 61.26                | 30.22              | 4.85            | 23.98                 | 59.87                   | 74.00           | -14.13      | PK            | PASS   |
|                      | H           | 5925            | 46.09                | 30.22              | 4.85            | 23.98                 | 44.70                   | 54.00           | -9.30       | AV            | PASS   |
|                      | V           | 5875            | 59.38                | 30.22              | 4.85            | 23.98                 | 57.99                   | 74.00           | -16.01      | PK            | PASS   |
|                      | V           | 5875            | 48.59                | 30.22              | 4.85            | 23.98                 | 47.20                   | 54.00           | -6.80       | AV            | PASS   |
|                      | V           | 5925            | 59.00                | 30.22              | 4.85            | 23.98                 | 57.61                   | 74.00           | -16.39      | PK            | PASS   |
|                      | V           | 5925            | 48.22                | 30.22              | 4.85            | 23.98                 | 46.83                   | 54.00           | -7.17       | AV            | PASS   |
|                      | Polar (H/V) | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
| Low Channel 5745MHz  |             |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ac20       | H           | 5650            | 62.83                | 30.22              | 4.85            | 23.98                 | 61.44                   | 74.00           | -12.56      | PK            | PASS   |
|                      | H           | 5650            | 46.31                | 30.22              | 4.85            | 23.98                 | 44.92                   | 54.00           | -9.08       | AV            | PASS   |
|                      | H           | 5700            | 62.14                | 30.22              | 4.85            | 23.98                 | 60.75                   | 74.00           | -13.25      | PK            | PASS   |
|                      | H           | 5700            | 47.77                | 30.22              | 4.85            | 23.98                 | 46.38                   | 54.00           | -7.62       | AV            | PASS   |
|                      | V           | 5650            | 59.13                | 30.22              | 4.85            | 23.98                 | 57.74                   | 74.00           | -16.26      | PK            | PASS   |
|                      | V           | 5650            | 48.69                | 30.22              | 4.85            | 23.98                 | 47.30                   | 54.00           | -6.70       | AV            | PASS   |
|                      | V           | 5700            | 60.26                | 30.22              | 4.85            | 23.98                 | 58.87                   | 74.00           | -15.13      | PK            | PASS   |
|                      | V           | 5700            | 46.33                | 30.22              | 4.85            | 23.98                 | 44.94                   | 54.00           | -9.06       | AV            | PASS   |
| High Channel 5825MHz |             |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                      | H           | 5850            | 62.60                | 30.22              | 4.85            | 23.98                 | 61.21                   | 74.00           | -12.79      | PK            | PASS   |
|                      | H           | 5850            | 46.93                | 30.22              | 4.85            | 23.98                 | 45.54                   | 54.00           | -8.46       | AV            | PASS   |
|                      | H           | 5855            | 60.14                | 30.22              | 4.85            | 23.98                 | 58.75                   | 74.00           | -15.25      | PK            | PASS   |
|                      | H           | 5855            | 48.36                | 30.22              | 4.85            | 23.98                 | 46.97                   | 54.00           | -7.03       | AV            | PASS   |
|                      | V           | 5850            | 61.49                | 30.22              | 4.85            | 23.98                 | 60.10                   | 74.00           | -13.90      | PK            | PASS   |
|                      | V           | 5850            | 47.73                | 30.22              | 4.85            | 23.98                 | 46.34                   | 54.00           | -7.66       | AV            | PASS   |
|                      | V           | 5855            | 62.93                | 30.22              | 4.85            | 23.98                 | 61.54                   | 74.00           | -12.46      | PK            | PASS   |
|                      | V           | 5855            | 47.71                | 30.22              | 4.85            | 23.98                 | 46.32                   | 54.00           | -7.68       | AV            | PASS   |



