

TEST REPORT

FCC CA_7C Test for TM18FNROBMO
Certification

APPLICANT
LG Electronics Inc.

REPORT NO.
HCT-RF-2507-FC095

DATE OF ISSUE
July 22, 2025

Tested by
Jae Ryang Do

Technical Manager
Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD.
BongJai Huh
BongJai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea
Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO.
HCT-RF-2507-FC095

DATE OF ISSUE
July 22, 2025

Applicant	LG Electronics Inc. 128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
Product Name	Telematics
Model Name	TM18FNROBM0
Date of Test	May 16, 2025 ~ July 22, 2025
FCC ID	2B03LTM18FNROBM0
Location of Test	<input checked="" type="checkbox"/> Permanent Testing Lab <input type="checkbox"/> On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea)
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 27, § 2
Test Results	PASS

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 22, 2025	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S.C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

CONTENTS

1. GENERAL INFORMATION	5
1.1. SUPPORTED BANDS PER ANTENNA PORT.....	6
1.2. MAXIMUM OUTPUT POWER.....	6
2. INTRODUCTION	7
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION.....	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS.....	8
3.1 TEST PROCEDURE.....	8
3.2 RADIATED POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 PEAK- TO- AVERAGE RATIO.....	11
3.5 OCCUPIED BANDWIDTH.	12
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	13
3.7 CHANNEL EDGE.....	14
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE.....	16
3.9 WORST CASE(OVERVIEW)	17
3.10 WORST CASE(RADIATED TEST)	18
3.11 WORST CASE(CONDUCTED TEST)	19
4. LIST OF TEST EQUIPMENT	20
5. MEASUREMENT UNCERTAINTY	23
6. SUMMARY OF TEST RESULTS.....	24
7. SAMPLE CALCULATION	25
8. TEST DATA (MIMO1)	27
8.1 Conducted Power	27
8.2 Equivalent Isotropic Radiated Power	31
8.3 Conducted Spurious Emissions	34
8.4 CHANNEL EDGE.....	59
8.5 Frequency Stability / Variation Of Ambient Temperature.....	75
8.6 Radiated Spurious Emissions	81
8.7 Occupied Bandwidth	84
8.8 Peak- to- Average Ratio.....	90
9. TEST DATA (Int.BUA)	96
9.1 Equivalent Isotropic Radiated Power	96
9.2 Radiated Spurious Emissions	99
10. ANNEX A_ TEST SETUP PHOTO	102

MEASUREMENT REPORT**1. GENERAL INFORMATION**

Model(s):	TM18FNROBM0
Tx Frequency:	2505.5 - 2560.0: 10 MHz+20 MHz 2507.5 - 2564.7: 15 MHz+10 MHz 2507.5 - 2562.5: 15 MHz+15 MHz 2507.8 - 2560.0: 15 MHz+20 MHz 2510.0 - 2564.5: 20 MHz+10 MHz 2510.0 - 2562.2: 20 MHz+15 MHz 2510.0 - 2560.0: 20 MHz+20 MHz
EUT Serial number:	Radiated : BMW ICON-25SF Radiated #5 Conducted : BMW ICON-25SF Conducted #18
Uplink CA :	7C
Antenna Information	Please refer to the Antenna Specification document.

1.1. SUPPORTED BANDS PER ANTENNA PORT

Antenna Port	Supported bands
MIMO 1	<ul style="list-style-type: none">- GSM850, 1900- WCDMA: B2, 4, 5- LTE: B4, 7, 12(17), 25(2), 26(5), 41(38), 42- NR: n7, 41, 77(78)- ULCA: 7C
MIMO 2	<ul style="list-style-type: none">- LTE: B42- NR: n77(78)
MIMO 3	Only RX
MIMO 4	Only RX
Int. BUA (Back Up Antenna)	<ul style="list-style-type: none">- GSM850, 1900- WCDMA: B2, 4, 5- LTE: B4, 7, 25(2), 26(5), 41(38)- NR: n7, 41- ULCA: 7C

Note:

1. Since the Int. BUA uses the same antenna port as MIMO1, only radiated testing was performed.

1.2. MAXIMUM OUTPUT POWER

Mode (PCC+SCC)	Tx Frequency (MHz)	Modulation	Emission Designator	Conducted Output Power	
				Max. Power (dBm)	Max. Power (W)
15 MHz+10 MHz	2507.5 - 2564.7	QPSK	23M1G7D	23.12	0.205
		16QAM	23M1W7D	22.58	0.181
		64QAM	23M1W7D	20.59	0.115
		256QAM	23M1W7D	18.73	0.075
20 MHz+20 MHz	2510.0 - 2560.0	QPSK	37M5G7D	22.95	0.197
		16QAM	37M5W7D	22.39	0.173
		64QAM	37M4W7D	20.41	0.110
		256QAM	37M5G7D	18.57	0.072

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

Please refer to the [2G3G] Test Report.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea.

Detailed description of test facility was submitted to the Commission and accepted dated March 11, 2024 (Registration Number: KR0032).

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 – Section 4.3 - ANSI C63.26-2015 – Section 5.4.4
Channel Edge	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 – Section 5.7 - ANSI C63.26-2015 – Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Radiated Power	- ANSI C63.26-2015 – Section 5.2.4.4 - KDB 971168 D01 v03r01 – Section 5.8
Radiated Spurious and Harmonic Emissions	- ANSI C63.26-2015 – Section 5.5.3 - KDB 971168 D01 v03r01 – Section 5.8

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna.

Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
2. RBW = 1 – 5 % of the expected OBW, not to exceed 1 MHz
3. VBW \geq 3 x RBW
4. Span = 1.5 times the OBW
5. No. of sweep points > 2 x span / RBW
6. Detector = RMS
7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
9. Trace mode = trace averaging (RMS) over 100 sweeps
10. The trace was allowed to stabilize

Test Note

1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

$$P_d \text{ (dBm)} = P_g \text{ (dBm)} - \text{cable loss (dB)} + \text{antenna gain (dB)}$$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method.

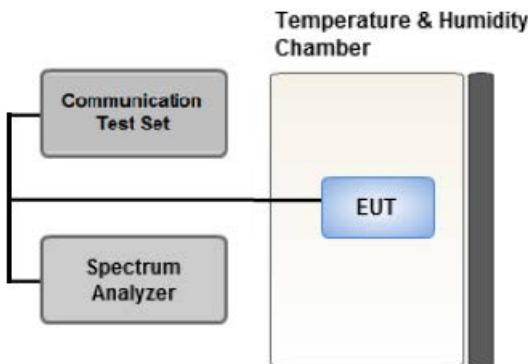
Test Settings

1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
2. VBW \geq 3 x RBW
3. Span = 1.5 times the OBW
4. No. of sweep points > 2 x span / RBW
5. Detector = Peak
6. Trace mode = Max Hold
7. The trace was allowed to stabilize
8. Test channel : Low/ Middle/ High
9. Frequency range : We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

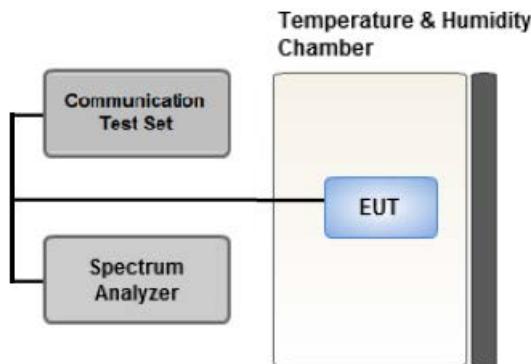

$$\text{Result (dBm)} = \text{Pg (dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$

Where: Pg is the generator output power into the substitution antenna.

