

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15 SUBPART E 15.407

Report Reference No...... MTEB25030166-R3

FCC ID.....: 2BOA7-B1

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Date of issue...... Mar. 13,2025

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... Shenzhen Tongxin Weiye Technology Co., Ltd

Hangcheng Sub-dist., Bao'an Dist., Shenzhen

Alisa Luo Sunny Deng Hor

Test specification....:

Standard FCC Part 15 Subpart E 15.407

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Wireless CarPlay/Android Auto Adapter

Trade Mark...... VCARLINKPLAY、FLIXIVI、Carivio

Model/Type reference..... B1

Listed Models C1, X1, F1, U2, B2, U1, U3, U4, U5, U6, U7, U8, U9, U10

Ratings...... DC 5V \pm 0.5 1A

Modulation: OFDM

Frequency...... From 5180MHz-5240MHz; 5745MHz-5825MHz

Result..... PASS

Report No.: MTEB25030166-R3 Page 2 of 99

TEST REPORT

Equipment under Test Wireless CarPlay/Android Auto Adapter

Model /Type B1

Listed Models C1, X1, F1, U2, B2, U1, U3, U4, U5, U6, U7, U8, U9, U10

Only the model "B1" was tested, Their electrical circuit design, Remark

layout, components used and internal wiring are identical, Only the

model name and Appearance is different.

Applicant Shenzhen Tongxin Weiye Technology Co., Ltd

2/F, Bldg C12, Fuyuan Ind'l City, 598 Zhoushi Rd, Jiuwei Comm., Address

Hangcheng Sub-dist., Bao'an Dist., Shenzhen

Manufacturer Shenzhen Siyide Technology Co., Ltd

D403, Bldg D, Huafeng Int'l Robot Ind'l Park, Hangcheng Ave., Address

Nanchang Cmty., Xixiang, Bao'an Dist., Shenzhen

Shenzhen Suding Technology Co., Ltd Manufacturer

D401, Bldg D, Huafeng Int'l Robot Ind'l Park, Hangcheng Ave., Address

Nanchang Cmty., Xixiang, Bao'an Dist., Shenzhen

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

I KEVISIUN HISTUKI	4
2 TEST STANDARDS	5
3 SUMMARY	6
3.1 General Remarks	
3.2 Product Description	
3.3 Equipment Under Test	6
3.4 Short description of the Equipment under Test (EUT)	
3.5 EUT operation mode	
3.6 Block Diagram of Test Setup	
3.1 Test Item (Equipment Under Test) Description	
3.2 Auxiliary Equipment (AE) Description	
3.3 Antenna Information*	
3.4 Related Submittal(s) / Grant (s)	c
3.6 EUT configuration	
3.6 EUT COMIGUIALION	С
4 TEST ENVIRONMENT	9
4.1 Address of the test laboratory	ç
4.2 Test Facility	ç
4.3 Environmental conditions	9
4.4 Test Description	
4.5 Statement of the measurement uncertainty	
4.6 Equipments Used during the Test	11
5 TEST CONDITIONS AND RESULTS	12
5.1 AC Power Conducted Emission	12
5.2 Radiated Emissions	15
5.3 Conduction spurious emission	
5.4 Maximum Conducted Average Output Power	
5.5 Power Spectral Density	
5.6 Emission Bandwidth (26dBm Bandwidth)	26
5.7 Minimum Emission Bandwidth (6dBm Bandwidth)	
5.8 Frequency Stability	
5.9 Duty Cycle information	28
6 TEST SETUP PHOTOS OF THE EUT	3 0
7 PHOTOS OF THE EUT	3 1
APPENDIX I. Frequency Stability	35
APPENDIX II. Conducted Output Power	32 40
APPENDIX III. 99% Bandwidth	
APPENDIX IV. 6dB Bandwidth	
APPENDIX V. 26dB Bandwidth	
APPENDIX VI. Conducted Out Of Band Emission	
APPENDIX VII. Duty Cycle	74
APPENDIX VIII. Peak Power Spectral Density	94

Report No.: MTEB25030166-R3 Page 4 of 99

1 Revision History

Revision	Issue Date	Revisions	Revised By
00	2025.03.13	Initial Issue	Alisa Luo

Report No.: MTEB25030166-R3 Page 5 of 99

2 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15 Subpart E</u>—Unlicensed National Information Infrastructure Devices <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB789033 D02</u>: General UNII Test Procedures New Rules v01r02

Report No.: MTEB25030166-R3 Page 6 of 99

3 SUMMARY

3.1 General Remarks

Date of receipt of test sample	:	2025.02.26
Testing commenced on	:	2025.02.27
Testing concluded on	:	2025.03.13

