FCC TEST REPORT

FOR

Shenzhen Cignias Technology Co., Ltd Wireless Timer Switch Controller

Test Model: WTS-06

Additional Model No.: Please Refer to Page 6

Prepared for : Shenzhen Cignias Technology Co., Ltd

506, Building A, Chunenghui, Digital Economy Industry Base,

Address : Zhangkengjing Community, Guanhu Street, Longhua District,

Shenzhen, Guangdong, China

Prepared by : Guangzhou LCS Compliance Testing Laboratory Ltd.

No.44-1, Qianfeng North Road, Shiqi, Panyu District, Guangzhou,

Address : Guangdong, China

Tel : (+86) 020-39166689 Fax : (+86) 020-39166619 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : August 15, 2025

Number of tested samples : 2

Sample No. : A250808041-1, A250808041-2

Sample number : Prototype

Date of Test : August 15, 2025 ~ August 26, 2025

Date of Report : August 27, 2025

FCC TEST REPORT

FCC CFR 47 PART 15 C (15.249)

Report Reference No.: LCSC08145003EA

Date of Issue.....: August 27, 2025

Testing Laboratory Name: Guangzhou LCS Compliance Testing Laboratory Ltd..

Guangdong, China

. Full application of Harmonised standards Testing Location/ Procedure

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Shenzhen Cignias Technology Co., Ltd

506, Building A, Chunenghui, Digital Economy Industry Base,

Address......: 2 Zhangkengjing Community, Guanhu Street, Longhua District,

Shenzhen, Guangdong, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.249) / ANSI C63.10: 2020

Test Report Form No.....: TRF-4-E-189 A/0

TRF Originator.....: Guangzhou LCS Compliance Testing Laboratory Ltd...

Master TRF.....: Dated 2011-03

Guangzhou LCS Compliance Testing Laboratory Ltd.. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Guangzhou LCS Compliance Testing Laboratory Ltd.. is acknowledged as copyright owner and source of the material. Guangzhou LCS Compliance Testing Laboratory Ltd.. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless Timer Switch Controller

Trade Mark: N/A

Test Model: WTS-06

Ratings.....: Please Refer to Page 6

Result: PASS

Compiled by:

Supervised by:

Approved by:

Report No.: LCSC08145003EA

Lifeng Le / File administrators

Justin Zhu / Technique Director

Gavin Liang/ Manager

Report No.: LCSC08145003EA

August 27, 2025

Date of issue

LCSC08145003EA

Test Model..... : WTS-06 EUT.....: : Wireless Timer Switch Controller Applicant..... : Shenzhen Cignias Technology Co., Ltd 506, Building A, Chunenghui, Digital Economy Industry Base, Address..... : Zhangkengjing Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China Telephone..... Fax..... : Shenzhen Cignias Technology Co., Ltd Manufacturer..... Address..... : 506, Building A, Chunenghui, Digital Economy Industry Base, Zhangkengjing Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China Telephone.....

Factory	: Shenzhen Cignias Technology Co., Ltd
Address	: 506, Building A, Chunenghui, Digital Economy Industry Base, Zhangkengjing Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China
Telephone	: /
Fax	: /

Test Result	PASS

The test report merely corresponds to the test sample.

Test Report No.:

Fax.....

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report No.: LCSC08145003EA

Report Version	Issue Date	Revision Content	Revised By
000	August 27, 2025	Initial Issue	

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2. Support Equipment List	
1.3. External I/O	
1.4. Description of Test Facility	7
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description of Test Modes	
2. TEST METHODOLOGY	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	
3. CONNECTION DIAGRAM OF TEST SYSTEM	10
3.1. Justification	10
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	
5. ANTENNA REQUIREMENT	
6. POWER LINE CONDUCTED EMISSIONS	13
7. RADIATED EMISSION MEASUREMENT	16
8. RESULTS FOR BAND EDGE TESTING	26
9. 20 DB BANDWIDTH MEASUREMENT	
10. LIST OF MEASURING EQUIPMENT	34
11. TEST SETUP PHOTOGRAPHS OF THE EUT	
12. EXTERIOR PHOTOGRAPHS OF THE EUT	
13 INTERIOR PHOTOGRAPHS OF THE EUT	35 35

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Wireless Timer Switch Controller

Test Model : WTS-06

Additional Model No. : ETK-06, ETK-07, WTS-06A, WTS-06B, WTS-06C, WTS-06D, WTS-06E Model Declaration : PCB board, structure and internal of these model(s) are the same, So no

additional models were tested

Ratings : Input: 5V=1A

DC 3.7V by Rechargeable Li-ion Battery, 1350mAh

Hardware Version : V1.0 Software Version : V1.0.2

2.4G :

Frequency Range : 2423MHz, 2437MHz, 2445MHz, 2453MHz, 2461MHz

Channel Number : 5 channels

Modulation Type : GFSK

Antenna Description : Internal Antenna, 2.0dBi(Max.)