If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

$$\text{EIRP (dBm)} = \text{ERP (dBm)} + 2.15$$

3.4 PEAK- TO- AVERAGE RATIO


Test setup

CCDF Procedure for PAPR

Test Settings

1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
4. Record the maximum PAPR level associated with a probability of 0.1 %.

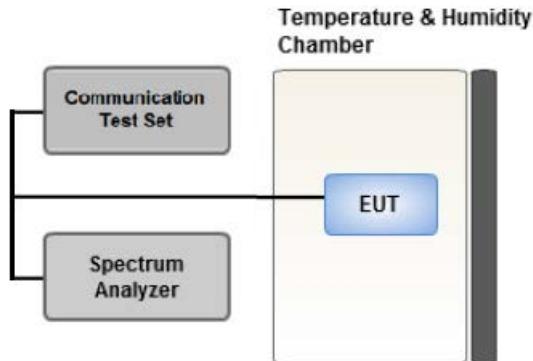
3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.


The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

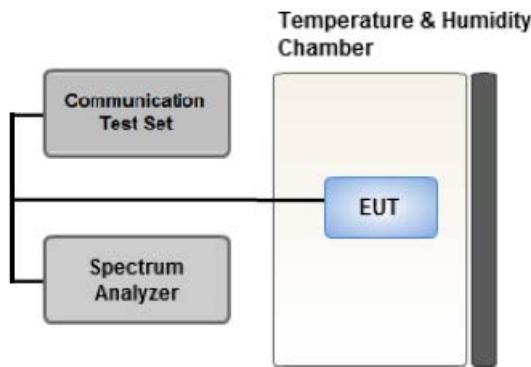
Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

Test Settings

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 – 5 % of the expected OBW
3. VBW \geq 3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. If necessary, steps 2 – 7 were repeated after changing the RBW such that it would be within 1 – 5 % of the 99 % occupied bandwidth observed in Step 7

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup


Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

1. RBW = 1 MHz
2. VBW \geq 3 MHz
3. Detector = Peak
4. Trace Mode = Max Hold
5. Sweep time = auto
6. Number of points in sweep \geq 2 x Span / RBW

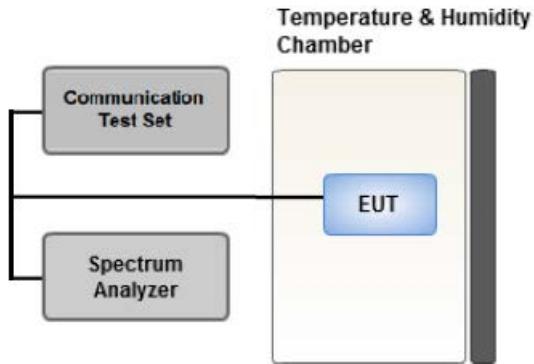
3.7 CHANNEL EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum power and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings


1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
2. Span was set large enough so as to capture all out of band emissions near the band edge
3. Within 1MHz of the channel edge the RBW should be 2 % of EBW, then 1 MHz after that.
4. VBW > 3 x RBW
5. Detector = RMS
6. Number of sweep points $\geq 2 \times \text{Span}/\text{RBW}$
7. Trace mode = trace average
8. Sweep time > Number of points in sweep \times Symbol period
9. The trace was allowed to stabilize

Test Notes

1. The attenuation factor shall be not less than $40 + 10 \log (P)$ dB on all frequencies between the channel edge and 5 megahertz from the channel edge,
2. $43 + 10 \log (P)$ dB on all frequencies between 5 megahertz and X megahertz from the channel edge.
3. $55 + 10 \log (P)$ dB on all frequencies more than X megahertz from the channel edge.
4. The attenuation factor shall not be less than $43 + 10 \log (P)$ dB on all frequencies between 2490.5 MHz and 2496 MHz.
5. $55 + 10 \log (P)$ dB at or below 2490.5 MHz.
6. X is the greater of 6MHz or the actual emission bandwidth
7. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \text{ MHz/ RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

2. Primary Supply Voltage:

- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
2. The equipment is turned on in a “standby” condition for fifteen minutes before applying power to the transmitter.
Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.9 WORST CASE(OVERVIEW)

The EUT is set up to transmit two contiguous LTE channels. The power level of both carriers and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Note

1. All tests were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth.
2. Channel bandwidth is shown in the tables below based only on the channel bandwidths that were supported in this device.

Channel Bandwidth (PCC)	Channel Bandwidth (SCC)	Maximum aggregated bandwidth (MHz)
10	20	30
15	10	25
15	15	30
15	20	35
20	10	30
20	15	35
20	20	40

3.10 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data. Please refer to the table below.
- MIMO3 and MIMO4 have three types of Rx antennas. Operating modes were investigated for all Rx antennas, and the worst-case configuration results were reported.
(Worst-case: FSA antenna)

[Worst case]

Test Description	Mod	Operating frequency	PCC				SCC					
			BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset	BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset
Radiated Spurious Emissions	QPSK	Low	15	2507.5	20825	1	74	10	2519.5	20945	1	0
		Mid	15	2530.1	21051	1	74	10	2542.1	21171	1	0
		High	15	2542.9	21179	1	74	20	2560.0	21350	1	0

3.11 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.
- Both 85% and 115% conditions were measured for the Frequency Stability test, and results for the worst-case configuration (85%) were reported.
- In accordance with the customer's specification of 3.7V as the lowest operating voltage, testing was performed at 3.7V instead of 85% (3.57V).

[Worst case]

Test Description	Mod	Operating frequency	PCC				SCC					
			BW (MHz)	Freq. (MHz)	Ch.	RB	BW Offset (MHz)	Freq. (MHz)	Ch.	RB	RB Offset	
Conducted Spurious Emissions, Channel Edge	QPSK	Low	15	2507.5	20825	1	0	10	2519.5	20945	1	49
		Mid	15	2530.1	21051	1	0	10	2542.1	21171	1	49
		High	15	2552.7	21277	1	0	10	2564.7	21397	1	49
		Low	15	2507.5	20825	1	74	10	2519.5	20945	1	0
		Mid	15	2530.1	21051	1	74	10	2542.1	21171	1	0
		High	15	2552.7	21277	1	74	10	2564.7	21397	1	0
		Low	15	2507.5	20825	75	0	10	2519.5	20945	50	0
		Mid	15	2530.1	21051	75	0	10	2542.1	21171	50	0
		High	15	2552.7	21277	75	0	10	2564.7	21397	50	0
		Low	20	2510.0	20850	100	0	20	2529.8	21048	100	0
		Mid	20	2525.1	21001	100	0	20	2544.9	21199	100	0
		High	20	2540.2	21152	100	0	20	2560.0	21350	100	0
OBW, PAR	QPSK, 16QAM, 64QAM, 256QAM	Mid	10	2525.6	21006	50	0	20	2540	21150	100	0
			15	2530.1	21051	75	0	10	2542.1	21171	50	0
			15	2527.5	21025	75	0	15	2542.5	21175	75	0
			15	2525.3	21003	75	0	20	2542.4	21174	100	0
			20	2530.1	21051	100	0	10	2544.5	21195	50	0
			20	2527.6	21026	100	0	15	2544.7	21197	75	0
			20	2525.1	21001	100	0	20	2544.9	21199	100	0
Frequency stability	QPSK	Low	10	2505.5	20805	50	0	20	2519.9	20949	100	0
			15	2507.8	20828	75	0	20	2524.9	20999	100	0
			20	2510.0	20850	100	0	20	2529.8	21048	100	0
		High	10	2545.6	21206	50	0	20	2560.0	21350	100	0
			15	2542.9	21179	75	0	20	2560.0	21350	100	0
			20	2540.2	21152	100	0	20	2560.0	21350	100	0