3.2 Product Description

Product Description:	Wireless CarPlay/Andr	oid Auto Adapter			
Model:	B1				
Power supply:	DC 5V				
Testing sample ID:	MTYP08411				
WIFI					
	20MHz system	40MHz system	80MHz system	160MHz system	
Supported type:	802.11a 802.11n 802.11ac 802.11ax	802.11n 802.11ac 802.11ax	N/A	N/A	
Operation frequency:	5180MHz-5240MHz 5745MHz-5825MHz	5190MHz-5230MHz 5755MHz-5795MHz	N/A	N/A	
Modulation:	OFDM	OFDM	N/A	N/A	
Antenna type:	PCB antenna			•	
Antenna gain:	-0.35dBi				

3.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 5V

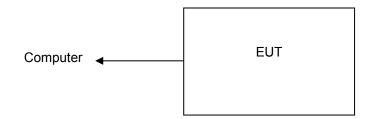
3.4 Short description of the Equipment under Test (EUT)

This is a Wireless CarPlay/Android Auto Adapter For more details, refer to the user's manual of the EUT.

Report No.: MTEB25030166-R3 Page 7 of 99

3.5 EUT operation mode

The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.


All test performed at the low, middle and high of operational frequency range of each mode.

Operation Frequency List WIFI on 5G Band:

	20MHz		40	40MHz		80MHz	
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	36	5180	20	E400			
U-NII 1	40	5200	38 5190		42	5210	
(5150MHz-5250MHz)	44	5220	46	5230	42	3210	
	48	5240	40				
	149	5745	151	5755	155	F77F	
U-NII 3	153	5765	151	5/55			
(5725MHz-5850MHz)	157	5785	159	5705	155		5775
(37231/1172-36301/11172)	161	5805	159	5795			
	165	5825					

Note: The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

3.6 Block Diagram of Test Setup

3.1 Test Item (Equipment Under Test) Description

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A					
EUT B					

^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices.

3.2 Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	Computer	X3-14 IAP		
AE 2				

3.3 Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		PCB antenna	5180MHz-5240MHz 5745MHz-5825MHz		-0.35dBi

Report No.: MTEB25030166-R3	Page 8 of 99

		I	
		I	

^{*:} declared by the applicant.

3.4 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

3.5 Modifications

No modifications were implemented to meet testing criteria.

3.6 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- O supplied by the manufacturer
- Supplied by the lab

ADAPTER	M/N:	X3-14 IAP
	Manufacturer:	Lenovo Beijing Co.,Ltd.

Report No.: MTEB25030166-R3 Page 9 of 99

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.3 Environmental conditions

Radiated Emission:

tadiated Efficerent	
Temperature:	23 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Report No.: MTEB25030166-R3 Page 10 of 99

4.4 Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	PASS _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS
FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A Note 3
FCC Part 15.203/15.247(b)	Antenna Requirement	PASS

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
	11a/OFDM	54 Mbps
Maximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth) Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability	11n(20MHz),11n(40MHz)/OFDM	MCS7
	11ac(20MHz),11ac(40MHz)/OFDM	MCS9
	11ax(20MHz),11ax(40MHz)/OFDM	MCS11

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)

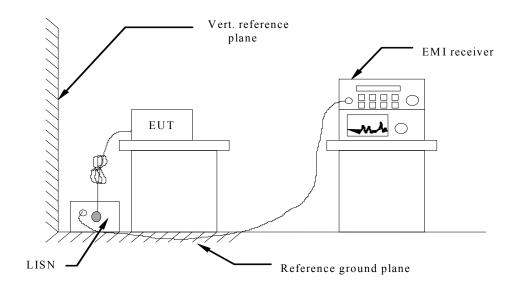
Report No.: MTEB25030166-R3 Page 11 of 99

Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
20dB Bandwidth & 99% Bandwidth	I	5%	(1)
Maximum Conducted Output Power	1	0.80dB	(1)
Spurious RF Conducted Emission	1	1.6dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6 Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	100093	/	2024/03/15	1 Year
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2024/03/15	1 Year
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2024/03/15	1 Year
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2024/03/15	1 Year
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2024/03/15	1 Year
6	Bilong Antenna	Sunol Sciences	JB3	A121206	1	2024/08/15	1 Year
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	/	2024/03/15	1 Year
8	Loop antenna	Beijing Daze	ZN30900B	/	/	2024/03/15	1 Year
9	Horn antenna	R&S	OBH100400	26999002	1	2024/03/15	1 Year
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2024/03/15	1 Year
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2024/03/15	1 Year
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	1	2024/03/15	1 Year
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2024/03/15	1 Year
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2024/03/15	1 Year
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2024/03/15	1 Year
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2024/03/15	1 Year
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	/	2024/03/15	1 Year
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2024/03/15	1 Year
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	1	2024/03/15	1 Year


Note: The Cal.Interval was one year.