Note: For a more detailed antenna description, please refer to the antenna specifications or the antenna report provided by the customer.

Page 7 of 35 FCC ID:2BOFAWTS-06 Report No.: LCSC08145003EA

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN	Dower Adenter	TPA-46050200		FCC
ELECTRONICS CO., LTD	Power Adapter	UU		FCC

Note: The adapter is supplied by lab and only use tested.

1.3. External I/O

I/O Port Description	Quantity	Cable
Type-C USB Port	1	N/A

1.4. Description of Test Facility

Site Description EMC Lab.

CNAS Registration Number is L11555 A2LA Certificate Number: 5099.01 FCC Designation Number is CN1379 Test Firm Registration Number: 729882

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Report No.: LCSC08145003EA

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	: [200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)
Occupied Channel	:	1GHz-40GHz	±5%	(1)
Bandwidth				

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

Operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Channel	Frequency Range (MHz)
	1	2423
GFSK	3	2445
	5	2461
For Radiated Emission		
Test Mode		TX Mode

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX.

Channel List:

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2423	2	2437
3	2445	4	2453
5	2461		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Guangzhou LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2020 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2020

Report No.: LCSC08145003EA

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting was pre-programmed. It'll keep transmitting with modulated signal at the lowest channel by installing the batter. When press the "up" button, it'll move to the next channel. Repeat press "up" button, it'll transmitting at each of the channel used.

3.2. EUT Exercise Software

Press the corresponding button, and change the channel.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Guangzhou LCS Compliance Testing Laboratory Ltd.. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C §15.249			
FCC Rules	Description Of Test	Result	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	Power Line Conducted Emissions	Compliant	
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant	
§15.249 (d)	Band Edges Measurement	Compliant	
§15.215(c)	20 dB Bandwidth	Compliant	

Remark:

N/A* - Not Applicable for this device!!!

Report No.: LCSC08145003EA

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203 and RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

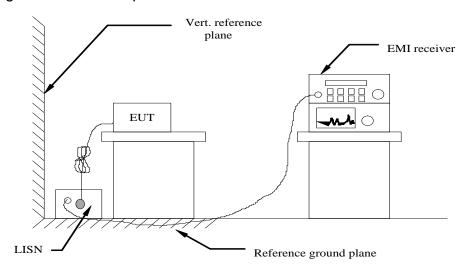
5.2. Antenna Connected Construction

The EUT use Internal Antenna and maximum antenna gain is 2.0dBi, antenna cannot replacement, meets FCC Part §15.203 antenna requirement. Please see EUT photo for details.

5.3. Results

Compliance

6. POWER LINE CONDUCTED EMISSIONS


6.1. Standard Applicable

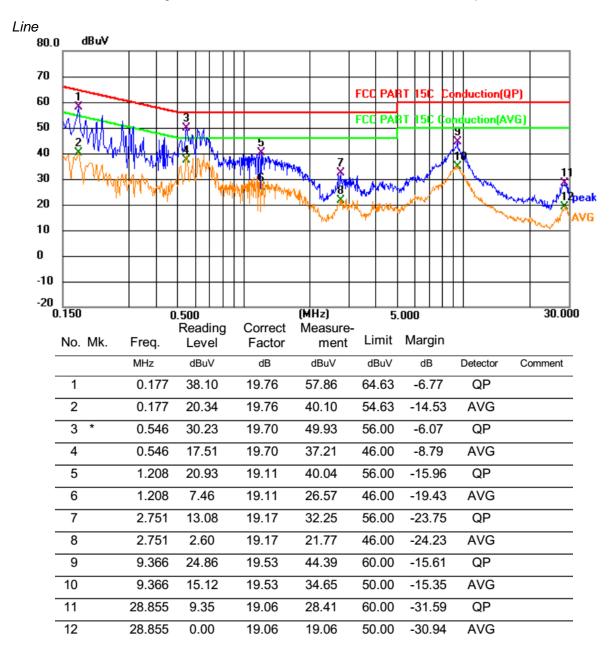
According to §15.207 (a) & RSS-Gen § 8.8: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limit	s (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