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 32 of 50

|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
|---------------------|----------------------|-----------------|----------------------|--------------------|-----------------|-----------------------|-------------------------|-----------------|-------------|---------------|--------|
| Low Channel 5775MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ac40      | H                    | 5720            | 62.86                | 30.22              | 4.85            | 23.98                 | 61.47                   | 74.00           | -12.53      | PK            | PASS   |
|                     | H                    | 5720            | 47.56                | 30.22              | 4.85            | 23.98                 | 46.17                   | 54.00           | -7.83       | AV            | PASS   |
|                     | H                    | 5725            | 61.00                | 30.22              | 4.85            | 23.98                 | 59.61                   | 74.00           | -14.39      | PK            | PASS   |
|                     | H                    | 5725            | 48.26                | 30.22              | 4.85            | 23.98                 | 46.87                   | 54.00           | -7.13       | AV            | PASS   |
|                     | V                    | 5720            | 59.41                | 30.22              | 4.85            | 23.98                 | 58.02                   | 74.00           | -15.98      | PK            | PASS   |
|                     | V                    | 5720            | 46.53                | 30.22              | 4.85            | 23.98                 | 45.14                   | 54.00           | -8.86       | AV            | PASS   |
|                     | V                    | 5725            | 62.11                | 30.22              | 4.85            | 23.98                 | 60.72                   | 74.00           | -13.28      | PK            | PASS   |
|                     | V                    | 5725            | 48.05                | 30.22              | 4.85            | 23.98                 | 46.66                   | 54.00           | -7.34       | AV            | PASS   |
|                     | High Channel 5795MHz |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                     | H                    | 5875            | 60.75                | 30.22              | 4.85            | 23.98                 | 59.36                   | 74.00           | -14.64      | PK            | PASS   |
|                     | H                    | 5875            | 47.63                | 30.22              | 4.85            | 23.98                 | 46.24                   | 54.00           | -7.76       | AV            | PASS   |
|                     | H                    | 5925            | 61.45                | 30.22              | 4.85            | 23.98                 | 60.06                   | 74.00           | -13.94      | PK            | PASS   |
|                     | H                    | 5925            | 48.24                | 30.22              | 4.85            | 23.98                 | 46.85                   | 54.00           | -7.15       | AV            | PASS   |
|                     | V                    | 5875            | 60.99                | 30.22              | 4.85            | 23.98                 | 59.60                   | 74.00           | -14.40      | PK            | PASS   |
|                     | V                    | 5875            | 48.51                | 30.22              | 4.85            | 23.98                 | 47.12                   | 54.00           | -6.88       | AV            | PASS   |
|                     | V                    | 5925            | 60.69                | 30.22              | 4.85            | 23.98                 | 59.30                   | 74.00           | -14.70      | PK            | PASS   |
|                     | V                    | 5925            | 46.14                | 30.22              | 4.85            | 23.98                 | 44.75                   | 54.00           | -9.25       | AV            | PASS   |
|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
| Low Channel 5775MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ac80      | H                    | 5720            | 61.86                | 30.22              | 4.85            | 23.98                 | 60.47                   | 74.00           | -13.53      | PK            | PASS   |
|                     | H                    | 5720            | 46.43                | 30.22              | 4.85            | 23.98                 | 45.04                   | 54.00           | -8.96       | AV            | PASS   |
|                     | H                    | 5725            | 62.03                | 30.22              | 4.85            | 23.98                 | 60.64                   | 74.00           | -13.36      | PK            | PASS   |