Report No.: MTEB25030166-R3 Page 12 of 99

5 TEST CONDITIONS AND RESULTS

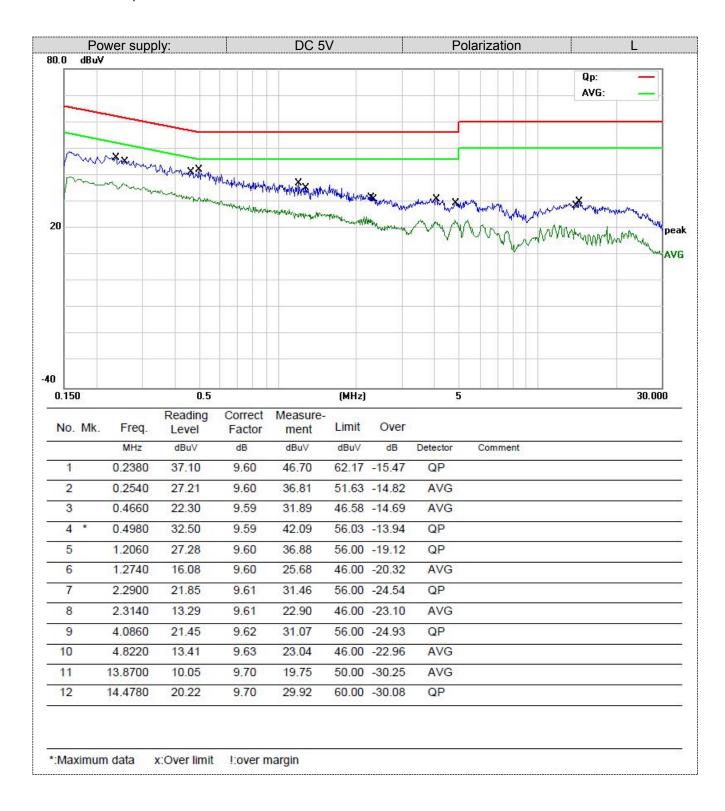
5.1 AC Power Conducted Emission

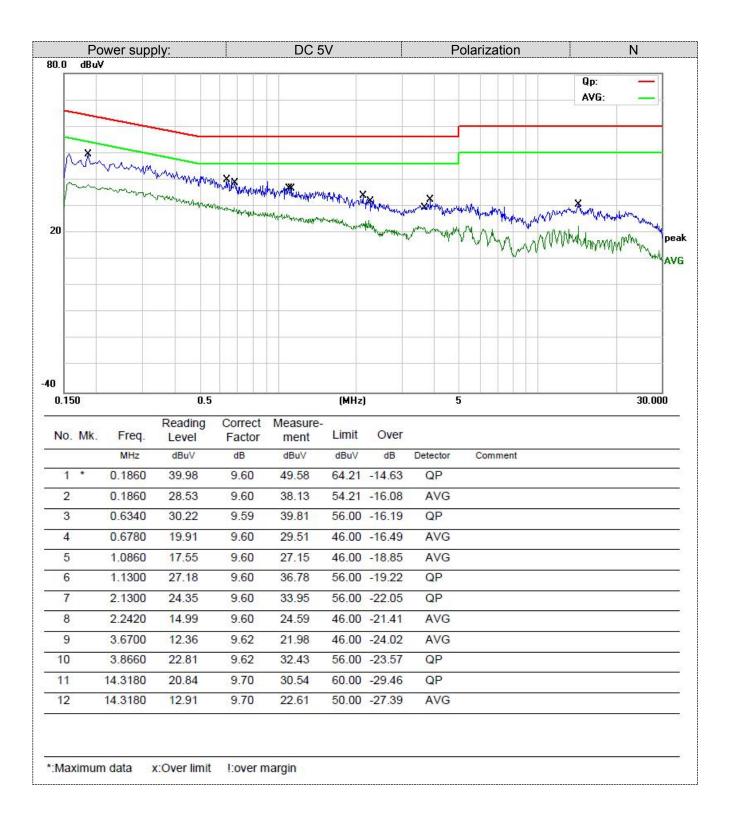
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 5V power from computer, the computer received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

TEST RESULTS

Remark:

1. WIFI 5G modes were test at 802.11a, 802.11n(20), 802.11n(40)/802.11ac(HT20)/802.11ac(HT40)/802.11ax(HT40)(Low, Middle, and High channel); only the worst result of 802.11a Middle Channel was reported as below:

Report No.: MTEB25030166-R3 Page 15 of 99

5.2 Radiated Emissions

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

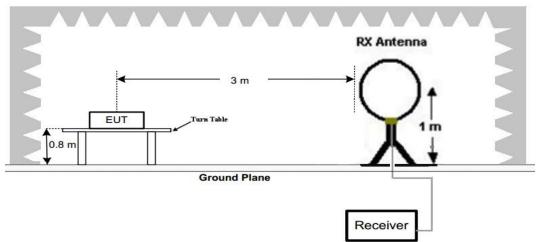
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)	PK:-27(dBm/MHz)	DK:69 2(dDu)//m)
15.407(b)(2)		
15.407(b)(3)		PK:68.2(dBµV/m)
15.407(b)(4)		