4. LIST OF TEST EQUIPMENT

[Radiated]

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switch System	FBSR-04C(3G HPF+LNA)	TNM System	S4L1	03/12/2026	Annual
RF Switch System	FBSR-04C(7G HPF+LNA)	TNM System	S4L5	03/12/2026	Annual
RF Switch System	FBSR-04C(LNA)	TNM System	S4L4	03/12/2026	Annual
RF Switch System	FBSR-04C(Thru)	TNM System	S4L6	03/12/2026	Annual
Antenna Position Tower	MA4640	Innco systems	S4AM	08/07/2025	Annual
Turn Table	DS2000-S	Innco systems	N/A	N/A	-
Controller (Antenna mast & Turn Table)	CO3000	Innco systems	CO3000/1251/4 8920320/P	N/A	-
Amp & Filter Bank Switch Controller	FBSM-01B	TNM system	TM20090002	N/A	-
RF Switching System	Switch box(1 G HPF+LNA)	HCT CO., LTD.,	F2L2	12/12/2025	Annual
RF Switching System	Switch box(3 G HPF+LNA)	HCT CO., LTD.,	F2L3	12/12/2025	Annual
RF Switching System	Switch box(LNA)	HCT CO., LTD.,	F2L5	12/12/2025	Annual
RF Switching System	Switch box(6 G HPF+LNA)	HCT CO., LTD.,	F2L14	12/12/2025	Annual
HIGHPASS FILTER	WHKX10-900-1000-15000-40SS	WAINWRIGHT INSTRUMENTS	16	07/24/2025	Annual
LOW NOISE AMPLIFIER	310N	SONOMA Instrument	186169	02/05/2026	Annual
LOW NOISE AMPLIFIER	TK-PA1840H	TESTEK	170011-L	10/11/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/07/2025	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/19/2026	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/10/2026	Annual
DC Power Supply	E3632A	Agilent	MY40010147	08/06/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Dipole Antenna	UHAP	Schwarzbeck	01288	08/07/2026	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	03197	11/28/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	03201	11/28/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120	Schwarzbeck	937	02/07/2027	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/23/2027	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	ROHDE & SCHWARZ	101733	09/19/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/04/2026	Annual
Signal & Spectrum Analyzer (2 Hz~67 GHz)	FSW67	REOHDE & SCHWARZ	101736	05/27/2026	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB 9168	Schwarzbeck	9168-0895	08/28/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	08/28/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	08/19/2026	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262287701	05/14/2026	Annual
Wideband Radio Communication Tester	MT8000A	Anritsu Corp.	6272613402	08/28/2025	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/26/2025	Annual
Automation Software	FCC LTE Radiated	HCT CO., LTD	-	-	-
Automation Software	FCC NR Radiated	HCT CO., LTD	-	-	-

[Conducted]

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Power Splitter (DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/10/2026	Annual
DC Power Supply	E3632A	Agilent	MY40010147	08/06/2025	Annual
Chamber	SU-642	ESPEC	93008124	02/11/2026	Annual
ATTENUATOR (20 dB)	8493C	Hewlett Packard	17280	04/10/2026	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/13/2025	Annual
UXM 5G Wireless Test Platform	E7515B	KEYSIGHT	MY60101126	02/10/2026	Annual
Signal Analyzer (2 Hz ~ 50.0 GHz)	N9030B	KEYSIGHT	MY56320554	02/03/2026	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.	-	-	-
Automation Software	FCC 2G/3G/4G Conducted	HCT CO., LTD	-	-	-
Automation Software	FCC NR Conducted	HCT CO., LTD	-	-	-

Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm kHz)
Occupied Bandwidth	95 (Confidence level about 95 %, $k=2$)
Frequency stability	28 (Confidence level about 95 %, $k=2$)

Parameter	Expanded Uncertainty (\pm dB)
Block Edge	0.70 (Confidence level about 95 %, $k=2$)
Conducted Spurious Emissions	1.18 (Confidence level about 95 %, $k=2$)
Peak- to- Average Ratio	0.68 (Confidence level about 95 %, $k=2$)
Radiated Power	4.74 (Confidence level about 95 %, $k=2$)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, $k=2$)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.68 (Confidence level about 95 %, $k=2$)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.75 (Confidence level about 95 %, $k=2$)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.82 (Confidence level about 95 %, $k=2$)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, $k=2$)

6. SUMMARY OF TEST RESULTS

-. The decision rule applies 'simple acceptance'

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(m)(4)	<ul style="list-style-type: none">■ $< 40 + 10\log_{10} (P[\text{Watts}])$ at Channel edges■ $< 43 + 10\log_{10} (P[\text{Watts}])$ between 5 and X MHz from Channel edges■ $< 55 + 10\log_{10} (P[\text{Watts}])$ beyond X MHz beyond from Channel edges■ $< 43 + 10 \log (P)$ dB on all frequencies between 2490.5 MHz and 2496 MHz	PASS
Conducted Output Power	§ 2.1046	N/A	PASS
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 27.50(h)(2)	< 2 Watts max. EIRP	PASS
Radiated Spurious and Harmonic Emissions	§ 2.1053, § 27.53(m)(4)	$< 55 + 10\log_{10} (P[\text{Watts}])$	PASS

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch./ Freq.		Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBd)	C.L	Pol.	ERP	
channel	Freq.(MHz)						W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	H	0.483	26.84

$$\text{ERP} = \text{Substitute LEVEL(dBm)} + \text{Ant. Gain} - \text{CL(Cable Loss)}$$

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch./ Freq.		Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	EIRP	
channel	Freq.(MHz)						W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	H	0.456	26.59

$$\text{EIRP} = \text{Substitute LEVEL(dBm)} + \text{Ant. Gain} - \text{CL(Cable Loss)}$$

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW
GSM BW = 249 kHz
G = Phase Modulation
X = Cases not otherwise covered
W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W
GSM BW = 249 kHz
G = Phase Modulation
7 = Quantized/Digital Info
W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W
WCDMA BW = 4.17 MHz
F = Frequency Modulation
9 = Composite Digital Info
W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D
LTE BW = 4.48 MHz
G = Phase Modulation
7 = Quantized/Digital Info
D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D
LTE BW = 4.48 MHz
W = Amplitude/Angle Modulated
7 = Quantized/Digital Info
D = Data transmission; telemetry; telecommand