|                     | H                    | 5725            | 46.75                | 30.22              | 4.85            | 23.98                 | 45.36                   | 54.00           | -8.64       | AV            | PASS   |
|                     | V                    | 5720            | 59.31                | 30.22              | 4.85            | 23.98                 | 57.92                   | 74.00           | -16.08      | PK            | PASS   |
|                     | V                    | 5720            | 47.33                | 30.22              | 4.85            | 23.98                 | 45.94                   | 54.00           | -8.06       | AV            | PASS   |
|                     | V                    | 5725            | 59.15                | 30.22              | 4.85            | 23.98                 | 57.76                   | 74.00           | -16.24      | PK            | PASS   |
|                     | V                    | 5725            | 48.61                | 30.22              | 4.85            | 23.98                 | 47.22                   | 54.00           | -6.78       | AV            | PASS   |
|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
| Low Channel 5745MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ax20      | H                    | 5650            | 62.22                | 30.22              | 4.85            | 23.98                 | 60.83                   | 74.00           | -13.17      | PK            | PASS   |
|                     | H                    | 5650            | 47.44                | 30.22              | 4.85            | 23.98                 | 46.05                   | 54.00           | -7.95       | AV            | PASS   |
|                     | H                    | 5700            | 60.47                | 30.22              | 4.85            | 23.98                 | 59.08                   | 74.00           | -14.92      | PK            | PASS   |
|                     | H                    | 5700            | 48.76                | 30.22              | 4.85            | 23.98                 | 47.37                   | 54.00           | -6.63       | AV            | PASS   |
|                     | V                    | 5650            | 62.46                | 30.22              | 4.85            | 23.98                 | 61.07                   | 74.00           | -12.93      | PK            | PASS   |
|                     | V                    | 5650            | 47.94                | 30.22              | 4.85            | 23.98                 | 46.55                   | 54.00           | -7.45       | AV            | PASS   |
|                     | V                    | 5700            | 61.91                | 30.22              | 4.85            | 23.98                 | 60.52                   | 74.00           | -13.48      | PK            | PASS   |
|                     | V                    | 5700            | 46.84                | 30.22              | 4.85            | 23.98                 | 45.45                   | 54.00           | -8.55       | AV            | PASS   |
|                     | High Channel 5825MHz |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                     | H                    | 5850            | 59.22                | 30.22              | 4.85            | 23.98                 | 57.83                   | 74.00           | -16.17      | PK            | PASS   |
|                     | H                    | 5850            | 48.14                | 30.22              | 4.85            | 23.98                 | 46.75                   | 54.00           | -7.25       | AV            | PASS   |
|                     | H                    | 5855            | 59.25                | 30.22              | 4.85            | 23.98                 | 57.86                   | 74.00           | -16.14      | PK            | PASS   |
|                     | H                    | 5855            | 46.99                | 30.22              | 4.85            | 23.98                 | 45.60                   | 54.00           | -8.40       | AV            | PASS   |
|                     | V                    | 5850            | 62.11                | 30.22              | 4.85            | 23.98                 | 60.72                   | 74.00           | -13.28      | PK            | PASS   |
|                     | V                    | 5850            | 48.22                | 30.22              | 4.85            | 23.98                 | 46.83                   | 54.00           | -7.17       | AV            | PASS   |
|                     | V                    | 5855            | 59.28                | 30.22              | 4.85            | 23.98                 | 57.89                   | 74.00           | -16.11      | PK            | PASS   |
|                     | V                    | 5855            | 47.28                | 30.22              | 4.85            | 23.98                 | 45.89                   | 54.00           | -8.11       | AV            | PASS   |