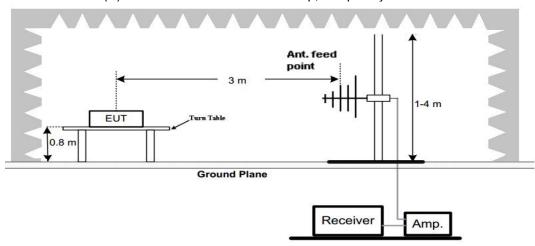
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m}$$
, where P is the eirp (Watts)

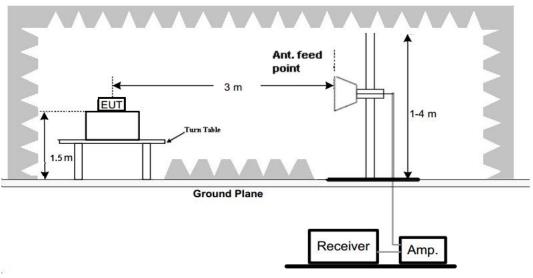
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

Transfer of the second			
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3) 2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Report No.: MTEB25030166-R3 Page 16 of 99

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

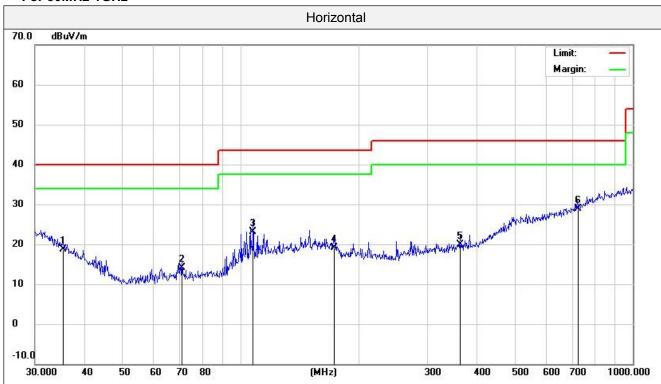
Report No.: MTEB25030166-R3 Page 17 of 99

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0℃ to 360℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

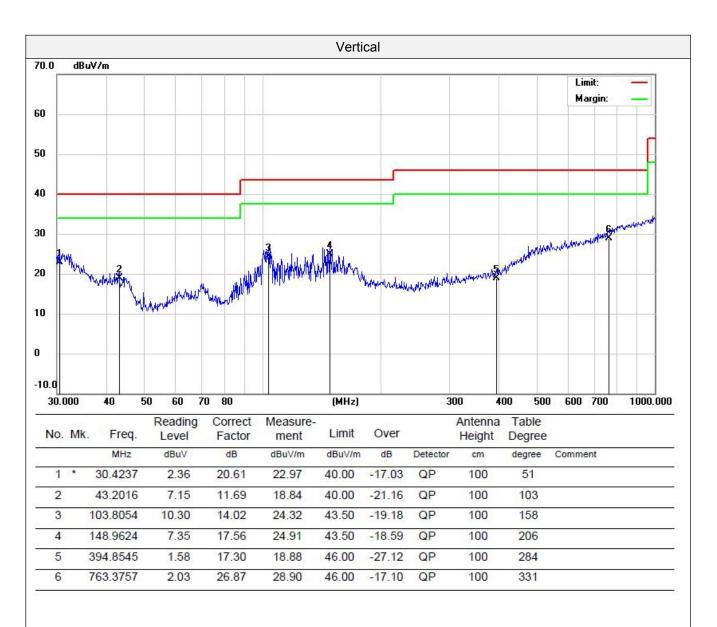
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:


Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

TEST RESULTS

Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All 802.11a / 802.11n (HT20) / 802.11n (HT40)/802.11ac(HT20)/802.11ac(HT40)/802.11ax(HT20) /802.11ax(HT40)modes have been tested for below 1GHz test, only the worst case 802.11a low channel of U-NII 1 band was recorded.
- All 802.11a / 802.11n (HT20) / 802.11n (HT40)/802.11ac(HT20)/802.11ac(HT40)/802.11ax(HT20)/ 802.11ax(HT40) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 5. Remark: Result=Reading value+Factor

For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.3750	1.51	17.22	18.73	40.00	-21.27	QP	200	24	
2		71.0803	4.69	9.39	14.08	40.00	-25.92	QP	200	96	
3		107.8877	8.69	14.47	23.16	43.50	-20.34	QP	200	159	
4		172.5988	2.23	16.88	19.11	43.50	-24.39	QP	200	205	
5		362.9844	3.15	16.70	19.85	46.00	-26.15	QP	200	286	
6	*	721.7259	3.18	25.71	28.89	46.00	-17.11	QP	200	337	

^{*:}Maximum data x:Over limit !:over margin

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25030166-R3 Page 20 of 99

For 1GHz to 40GHz

Note: All 802.11a / 802.11n (HT20) / 802.11n (HT40)/802.11ac(HT20)/802.11ac(HT40)/ 802.11ax(HT20)/802.11ax(HT40) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