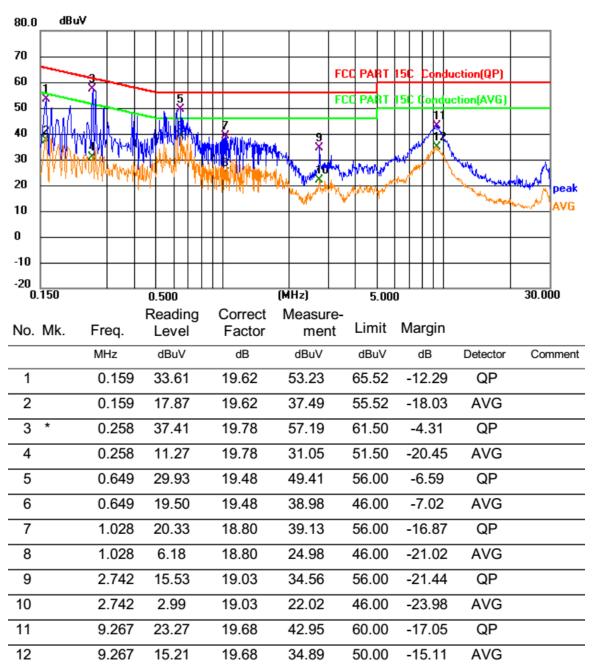
^{*} Decreasing linearly with the logarithm of the frequency

6.2. Block Diagram of Test Setup

6.3. Test Results


The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)


Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

6.4. Test Results

Temperature	Temperature 22.5°C		53.7%	
Test Engineer	Suichao Lai			

Neutral

^{***}Note: Pre-scan all modes and recorded the worst case results in this report.

Measurement= Reading + Correct Factor, Margin = Measurement – Limit.

Correct Factor=Lisn Factor+Cable Factor+Insertion loss of Pulse Limiter

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

According to FCC § 15.249: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental	Field Strength of fundamental	Field Strength of harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

According to RSS-210 B.10:

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) guasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

7.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

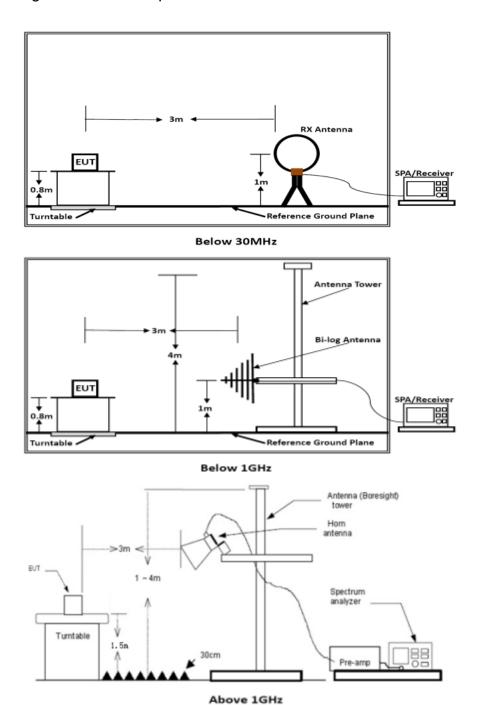
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.


Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

7.4. Block Diagram of Test Setup

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page 22 of 35 FCC ID:2BOFAWTS-06 Report No.: LCSC08145003EA

7.6. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

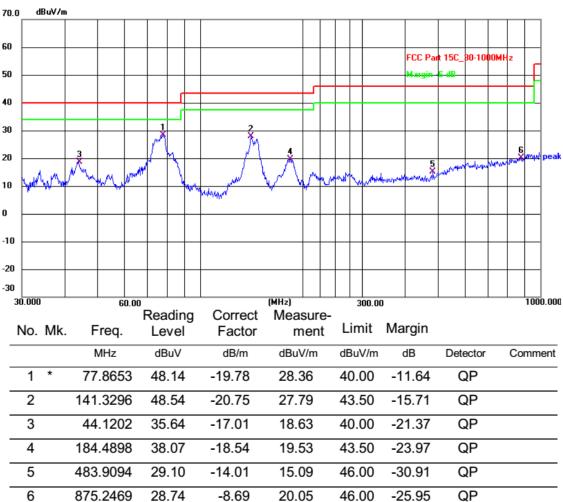
7.7. Test Results of Radiated Emissions (9 KHz~30 MHz)