ZHONGHAN

Project No.: ZHT-250708128W01-3

Page 33 of 50

|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
|---------------------|----------------------|-----------------|----------------------|--------------------|-----------------|-----------------------|-------------------------|-----------------|-------------|---------------|--------|
| Low Channel 5775MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ax40      | H                    | 5720            | 62.23                | 30.22              | 4.85            | 23.98                 | 60.84                   | 74.00           | -13.16      | PK            | PASS   |
|                     | H                    | 5720            | 46.39                | 30.22              | 4.85            | 23.98                 | 45.00                   | 54.00           | -9.00       | AV            | PASS   |
|                     | H                    | 5725            | 60.09                | 30.22              | 4.85            | 23.98                 | 58.70                   | 74.00           | -15.30      | PK            | PASS   |
|                     | H                    | 5725            | 48.91                | 30.22              | 4.85            | 23.98                 | 47.52                   | 54.00           | -6.48       | AV            | PASS   |
|                     | V                    | 5720            | 59.74                | 30.22              | 4.85            | 23.98                 | 58.35                   | 74.00           | -15.65      | PK            | PASS   |
|                     | V                    | 5720            | 48.43                | 30.22              | 4.85            | 23.98                 | 47.04                   | 54.00           | -6.96       | AV            | PASS   |
|                     | V                    | 5725            | 61.26                | 30.22              | 4.85            | 23.98                 | 59.87                   | 74.00           | -14.13      | PK            | PASS   |
|                     | V                    | 5725            | 46.11                | 30.22              | 4.85            | 23.98                 | 44.72                   | 54.00           | -9.28       | AV            | PASS   |
|                     | High Channel 5795MHz |                 |                      |                    |                 |                       |                         |                 |             |               |        |
|                     | H                    | 5875            | 62.42                | 30.22              | 4.85            | 23.98                 | 61.03                   | 74.00           | -12.97      | PK            | PASS   |
|                     | H                    | 5875            | 47.46                | 30.22              | 4.85            | 23.98                 | 46.07                   | 54.00           | -7.93       | AV            | PASS   |
|                     | H                    | 5925            | 59.91                | 30.22              | 4.85            | 23.98                 | 58.52                   | 74.00           | -15.48      | PK            | PASS   |
|                     | H                    | 5925            | 47.92                | 30.22              | 4.85            | 23.98                 | 46.53                   | 54.00           | -7.47       | AV            | PASS   |
|                     | V                    | 5875            | 61.29                | 30.22              | 4.85            | 23.98                 | 59.90                   | 74.00           | -14.10      | PK            | PASS   |
|                     | V                    | 5875            | 48.94                | 30.22              | 4.85            | 23.98                 | 47.55                   | 54.00           | -6.45       | AV            | PASS   |
|                     | V                    | 5925            | 61.39                | 30.22              | 4.85            | 23.98                 | 60.00                   | 74.00           | -14.00      | PK            | PASS   |
|                     | V                    | 5925            | 48.72                | 30.22              | 4.85            | 23.98                 | 47.33                   | 54.00           | -6.67       | AV            | PASS   |
|                     | Polar (H/V)          | Frequency (MHz) | Meter Reading (dBuV) | Pre-amplifier (dB) | Cable Loss (dB) | Antenna Factor (dB/m) | Emission level (dBuV/m) | Limit (dBuV /m) | Margin( dB) | Detector Type | Result |
| Low Channel 5775MHz |                      |                 |                      |                    |                 |                       |                         |                 |             |               |        |
| 802.11<br>ax80      | H                    | 5720            | 59.01                | 30.22              | 4.85            | 23.98                 | 57.62                   | 74.00           | -16.38      | PK            | PASS   |
|                     | H                    | 5720            | 48.16                | 30.22              | 4.85            | 23.98                 | 46.77                   | 54.00           | -7.23       | AV            | PASS   |
|                     | H                    | 5725            | 59.30                | 30.22              | 4.85            | 23.98                 | 57.91                   | 74.00           | -16.09      | PK            | PASS   |
|                     | H                    | 5725            | 46.94                | 30.22              | 4.85            | 23.98                 | 45.55                   | 54.00           | -8.45       | AV            | PASS   |
|                     | V                    | 5720            | 60.89                | 30.22              | 4.85            | 23.98                 | 59.50                   | 74.00           | -14.50      | PK            | PASS   |
|                     | V                    | 5720            | 47.50                | 30.22              | 4.85            | 23.98                 | 46.11                   | 54.00           | -7.89       | AV            | PASS   |
|                     | V                    | 5725            | 62.96                | 30.22              | 4.85            | 23.98                 | 61.57                   | 74.00           | -12.43      | PK            | PASS   |
|                     | V                    | 5725            | 47.78                | 30.22              | 4.85            | 23.98                 | 46.39                   | 54.00           | -7.61       | AV            | PASS   |

## 5.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)

Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the band 5.725-5.895 GHz:

(i) For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(ii) For an indoor access point operating in the 5.850-5.895 GHz band, the maximum power spectral density must not exceed 20 dBm e.i.r.p. in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 36 dBm. Indoor access points operating on a channel that spans the 5.725-5.850 GHz and 5.850-5.895 GHz bands must not exceed an e.i.r.p. of 36 dBm.

(iii) For client devices operating under the control of an indoor access point in the 5.850-5.895 GHz band, the maximum power spectral density must not exceed 14 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm. Client devices operating on a channel that spans the 5.725-5.850 GHz and 5.850-5.895 GHz bands must not exceed an e.i.r.p. of 30 dBm.



(iv) For a subordinate device operating under the control of an indoor access point in the 5.850-5.895 GHz band, the maximum power spectral density must not exceed 20 dBm e.i.r.p in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 36 dBm.

(v) In the 5.850-5.895 GHz band, client devices must operate under the control of an indoor access point. In all cases, an exception exists for transmitting brief messages to an access point when attempting to join its network after detecting a signal that confirms that an access point is operating on a particular channel. Access points may connect to other access points. Client devices are prohibited from connecting directly to another client device.