U-NII 1

Polar	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector						
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре						
	802.11a Mode -5180MHz														
V	3586	56.05	29.03	5.24	36.4	53.92	68.2	14.28	PK						
V	3586	43.53	29.03	5.24	36.4	41.4	54	12.6	AV						
Н	3586	54.69	29.03	5.24	36.4	52.56	68.2	15.64	PK						
Н	3586	47.95	29.03	5.24	36.4	45.82	54	8.18	AV						
V	10360	35.54	39.41	11.45	34.28	52.12	68.2	16.08	PK						
V	10360	24.28	39.41	11.45	34.28	40.86	54	13.14	AV						
Н	10360	34.78	39.41	11.45	34.28	51.36	68.2	16.84	PK						
Н	10360	27.5	39.41	11.45	34.28	44.08	54	9.92	AV						
	802.11a Mode -5200MHz														
V	3586	53.29	29.03	5.24	36.4	51.16	68.2	17.04	PK						
V	3586	43.77	29.03	5.24	36.4	41.64	54	12.36	AV						
Н	3586	54.97	29.03	5.24	36.4	52.84	68.2	15.36	PK						
Н	3586	46.58	29.03	5.24	36.4	44.45	54	9.55	AV						
V	10400	37.11	39.42	11.47	34.28	53.72	68.2	14.48	PK						
V	10400	26.36	39.42	11.47	34.28	42.97	54	11.03	AV						
Н	10400	36.79	39.42	11.47	34.28	53.4	68.2	14.8	PK						
Н	10400	27.32	39.42	11.47	34.28	43.93	54	10.07	AV						
			80	02.11b <i>N</i>	1ode -5240	MHz									
V	3586	53.75	29.03	5.24	36.4	51.62	68.2	16.58	PK						
V	3586	43.63	29.03	5.24	36.4	41.5	54	12.5	AV						
Н	3586	52.37	29.03	5.24	36.4	50.24	68.2	17.96	PK						
Н	3586	46.53	29.03	5.24	36.4	44.4	54	9.6	AV						
V	10480	36.66	39.43	11.47	34.28	53.28	68.2	14.92	PK						
V	10480	26.78	39.43	11.47	34.28	43.4	54	10.6	AV						
Н	10480	36.98	39.43	11.47	34.28	53.6	68.2	14.6	PK						
Н	10480	26.56	39.43	11.47	34.28	43.18	54	10.82	AV						

Report No.: MTEB25030166-R3 Page 21 of 99

U-NII 3

Polar	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
		•	8	02.11a N	lode -5745	MHz			
V	5112	52.53	32.84	5.24	36.4	54.21	68.2	13.99	PK
V	5112	39.48	32.84	5.24	36.4	41.16	54	12.84	AV
Н	5112	49.83	32.84	5.24	36.4	51.51	68.2	16.69	PK
Н	5112	42.58	32.84	5.24	36.4	44.26	54	9.74	AV
V	11490	36.17	39.52	11.47	34.28	52.88	68.2	15.32	PK
V	11490	24.21	39.52	11.47	34.28	40.92	54	13.08	AV
Н	11490	35.78	39.52	11.47	34.28	52.49	68.2	15.71	PK
Н	11490	29.05	39.52	11.47	34.28	45.76	54	8.24	AV
			8	02.11a N	ode -5785	MHz			
V	5112	50.22	32.84	5.24	36.4	51.9	68.2	16.3	PK
V	5112	38.46	32.84	5.24	36.4	40.14	54	13.86	AV
Н	5112	51.22	32.84	5.24	36.4	52.9	68.2	15.3	PK
Н	5112	44.65	32.84	5.24	36.4	46.33	54	7.67	AV
V	11570	34.58	39.52	11.47	34.28	51.29	68.2	16.91	PK
V	11570	26.67	39.52	11.47	34.28	43.38	54	10.62	AV
Н	11570	35.61	39.52	11.47	34.28	52.32	68.2	15.88	PK
Н	11570	26.43	39.52	11.47	34.28	43.14	54	10.86	AV
			80	02.11b <i>N</i>	ode -5825	MHz			
V	5112	49.83	49.38	32.84	5.24	36.4	51.06	68.2	17.14
V	5112	39.34	39.6	32.84	5.24	36.4	41.28	54	12.72
Н	5112	48.58	49.59	32.84	5.24	36.4	51.27	68.2	16.93
Н	5112	42.36	43.89	32.84	5.24	36.4	45.57	54	8.43
V	11650	35.42	37.12	39.52	11.47	34.28	53.83	68.2	14.37
V	11650	26.57	26.87	39.52	11.47	34.28	43.58	54	10.42
Н	11650	37.39	35.76	39.52	11.47	34.28	52.47	68.2	15.73
Н	11650	26.41	28.4	39.52	11.47	34.28	45.11	54	8.89

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Radiated Band Edge Test:
All 802.11a / 802.11n (HT20) / 802.11n (HT40)/802.11ac(HT20)/802.11ac(HT40)/
802.11ax(HT20)/802.11ax(HT40) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