8. TEST DATA (MIMO1)

8.1 Conducted Power

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	10	2505.5	20805	1	49	20	2519.9	20949	1	0	22.53
	15	2507.5	20825	1	74	10	2519.5	20945	1	0	22.81
	15	2507.5	20825	1	74	15	2522.5	20975	1	0	22.75
	15	2507.8	20828	1	74	20	2524.9	20999	1	0	22.70
	20	2510.0	20850	1	99	10	2524.4	20994	1	0	22.61
	20	2510.0	20850	1	99	15	2527.1	21021	1	0	22.61
	20	2510.0	20850	1	99	20	2529.8	21048	1	0	22.65
Mid	10	2525.6	21006	1	49	20	2540.0	21150	1	0	22.64
	15	2530.1	21051	1	74	10	2542.1	21171	1	0	23.08
	15	2527.5	21025	1	74	15	2542.5	21175	1	0	23.08
	15	2525.3	21003	1	74	20	2542.4	21174	1	0	22.90
	20	2530.1	21051	1	99	10	2544.5	21195	1	0	22.90
	20	2527.6	21026	1	99	15	2544.7	21197	1	0	22.87
	20	2525.1	21001	1	99	20	2544.9	21199	1	0	22.95
High	10	2545.6	21206	1	49	20	2560.0	21350	1	0	22.84
	15	2552.7	21277	1	74	10	2564.7	21397	1	0	23.12
	15	2547.5	21225	1	74	15	2562.5	21375	1	0	22.98
	15	2542.9	21179	1	74	20	2560.0	21350	1	0	23.06
	20	2550.1	21251	1	99	10	2564.5	21395	1	0	22.88
	20	2545.1	21201	1	99	15	2562.2	21372	1	0	22.81
	20	2540.2	21152	1	99	20	2560.0	21350	1	0	22.88

Note:

Modulation : QPSK(1RB)

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	10	2505.5	20805	50	0	20	2519.9	20949	100	0	21.31
	15	2507.5	20825	75	0	10	2519.5	20945	50	0	21.35
	15	2507.5	20825	75	0	15	2522.5	20975	75	0	21.32
	15	2507.8	20828	75	0	20	2524.9	20999	100	0	21.28
	20	2510.0	20850	100	0	10	2524.4	20994	50	0	21.18
	20	2510.0	20850	100	0	15	2527.1	21021	75	0	21.18
	20	2510.0	20850	100	0	20	2529.8	21048	100	0	21.24
Mid	10	2525.6	21006	50	0	20	2540.0	21150	100	0	21.19
	15	2530.1	21051	75	0	10	2542.1	21171	50	0	21.34
	15	2527.5	21025	75	0	15	2542.5	21175	75	0	21.26
	15	2525.3	21003	75	0	20	2542.4	21174	100	0	21.20
	20	2530.1	21051	100	0	10	2544.5	21195	50	0	21.25
	20	2527.6	21026	100	0	15	2544.7	21197	75	0	21.22
	20	2525.1	21001	100	0	20	2544.9	21199	100	0	21.16
High	10	2545.6	21206	50	0	20	2560.0	21350	100	0	21.36
	15	2552.7	21277	75	0	10	2564.7	21397	50	0	21.56
	15	2547.5	21225	75	0	15	2562.5	21375	75	0	21.39
	15	2542.9	21179	75	0	20	2560.0	21350	100	0	21.37
	20	2550.1	21251	100	0	10	2564.5	21395	50	0	21.45
	20	2545.1	21201	100	0	15	2562.2	21372	75	0	21.37
	20	2540.2	21152	100	0	20	2560.0	21350	100	0	21.26

Note:

Modulation : QPSK(Full RB)

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	15	2507.5	20825	1	74	10	2519.5	20945	1	0	22.34
Mid	15	2530.1	21051	1	74	10	2542.1	21171	1	0	22.58
High	15	2552.7	21277	1	74	10	2564.7	21397	1	0	22.54
Low	15	2507.5	20825	75	0	10	2519.5	20945	50	0	20.65
Mid	15	2530.1	21051	75	0	10	2542.1	21171	50	0	20.68
High	15	2552.7	21277	75	0	10	2564.7	21397	50	0	20.69
Low	20	2510.0	20850	1	99	20	2529.8	21048	1	0	21.98
Mid	20	2525.1	21001	1	99	20	2544.9	21199	1	0	22.33
High	20	2540.2	21152	1	99	20	2560.0	21350	1	0	22.39
Low	20	2510.0	20850	100	0	20	2529.8	21048	100	0	20.46
Mid	20	2525.1	21001	100	0	20	2544.9	21199	100	0	20.42
High	20	2540.2	21152	100	0	20	2560.0	21350	100	0	20.46

Note:

Modulation : 16QAM

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	15	2507.5	20825	1	74	10	2519.5	20945	1	0	20.41
Mid	15	2530.1	21051	1	74	10	2542.1	21171	1	0	20.53
High	15	2552.7	21277	1	74	10	2564.7	21397	1	0	20.59
Low	15	2507.5	20825	75	0	10	2519.5	20945	50	0	20.30
Mid	15	2530.1	21051	75	0	10	2542.1	21171	50	0	20.36
High	15	2552.7	21277	75	0	10	2564.7	21397	50	0	20.59
Low	20	2510.0	20850	1	99	20	2529.8	21048	1	0	20.35
Mid	20	2525.1	21001	1	99	20	2544.9	21199	1	0	20.40
High	20	2540.2	21152	1	99	20	2560.0	21350	1	0	20.41
Low	20	2510.0	20850	100	0	20	2529.8	21048	100	0	20.35
Mid	20	2525.1	21001	100	0	20	2544.9	21199	100	0	20.32
High	20	2540.2	21152	100	0	20	2560.0	21350	100	0	20.37

Note:

Modulation : 64QAM

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	15	2507.5	20825	1	74	10	2519.5	20945	1	0	18.41
Mid	15	2530.1	21051	1	74	10	2542.1	21171	1	0	18.73
High	15	2552.7	21277	1	74	10	2564.7	21397	1	0	18.66
Low	15	2507.5	20825	75	0	10	2519.5	20945	50	0	18.32
Mid	15	2530.1	21051	75	0	10	2542.1	21171	50	0	18.40
High	15	2552.7	21277	75	0	10	2564.7	21397	50	0	18.60
Low	20	2510.0	20850	1	99	20	2529.8	21048	1	0	18.15
Mid	20	2525.1	21001	1	99	20	2544.9	21199	1	0	18.55
High	20	2540.2	21152	1	99	20	2560.0	21350	1	0	18.57
Low	20	2510.0	20850	100	0	20	2529.8	21048	100	0	18.30
Mid	20	2525.1	21001	100	0	20	2544.9	21199	100	0	18.28
High	20	2540.2	21152	100	0	20	2560.0	21350	100	0	18.39

Note:

Modulation : 256QAM

8.2 Equivalent Isotropic Radiated Power

	PCC			SCC			Measured	Substitute	Ant.	C.L	Pol.	E.I.R.P	
	BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset						W	dBm
Low	10	20805	1/49	20	20949	1/0	-24.12	14.41	10.26	2.51	H	0.164	22.16
	15	20825	1/74	10	20945	1/0	-23.79	14.74	10.26	2.51	H	0.177	22.49
	15	20825	1/74	15	20975	1/0	-23.91	14.66	10.26	2.53	H	0.173	22.39
	15	20828	1/74	20	20999	1/0	-23.86	14.71	10.26	2.53	H	0.175	22.44
	20	20850	1/99	10	20994	1/0	-24.34	14.23	10.26	2.53	H	0.157	21.96
	20	20850	1/99	15	21021	1/0	-24.40	14.21	10.26	2.54	H	0.156	21.92
	20	20850	1/99	20	21048	1/0	-24.17	14.44	10.26	2.54	H	0.164	22.15
Mid	10	21006	1/49	20	21150	1/0	-24.55	14.21	10.25	2.54	H	0.155	21.91
	15	21051	1/74	10	21171	1/0	-24.11	14.72	10.25	2.54	H	0.175	22.44
	15	21025	1/74	15	21175	1/0	-24.19	14.64	10.25	2.54	H	0.172	22.36
	15	21003	1/74	20	21174	1/0	-24.44	14.32	10.25	2.54	H	0.159	22.02
	20	21051	1/99	10	21195	1/0	-24.49	14.34	10.25	2.54	H	0.161	22.06
	20	21026	1/99	15	21197	1/0	-24.26	14.57	10.25	2.54	H	0.169	22.29
	20	21001	1/99	20	21199	1/0	-24.41	14.42	10.25	2.54	H	0.164	22.14
High	10	21206	1/49	20	21350	1/0	-25.07	13.94	10.24	2.53	H	0.146	21.65
	15	21277	1/74	10	21397	1/0	-24.65	14.39	10.26	2.59	H	0.161	22.06
	15	21225	1/74	15	21375	1/0	-24.76	14.27	10.25	2.56	H	0.157	21.96
	15	21179	1/74	20	21350	1/0	-24.73	14.28	10.24	2.53	H	0.158	21.99
	20	21251	1/99	10	21395	1/0	-25.02	14.02	10.26	2.59	H	0.148	21.69
	20	21201	1/99	15	21372	1/0	-24.88	14.13	10.24	2.53	H	0.153	21.84
	20	21152	1/99	20	21350	1/0	-25.07	13.94	10.24	2.53	H	0.146	21.65

Note:

1. Modulation : QPSK
2. Limit : < 2 Watts

PCC			SCC			Measured	Substitute	Ant.	C.L.	Pol.	E.I.R.P	
BW [MHz]	Channel	RB/Offset	BW [MHz]	Channel	RB/Offset						Level (dBm)	dBm
10	20805	1/49	20	20949	1/0	-24.50	14.03	10.26	2.51	H	0.151	21.78
15	20825	1/74	10	20945	1/0	-24.18	14.35	10.26	2.51	H	0.162	22.10
15	20825	1/74	15	20975	1/0	-24.60	13.97	10.26	2.53	H	0.148	21.70
15	20828	1/74	20	20999	1/0	-24.46	14.11	10.26	2.53	H	0.153	21.84
20	20850	1/99	10	20994	1/0	-24.87	13.70	10.26	2.53	H	0.139	21.43
20	20850	1/99	15	21021	1/0	-25.01	13.60	10.26	2.54	H	0.135	21.31
20	20850	1/99	20	21048	1/0	-24.92	13.69	10.26	2.54	H	0.138	21.40
15	21051	1/74	10	21171	1/0	-24.92	13.91	10.25	2.54	H	0.145	21.63
15	21277	1/74	10	21397	1/0	-25.23	13.81	10.26	2.59	H	0.141	21.48

Note:

1. Modulation : 16QAM

2. Limit : < 2 Watts

PCC			SCC			Measured	Substitute	Ant.	C.L.	Pol.	E.I.R.P	
BW [MHz]	Channel	RB/Offset	BW [MHz]	Channel	RB/Offset						Level (dBm)	dBm
10	20805	1/49	20	20949	1/0	-27.00	11.53	10.26	2.51	H	0.085	19.28
15	20825	1/74	10	20945	1/0	-26.52	12.01	10.26	2.51	H	0.095	19.76
15	20825	1/74	15	20975	1/0	-26.78	11.79	10.26	2.53	H	0.090	19.52
15	20828	1/74	20	20999	1/0	-26.76	11.81	10.26	2.53	H	0.090	19.54
20	20850	1/99	10	20994	1/0	-27.06	11.51	10.26	2.53	H	0.084	19.24
20	20850	1/99	15	21021	1/0	-27.26	11.35	10.26	2.54	H	0.081	19.06
20	20850	1/99	20	21048	1/0	-27.18	11.43	10.26	2.54	H	0.082	19.14
15	21051	1/74	10	21171	1/0	-27.12	11.71	10.25	2.54	H	0.088	19.43
15	21277	1/74	10	21397	1/0	-27.56	11.48	10.26	2.59	H	0.082	19.15

Note:

1. Modulation : 64QAM

2. Limit : < 2 Watts

PCC			SCC			Measured	Substitute	Ant.	C.L.	Pol.	E.I.R.P	
BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset						W	dBm
10	20805	1/49	20	20949	1/0	-28.80	9.73	10.26	2.51	H	0.056	17.48
15	20825	1/74	10	20945	1/0	-28.34	10.19	10.26	2.51	H	0.062	17.94
15	20825	1/74	15	20975	1/0	-28.54	10.03	10.26	2.53	H	0.060	17.76
15	20828	1/74	20	20999	1/0	-28.54	10.03	10.26	2.53	H	0.060	17.76
20	20850	1/99	10	20994	1/0	-29.01	9.56	10.26	2.53	H	0.054	17.29
20	20850	1/99	15	21021	1/0	-28.97	9.64	10.26	2.54	H	0.054	17.35
20	20850	1/99	20	21048	1/0	-29.01	9.60	10.26	2.54	H	0.054	17.31
15	21051	1/74	10	21171	1/0	-28.85	9.98	10.25	2.54	H	0.059	17.70
15	21277	1/74	10	21397	1/0	-29.29	9.75	10.26	2.59	H	0.055	17.42

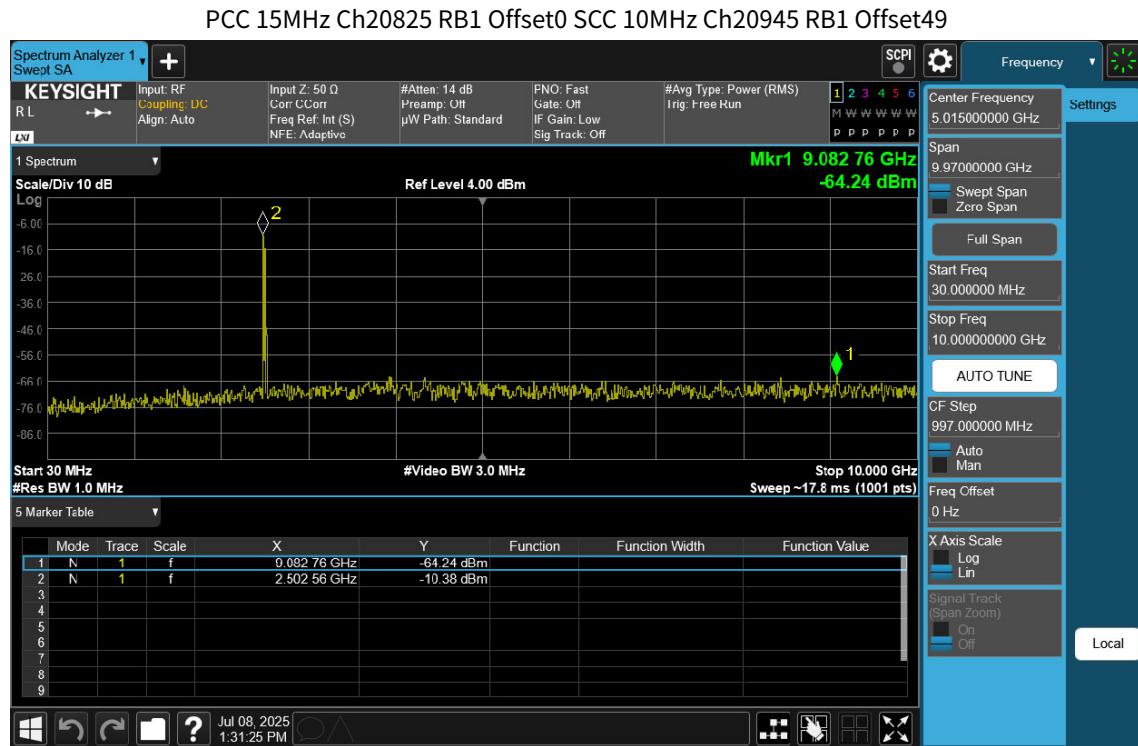
Note:

1. Modulation : 256QAM
2. Limit : < 2 Watts

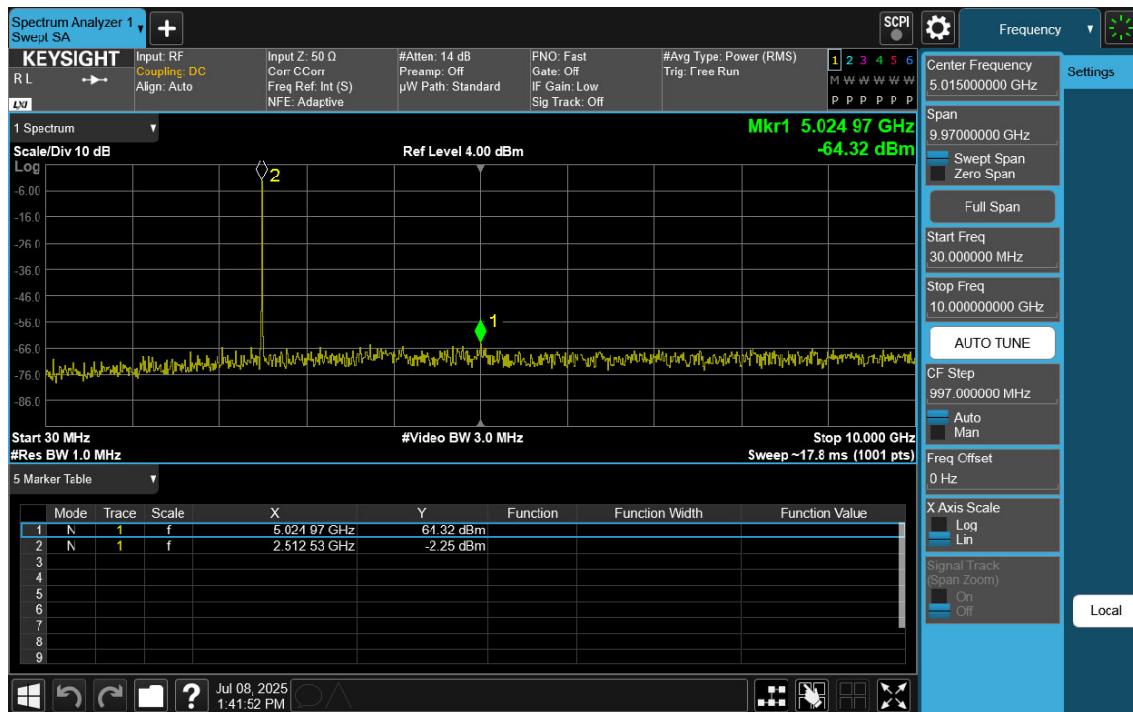
8.3 Conducted Spurious Emissions

Operating frequency	PCC				SCC				Measurement Maximum Frequency (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)
	BW [MHz]	Ch.	Freq. (MHz)	RB/Offset	BW [MHz]	Ch.	Freq. (MHz)	RB/Offset				
Low	15	2507.5	20825	1/0	10	2519.5	20945	1/49	9.08	29.19	-64.24	-35.05
Mid	15	2530.1	21051	1/0	10	2542.1	21171	1/49	4.77	28.59	-62.50	-33.91
High	15	2552.7	21277	1/0	10	2564.7	21397	1/49	4.09	28.59	-64.33	-35.74
Low	15	2507.5	20825	1/74	10	2519.5	20945	1/0	5.02	29.19	-64.32	-35.13
Mid	15	2530.1	21051	1/74	10	2542.1	21171	1/0	4.13	28.59	-64.43	-35.84
High	15	2552.7	21277	1/74	10	2564.7	21397	1/0	8.84	28.59	-64.90	-36.31
Low	15	2507.5	20825	75/0	10	2519.5	20945	50/0	3.72	28.59	-64.24	-35.65
Mid	15	2530.1	21051	75/0	10	2542.1	21171	50/0	3.92	28.59	-64.10	-35.51
High	15	2552.7	21277	75/0	10	2564.7	21397	50/0	4.77	28.59	-64.38	-35.79
Low	20	2510.0	20850	100/0	20	2529.8	21048	100/0	4.77	28.59	-64.16	-35.57
Mid	20	2525.1	21001	100/0	20	2544.9	21199	100/0	6.84	29.19	-64.85	-35.66
High	20	2540.2	21152	100/0	20	2560.0	21350	100/0	4.79	28.59	-63.56	-34.97

Note:

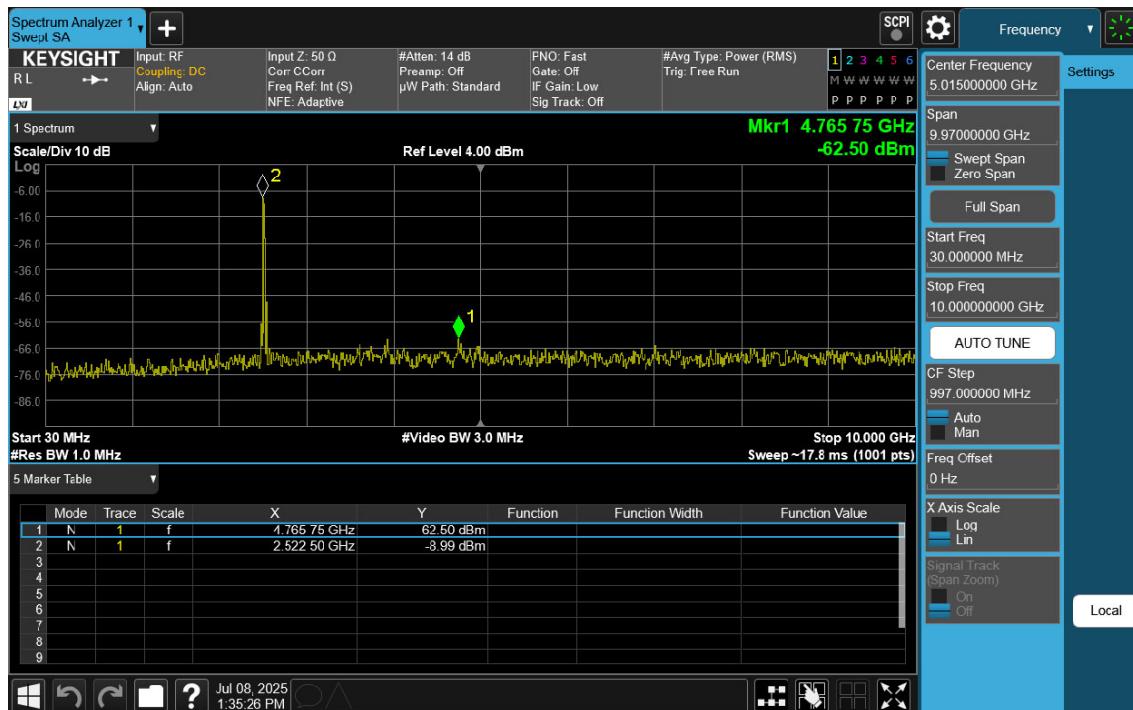

1. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter

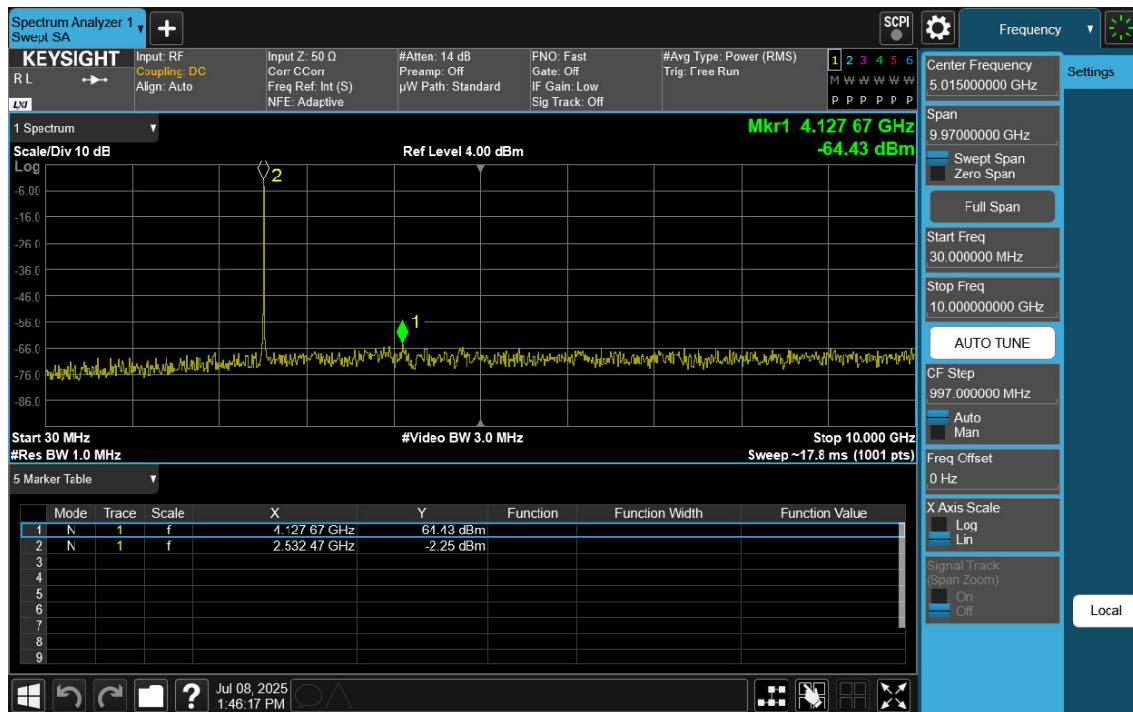
2. Factors for frequency :

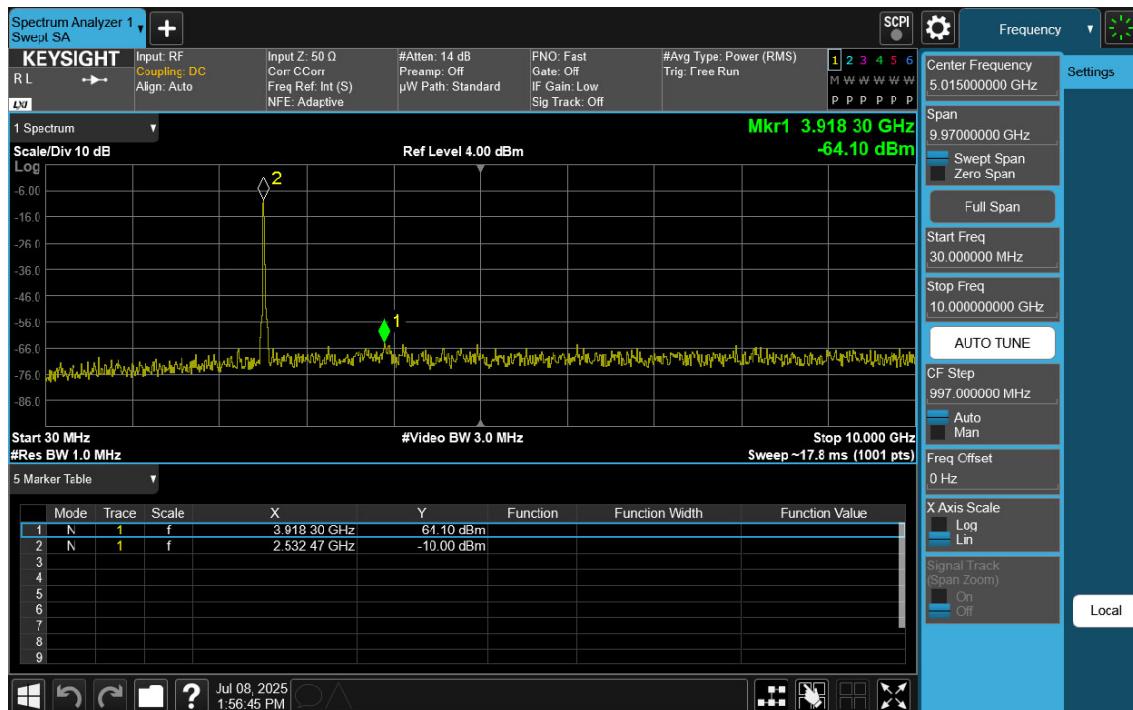

Frequency Range (GHz)	Factor [dB]
0.03 – 1	25.670
1 – 5	28.370
5 – 10	28.980
10 – 15	29.520
15 – 20	29.890
Above 20	30.530