## 5.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or <500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW  $\geq 1/T$ , where T is defined in section II.B.I.a).
- b) Set VBW  $\geq 3$  RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add  $10\log(500\text{kHz}/\text{RBW})$  to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add  $10\log(1\text{MHz}/\text{RBW})$  to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

## 5.3 DEVIATION FROM STANDARD

No deviation.

#### 5.4 TEST SETUP



#### 5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

#### 5.6 TEST RESULTS

|                      |                                                            |                    |          |
|----------------------|------------------------------------------------------------|--------------------|----------|
| Temperature :        | 24.2°C                                                     | Relative Humidity: | 53%      |
| Pressure :           | 1010 hPa                                                   | Test Voltage :     | DC 3.7 V |
| Test Mode :          | TX                                                         |                    |          |
| 5.8G(5745-5825 MHz): | Please refer to the Appendix B.5 for 5G WIFI RF Test Data. |                    |          |



ZHONGHAN

## 6. 26DB & 6DB & 99% EMISSION BANDWIDTH

Project No.: ZHT-250708128W01-3

Page 37 of 50

### 6.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

### 6.2 TEST PROCEDURE

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz
- b) Set the video bandwidth (VBW)  $\geq 3 \times$  RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple
- f) Allow the trace to stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
- a) Set RBW=approximately 1% of the emission bandwidth
- b) Set the VBW>RBW
- c) Detector = Peak
- d) Trace mode = max hold
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency
2. Set span = 1.5 times to 5.0 times the OBW
3. Set RBW = 1 % to 5 % of the OBW
4. Set VBW  $\geq 3 \cdot RBW$
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.





ZHONGHAN




Project No.: ZHT-250708128W01-3

Page 39 of 50



### 6.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 6.4 TEST RESULTS

|                |                      |                                                            |          |
|----------------|----------------------|------------------------------------------------------------|----------|
| Temperature :  | 24.2°C               | Relative Humidity:                                         | 53%      |
| Pressure :     | 1010 hPa             | Test Voltage :                                             | DC 3.7 V |
| Test Mode :    | TX                   |                                                            |          |
| -6dB Bandwidth | 5.8G(5745-5825 MHz): | Please refer to the Appendix B.3 for 5G WIFI RF Test Data. |          |
| 99% Bandwidth  | 5.8G(5745-5825 MHz): | Please refer to the Appendix B.4 for 5G WIFI RF Test Data. |          |

## 7. MAXIMUM CONDUCTED OUTPUT POWER

### 7.1 PLIED PROCEDURES / LIMIT

According to FCC §15.407,

The maximum conducted output power should not exceed:

| Frequency Band(MHz) | Limit |
|---------------------|-------|
| 5150~5250           | 250mW |
| 5725~5850           | 1W    |

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or  $11 \text{ dBm} + 10 \log B$ , where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

## 7.2 TEST PROCEDURE

The EUT was directly connected to the Spectrum Analyzer

### 1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

### 2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.<sup>1</sup> However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

- The EUT transmits continuously (or with a duty cycle  $\geq$  98 percent).
- Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than  $\pm 2$  percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW  $\geq$  3 MHz.

(iv) Number of points in sweep  $\geq$  2 Span / RBW. (This ensures that bin-to-bin spacing is  $\leq$  RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle  $<$  98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle  $\geq$  98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

## 7.3 DEVIATION FROM STANDARD

No deviation.



## 7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

## 7.6 TEST RESULTS

|                      |                                                            |                    |          |
|----------------------|------------------------------------------------------------|--------------------|----------|
| Temperature :        | 24.2°C                                                     | Relative Humidity: | 53%      |
| Pressure :           | 1010 hPa                                                   | Test Voltage :     | DC 3.7 V |
| Test Mode :          | TX                                                         |                    |          |
| 5.8G(5745-5825 MHz): | Please refer to the Appendix B.7 for 5G WIFI RF Test Data. |                    |          |



ZHONGHAN

## 8.OUT OF BAND EMISSIONS

### 8.1 APPLICABLE STANDARD

According to FCC §15.407(b), RSS-247 6.2.1.2, RSS-247 6.2.4.2

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

According to RSS-247 section 6.2.1.2: For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250- 5350 MHz band.

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

### 8.3 DEVIATION FROM STANDARD

No deviation.