U-NII 1

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type						
(11/4)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type						
	802.11a														
V	5150	55.11	31.22	7.62	36.5	57.45	74	16.55	PK						
V	5150	38.39	31.22	7.62	36.5	40.73	54	13.27	AV						
Н	5150	56.25	31.22	7.62	36.5	58.59	74	15.41	PK						
Н	5150	43.13	31.22	7.62	36.5	45.47	54	8.53	AV						
V	5350	54.59	31.56	7.83	35.82	58.16	74	15.84	PK						
V	5350	38.69	31.56	7.83	35.82	42.26	54	11.74	AV						
Н	5350	55.09	31.56	7.83	35.82	58.66	74	15.34	PK						
Н	5350	40.79	31.56	7.83	35.82	44.36	54	9.64	AV						

U-NII 3

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector					
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type					
	802.11a													
V	5460	56.12	31.22	7.62	36.5	58.46	74	15.54	PK					
V	5460	38.97	31.22	7.62	36.5	41.31	54	12.69	AV					
Н	5460	55.31	31.22	7.62	36.5	57.65	74	16.35	PK					
Н	5460	42.15	31.22	7.62	36.5	44.49	54	9.51	AV					
V	5850	54.45	31.56	7.83	35.82	58.02	74	15.98	PK					
V	5850	39.72	31.56	7.83	35.82	43.29	54	10.71	AV					
Н	5850	54.63	31.56	7.83	35.82	58.2	74	15.8	PK					
Н	5850	41.21	31.56	7.83	35.82	44.78	54	9.22	AV					

Report No.: MTEB25030166-R3 Page 23 of 99

5.3 Conduction spurious emission

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

Test Configuration

TEST RESULTS

See Appendix VI

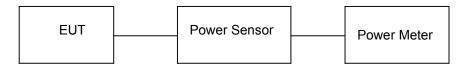
Report No.: MTEB25030166-R3 Page 24 of 99

5.4 Maximum Conducted Average Output Power

<u>Limit</u>

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.


For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

See Appendix II

Report No.: MTEB25030166-R3 Page 25 of 99

5.5 Power Spectral Density

<u>Limit</u>

- (1) For the band 5.15 5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to encompass the entire EBW.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

Test Configuration

Test Results

Report No.: MTEB25030166-R3 Page 26 of 99

5.6 Emission Bandwidth (26dBm Bandwidth)

<u>Limit</u>

N/A

Test Procedure

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

Test Configuration

Test Results

See Appendix V

Report No.: MTEB25030166-R3 Page 27 of 99

5.7 Minimum Emission Bandwidth (6dBm Bandwidth)

<u>Limit</u>

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

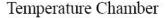
Test Procedure

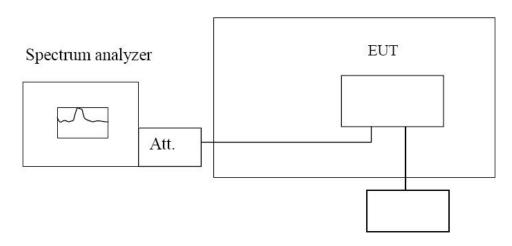
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Configuration

Test Results

See Appendix IV


Report No.: MTEB25030166-R3 Page 28 of 99


5.8 Frequency Stability

LIMIT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

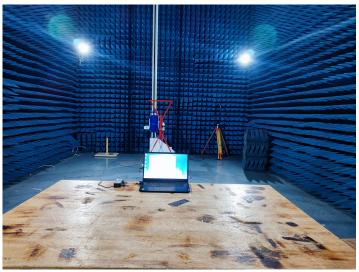
Frequency Stability under Voltage Variations:

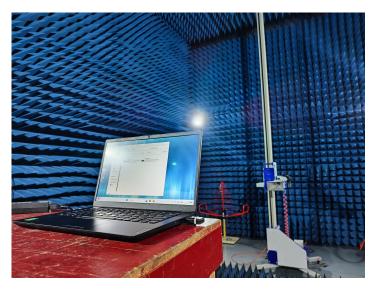
Set chamber temperature to 20 °C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

See Appendix I


Report No.: MTEB25030166-R3 Page 29 of 99


5.9 Duty Cycle Information

See Appendix VII

6 Test Setup Photos of the EUT

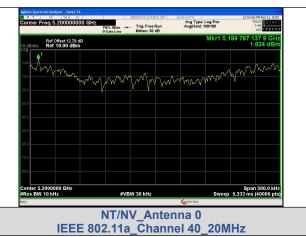
Report No.: MTEB25030166-R3 Page 31 of 99

7 Photos of the EUT

see photo report.