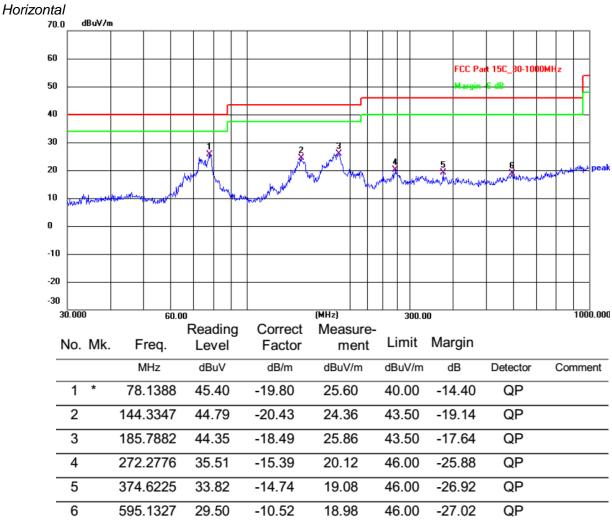
Temperature	23.8℃	Humidity	52.1%
Test Engineer	Suichao Lai		

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

7.8. Test Results of Radiated Emissions (30 MHz – 1000 MHz)

Temperature	23.8℃	Humidity	52.1%
Test Engineer	Suichao Lai		

Vertical

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report .
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Level = Reading + Factor, Margin = Level Limit, Factor = Antenna Factor + Cable Loss - Preamp Factor

Page 25 of 35

7.8. Results for Radiated Emissions (1 – 26 GHz)

	Field Strength of Fundamental (TX-2423MHz)							
	Frequency (MHz) Pol. Measure Result Peak Limit AVG Limit Result (MHz) (dBuV/m) (dBuV/m) Result							
ĺ	2423	Н	88.68	114	94	Pass		
Ī	2423	V	88.34	114	94	Pass		

Channel 1 / 2423MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4846.00	55.32	33.06	35.04	3.94	57.28	74.00	-16.72	Peak	Horizontal
4846.00	42.64	33.06	35.04	3.94	44.60	54.00	-9.40	Average	Horizontal
4846.00	56.64	33.06	35.04	3.94	58.60	74.00	-15.40	Peak	Vertical
4846.00	43.96	33.06	35.04	3.94	45.92	54.00	-8.08	Average	Vertical

Field Strength of Fundamental (TX-2445MHz)							
Frequency (MHz) Pol. Measure Result Peak Limit AVG Limit (PK, dBuV/m) (dBuV/m) Result							
2445	Н	81.32	114	94	Pass		
2445	V	82.47	114	94	Pass		

Channel 3/2445MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4890.00	55.11	33.16	35.15	3.96	57.08	74.00	-16.92	Peak	Horizontal
4890.00	42.57	33.16	35.15	3.96	44.54	54.00	-9.46	Average	Horizontal
4890.00	60.71	33.16	35.15	3.96	62.68	74.00	-11.32	Peak	Vertical
4890.00	45.22	33.16	35.15	3.96	47.19	54.00	-6.81	Average	Vertical

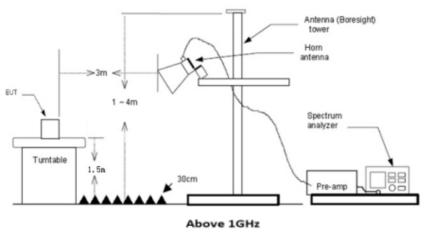
Field Strength of Fundamental (TX-2461MHz)							
Frequency (MHz)	AVG Limit (dBuV/m)	Result					
2461	Н	82.61	114	94	Pass		
2461	V	85.25	114	94	Pass		

Channel 5/2461MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4922.00	60.62	33.26	35.14	3.98	62.72	74.00	-11.28	Peak	Horizontal
4922.00	43.16	33.26	35.14	3.98	45.26	54.00	-8.74	Average	Horizontal
4922.00	53.08	33.26	35.14	3.98	55.18	74.00	-18.82	Peak	Vertical
4922.00	45.76	33.26	35.14	3.98	47.86	54.00	-6.14	Average	Vertical

Notes:

- 1). Measuring frequencies from 9 KHz 10th harmonic (ex. 26GHz), at least have 20dB margin found between lowest internal used/generated frequency to 30 MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz 10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3). 18~25 GHz at least have 20dB margin. No recording in the test report.
- 4). Measured Level = Reading Level + Factor, Margin = Measured Level Limit, Factor = Antenna Factor + Cable Loss Preamp Factor