### 8.4 TEST SETUP



### 8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

### 8.6 TEST RESULTS

|                      |                                                            |                    |          |
|----------------------|------------------------------------------------------------|--------------------|----------|
| Temperature :        | 24.2°C                                                     | Relative Humidity: | 53%      |
| Pressure :           | 1010 hPa                                                   | Test Voltage :     | DC 3.7 V |
| Test Mode :          | TX                                                         |                    |          |
| 5.8G(5745-5825 MHz): | Please refer to the Appendix B.6 for 5G WIFI RF Test Data. |                    |          |

## 9.SPURIOUS RF CONDUCTED EMISSIONS

### 9.1 CONFORMANCE LIMIT

Refer to 15.407(b):

Except as shown in paragraph 15.407(b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Refer to RSS-247/6.2.1.2:

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

- a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

### 9.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

### 9.3 TEST SETUP



### 9.4 TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 1GHz. Set RBW=1MHz and VBW= 3MHz to measure the peak field strength, and measure frequency range from 1GHz to 40GHz.



|                      |                                                            |                    |          |
|----------------------|------------------------------------------------------------|--------------------|----------|
| Temperature :        | 24.2°C                                                     | Relative Humidity: | 53%      |
| Pressure :           | 1010 hPa                                                   | Test Voltage :     | DC 3.7 V |
| Test Mode :          | TX                                                         |                    |          |
| 5.8G(5745-5825 MHz): | Please refer to the Appendix B.8 for 5G WIFI RF Test Data. |                    |          |

Remark1: The measurement frequency range is from 30MHz to the 10th harmonic or 40G of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandedge measurement data.

Remark2: 26.5G to 40G is the background, so it does not show the data.

## 10.1 LIMIT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

According to RSS-247 "Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual." According to RSS-Gen "The frequency stability shall be measured with variation of ambient temperature as follows:" (1) From  $-30^{\circ}$  to  $+ 50^{\circ}$  centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section. (2) From  $-20^{\circ}$  to  $+ 50^{\circ}$  centigrade for equipment to be licensed for use in the Maritime Services under part 80 of this chapter, except for Class A, B, and S Emergency Position Indicating Radiobeacons (EPIRBS), and equipment to be licensed for use above 952 MHz at operational fixed stations in all services, stations in the Local Television Transmission Service and Point-to-Point Microwave Radio Service under part 21 of this chapter, equipment licensed for use aboard aircraft in the Aviation Services under part 87 of this chapter, and equipment authorized for use in the Family Radio Service under part 95 of this chapter. (3) From  $0^{\circ}$  to  $+ 50^{\circ}$  centigrade for equipment to be licensed for use in the Radio Broadcast Services under part 73 of this chapter.

## 10.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.
2. EUT have transmitted absence of modulation signal and fixed channelize.
3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
4. Set RBW = 10 kHz, VBW = 30 kHz with peak detector and maxhold settings.
5. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
6. Extreme temperature is  $-20^{\circ}\text{C}$ ~ $70^{\circ}\text{C}$ .

## 10.3 TEST SETUP LAYOUT



#### 10.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

#### 10.5 TEST RESULTS

|                      |                                                            |                    |          |
|----------------------|------------------------------------------------------------|--------------------|----------|
| Temperature :        | 24.2°C                                                     | Relative Humidity: | 53%      |
| Pressure :           | 1010 hPa                                                   | Test Voltage :     | DC 3.7 V |
| Test Mode :          | TX                                                         |                    |          |
| 5.8G(5745-5825 MHz): | Please refer to the Appendix B.7 for 5G WIFI RF Test Data. |                    |          |



ZHONGHAN

## 11. ANTENNA REQUIREMENT

Project No.: ZHT-250708128W01-3

Page 49 of 50

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Standard requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCC Part15 C Section 15.203, RSS-247 6.8 |
| 15.203 requirement:<br>An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (EIRP) limits specified in the applicable standard (RSS) for the licence-exempt apparatus. Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. <sup>9</sup> When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer. |                                          |
| EUT Antenna:<br>The antenna is FPC antenna, the best case gain of the antenna is ANT: 1.7dBi, reference to the appendix II for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |



ZHONGHAN

## 12. TEST SETUP PHOTO

Reference to the appendix I for details.

Project No.: ZHT-250708128W01-3

Page 50 of 50

## 13. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

\*\*\*\*\* END OF REPORT \*\*\*\*\*