Report No.: MTEB25030166-R3 Page 32 of 99

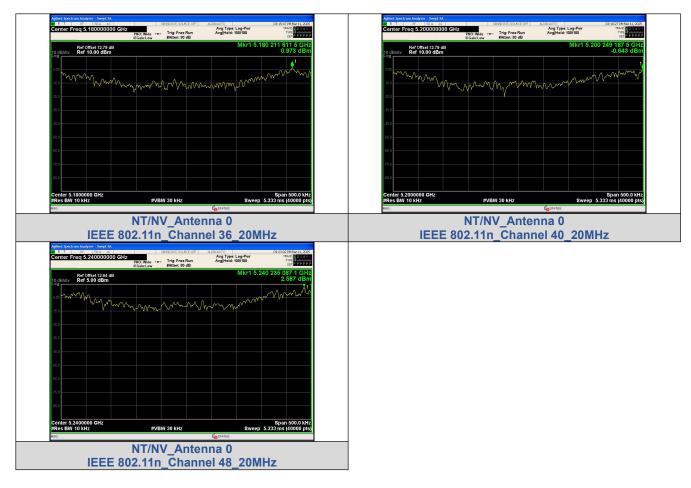
Frequency Stability APPENDIX I.

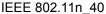

Test Result

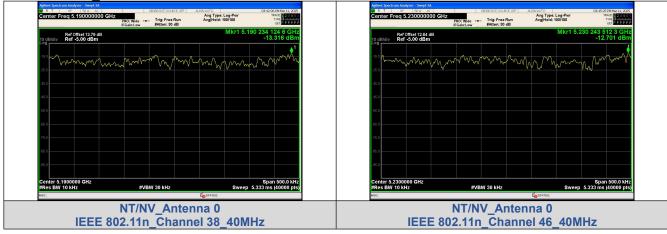
Condition	Mode	Ch.	RU & Index	Antenna	Center Frequency (MHz)	Calculated Value of Center Frequency(MHz)	Result (ppm)	Limit (ppm)	State
	IEEE	36			5180.0	5180.214599	41.43		PASS
	802.11a	40			5200.0	5199.767138	-44.78		PASS
	002.11a	48			5240.0	5240.238800	45.57		PASS
	IEEE	36			5180.0	5180.211612	40.85		PASS
		40			5200.0	5200.249187	47.92		PASS
	802.11n_20	48			5240.0	5240.235087	44.86	Within authorized band	PASS
	IEEE	38	N/A	0	5190.0	5190.234125	45.11		PASS
	802.11n_40	46			5230.0	5230.243512	46.56		PASS
NT/NV	IEEE	36			5180.0	5180.250000	48.26		PASS
IN I / IN V		40		0	5200.0	5200.241187	46.38		PASS
	802.11ac_20	48			5240.0	5240.247375	47.21		PASS
	IEEE	38			5190.0	5190.239662	46.18		PASS
	802.11ac_40	46			5230.0	5230.239225	45.74		PASS
	IEEE	36			5180.0	5179.805339	-37.58		PASS
	IEEE	40			5200.0	5199.758150	-46.51		PASS
	802.11ax_20	48	SU	SU	5240.0	5240.218749	41.75		PASS
	IEEE	38			5190.0	5190.207586	40.0		PASS
	802.11ax_40	46			5230.0	5230.229699	43.92		PASS