Page 26 of 35

8.1. Standard Applicable

According to FCC §15.249 (d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to RSS-210 B.10 (b): Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

8.2. Test Setup Layout

8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

8.4. Test Procedures

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

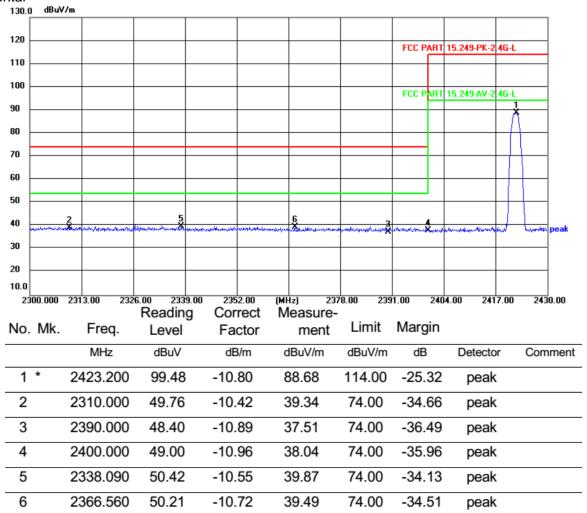
--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

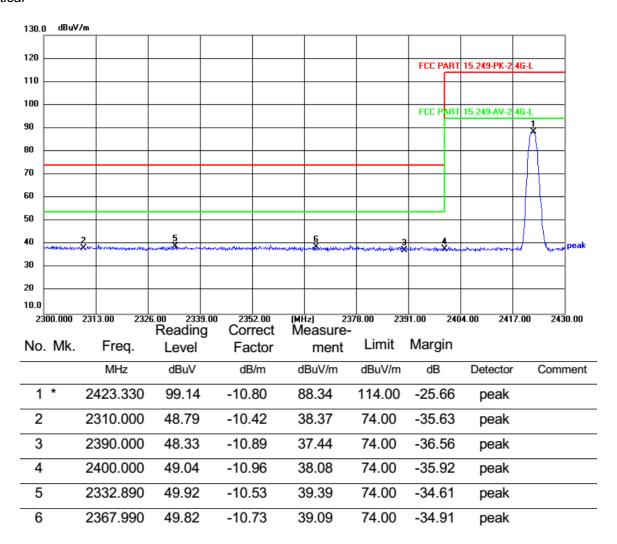
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

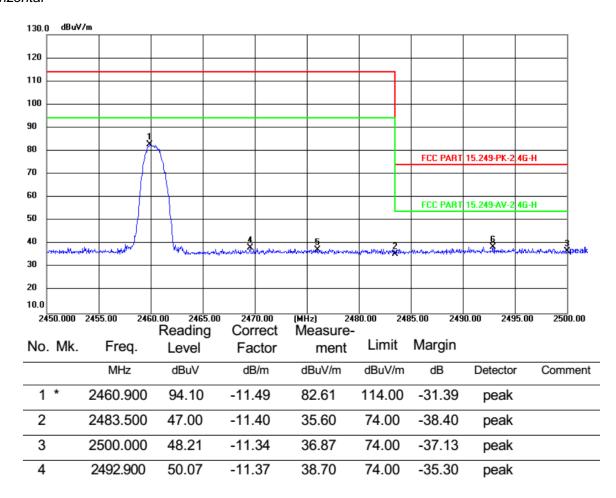
8.5. Measuring Instruments and Setting

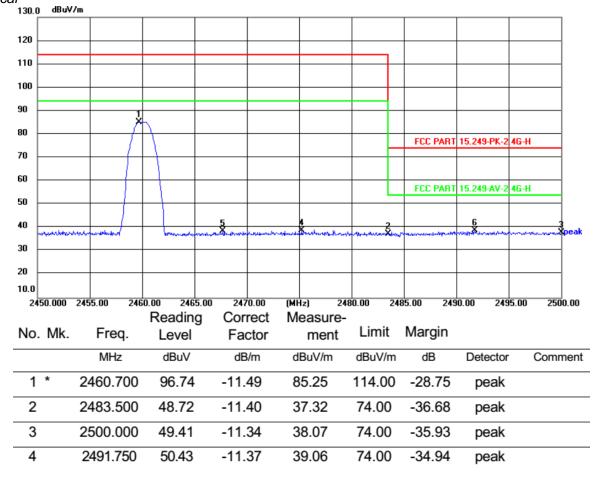

Temperature 23.5℃		Humidity	52.1%	
Test Engineer	Suichao Lai			

PASS


Remark:

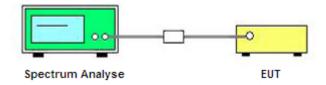
- 1. The other emission levels were very low against the limit.
- 2. The average measurement was not performed when the peak measured data under the limit of average detection.
- 3. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=330Hz/Sweep time=Auto/Detector=Peak;
- 4. Please refer to following test plots;


Channel 1 / 2423MHz Horizontal


Channel 1 / 2423MHz Vertical

Channel 5/2461MHz Horizontal

Channel 5/2461MHz Vertical


Note: Due to the measure PK emission level less than the AV limit value. No necessary to take down the AV emission level.

9. 20 DB BANDWIDTH MEASUREMENT

9.1. Standard Applicable

§15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

9.2. Block Diagram of Test Setup

9.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 3MHz

RBW = 30 KHz

VBW = 91 KHz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Report No.: LCSC08145003EA

9.4. Test Results

Temperature 23.5℃		Humidity	52.1%	
Test Engineer	Suichao Lai			

Test Result of 20dB Bandwidth Measurement						
Test Frequency	20dB Bandwidth	Limit				
(MHz)	(MHz)	(MHz)				
2423	1.287	Non-Specified				
2445	1.281	Non-Specified				
2461	1.291	Non-Specified				

Remark:

- 1. Test results including cable loss;
- 2. Please refer following test plots;

10. LIST OF MEASURING EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Equipment No.	Cal Date	Due Date
1	Power Meter	Keysight	E4417A	GLCS-E-279	2025-04-10	2026-04-09
2	Power Sensor	Keysight	E9304A	GLCS-E-280	2025-04-10	2026-04-09
3	Power Sensor	Keysight	E9304A	GLCS-E-281	2025-04-10	2026-04-09
4	Test Software	MWRFtest	TS 8310	N/A	N/A	N/A
5	MXA Signal Analyzer	Agilent	N9020A	GLCS-E-346	2025-07-15	2026-07-14
6	DC Power Supply	Manson	HCS-3604	GLCS-E-126	2025-04-10	2026-04-09
7	EMI Test Software	Farad	EZ-EMC(Ver.F A-03A2 RE+)	GLCS-E-012	N/A	N/A
8	Semi Anechoic Chamber#1	Maorui	966	GLCS-E-001	2024-04-21	2027-04-20
9	Positioning Controller	Max-Full	MF-7802	GLCS-E-015	N/A	N/A
10	Active Loop Antenna	TESEQ	HLA 6121	GLCS-E-155	2025-07-27	2026-07-26
11	By-log Antenna	SCHWARZBECK	VULB9163	GLCS-E-352	2025-07-15	2026-07-14
12	Horn Antenna	SCHWARZBECK	BBHA 9120D	GLCS-E-060	2025-07-19	2026-07-18
13	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	GLCS-E-347	2025-07-15	2026-07-14
14	Broadband Preamplifier	SCHWARZBECK	BBV9719	GLCS-E-348	2025-07-15	2026-07-14
15	EMI Test Receiver	R&S	ESR 7	GLCS-E-192	2025-04-10	2026-04-09
16	RS SPECTRUM ANALYZER	R&S	FSP40	GLCS-E-349	2025-07-15	2026-07-14
17	Low-frequency amplifier	Sonoma	310N	GLCS-E-036	2025-04-10	2026-04-09
18	High-frequency amplifier	SKET	LNPA_30M06 G-40	GLCS-E-286	2025-04-11	2026-04-10
19	6dB Attenuator	/	100W/6dB	GLCS-E-350	2025-07-15	2026-07-14
20	3dB Attenuator	/	2N-3dB	GLCS-E-351	2025-07-15	2026-07-14
21	EMI Test Receiver	ROHDE & SCHWARZ	ESR7	GLCS-E-158	2025-04-10	2026-04-09
22	Artificial Mains Network	ROHDE & SCHWARZ	ESH2-Z5	GLCS-E-011	2025-04-10	2026-04-09
23	EMI Test Software	Farad	EZ-EMC(Ver.F A-03A2 RE+)	GLCS-E-017	N/A	N/A
24	Antenna Mast	Maorui	BK-4AT-BS	GLCS-E-249	N/A	N/A
25	Pulse Limiter	SCHWARZBECK	VTSD 9561-F	GLCS-E-052	2025-04-10	2026-04-09

Report No.: LCSC08145003EA

11. TEST SETUP PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

12. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

13. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----