Test Graphs NT/NV

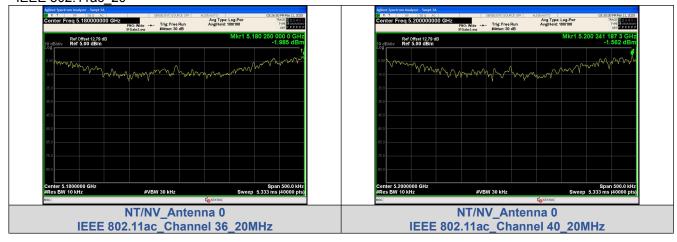
IEEE 802.11a

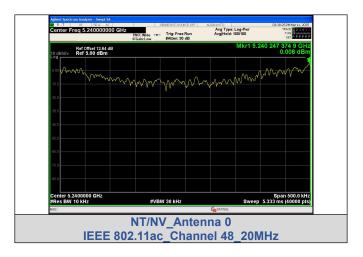


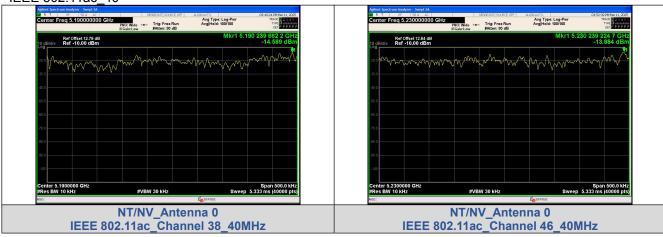

NT/NV_Antenna 0 IEEE 802.11a_Channel 36_20MHz


Ref Offset 12.64 di Ref 5.00 dBm NT/NV_Antenna 0 IEEE 802.11a_Channel 48_20MHz

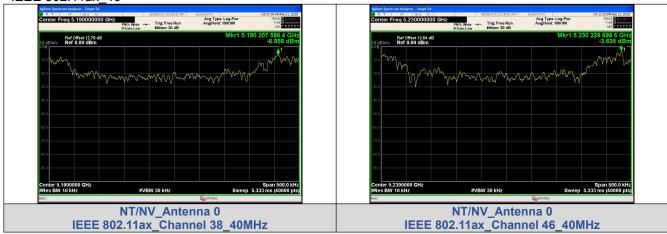
IEEE 802.11n_20


Report No.: MTEB25030166-R3 Page 33 of 99

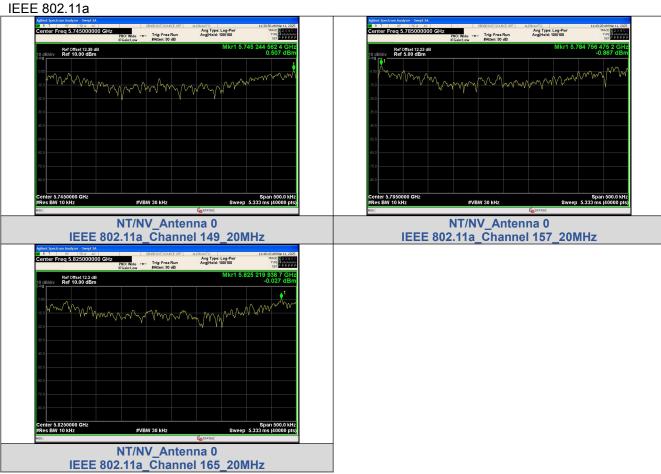




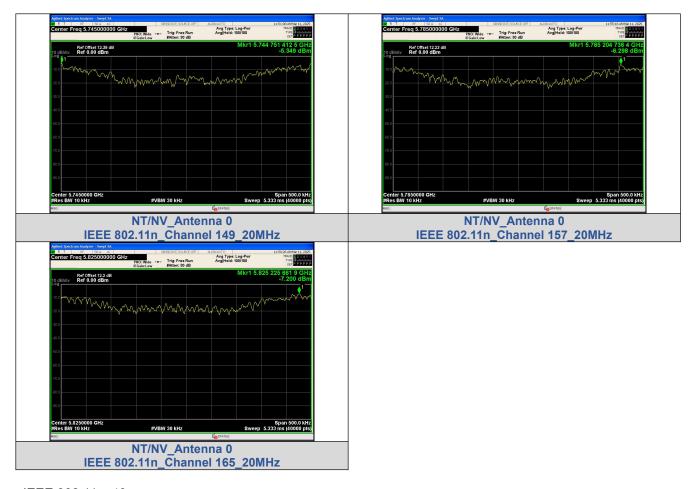
IEEE 802.11ac_20

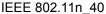

IEEE 802.11ac_40

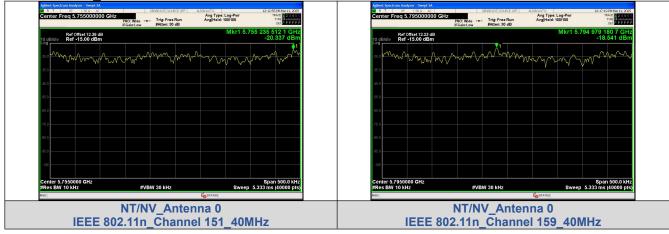
IEEE 802.11ax 20


IEEE 802.11ax_40

Test Result


Condition	Mode	Ch.	RU & Index	Antenna	Center Frequency (MHz)	Calculated Value of Center Frequency(MHz)	Result (ppm)	Limit (ppm)	State
	IEEE	149			5745.0	5745.244562	42.57		PASS
	802.11a	157			5785.0	5784.756475	-42.1		PASS
	002.11a	165			5825.0	5825.219937	37.76		PASS
	IEEE	149			5745.0	5744.751413	-43.27		PASS
		157			5785.0	5785.204736	35.39		PASS
	802.11n_20	165		0	5825.0	5825.225662	38.74	Within authorized band	PASS
	IEEE	151	N/A		5755.0	5755.235512	40.92		PASS
	802.11n_40	159			5795.0	5794.979181	-3.59		PASS
NT/NV	IEEE 802.11ac_20	149			5745.0	5745.234050	40.74		PASS
INT/INV		157		0	5785.0	5785.219449	37.93		PASS
	002.11ac_20	165			5825.0	5825.246062	42.24		PASS
	IEEE	151			5755.0	5755.227562	39.54		PASS
	802.11ac_40	159			5795.0	5795.241362	41.65		PASS
	IEEE	149			5745.0	5744.807726	-33.47		PASS
	IEEE	157			5785.0	5785.241950	41.82		PASS
<u> </u>	802.11ax_20	165	SU		5825.0	5824.754300	-42.18		PASS
	IEEE	151			5755.0	5755.242137	42.07		PASS
	802.11ax_40	159			5795.0	5795.242462	41.84		PASS


Test Graphs NT/NV



IEEE 802.11n_20


Report No.: MTEB25030166-R3 Page 37 of 99

IEEE 802.11ac_20