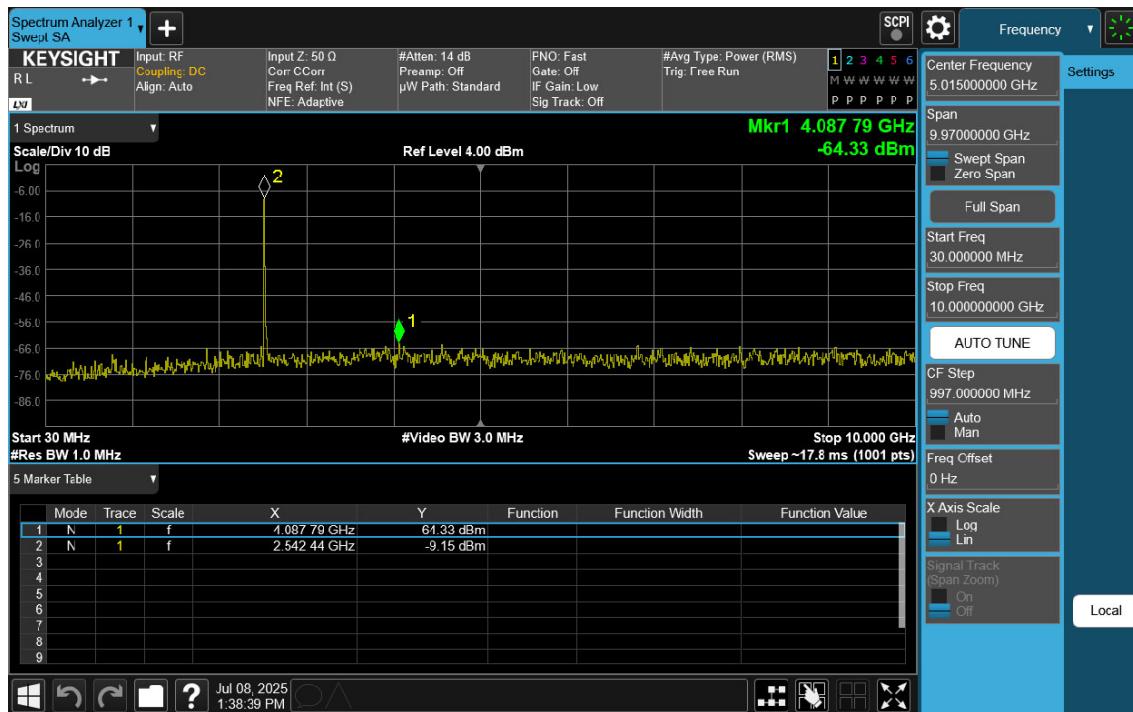
3. Limit : -25.0 dBm

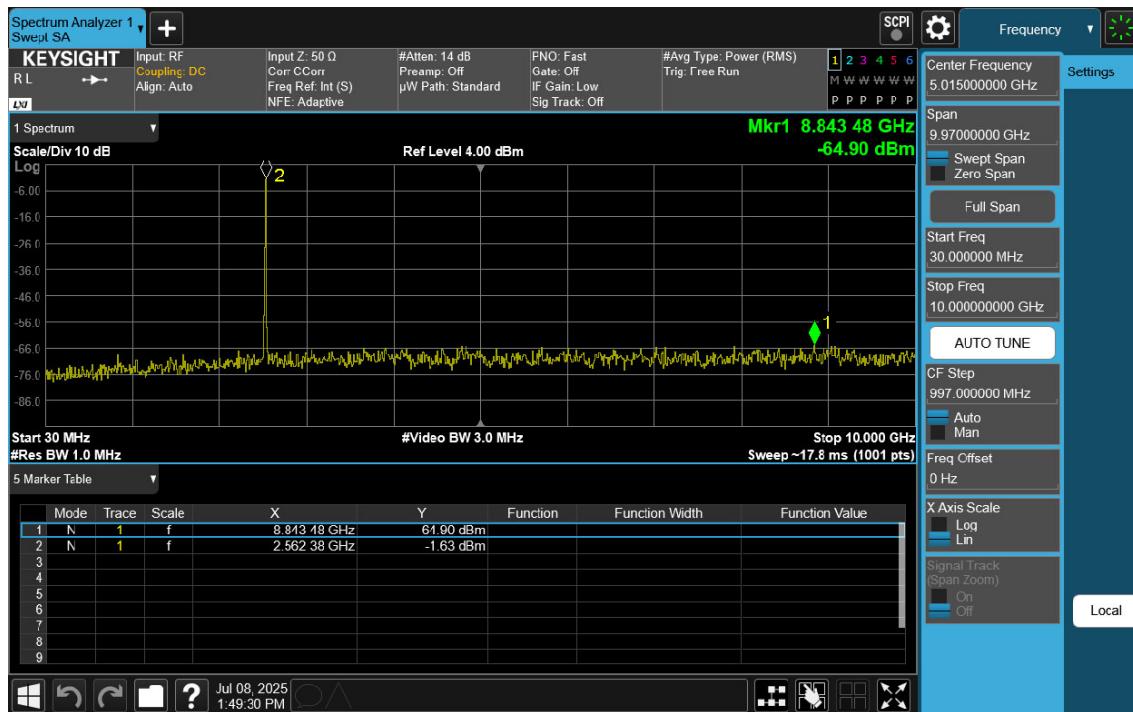
Frequency Range : 30 MHz ~ 10 GHz

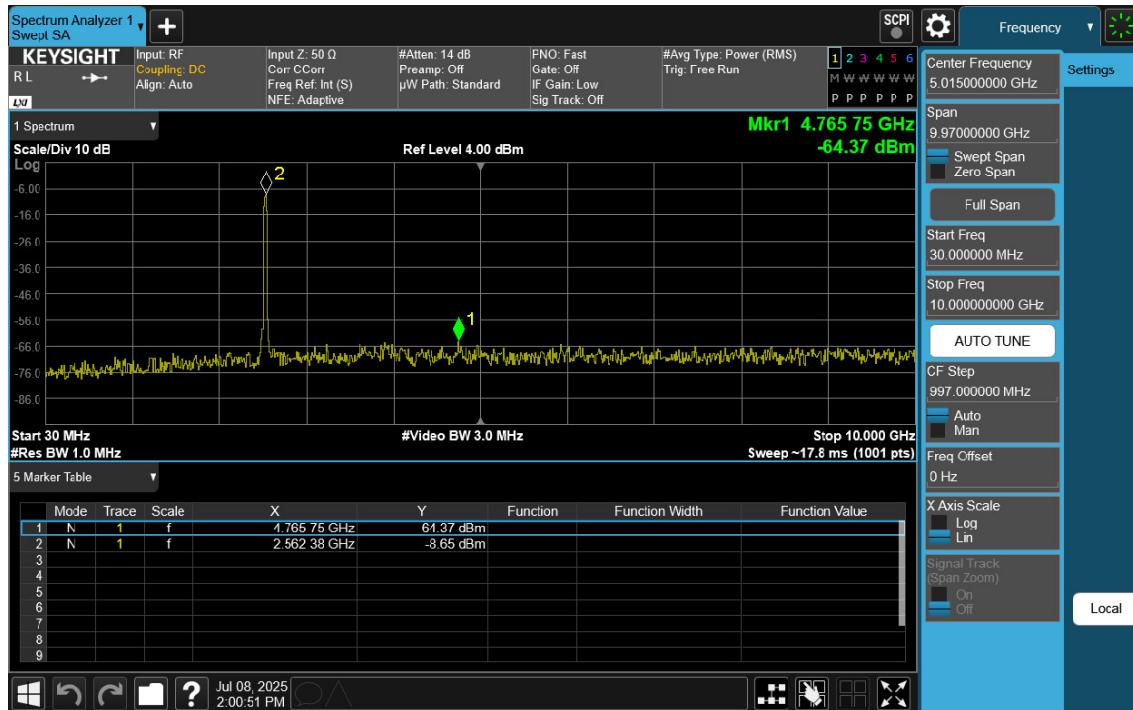

PCC 15MHz Ch20825 RB1 Offset74 SCC 10MHz Ch20945 RB1 Offset0

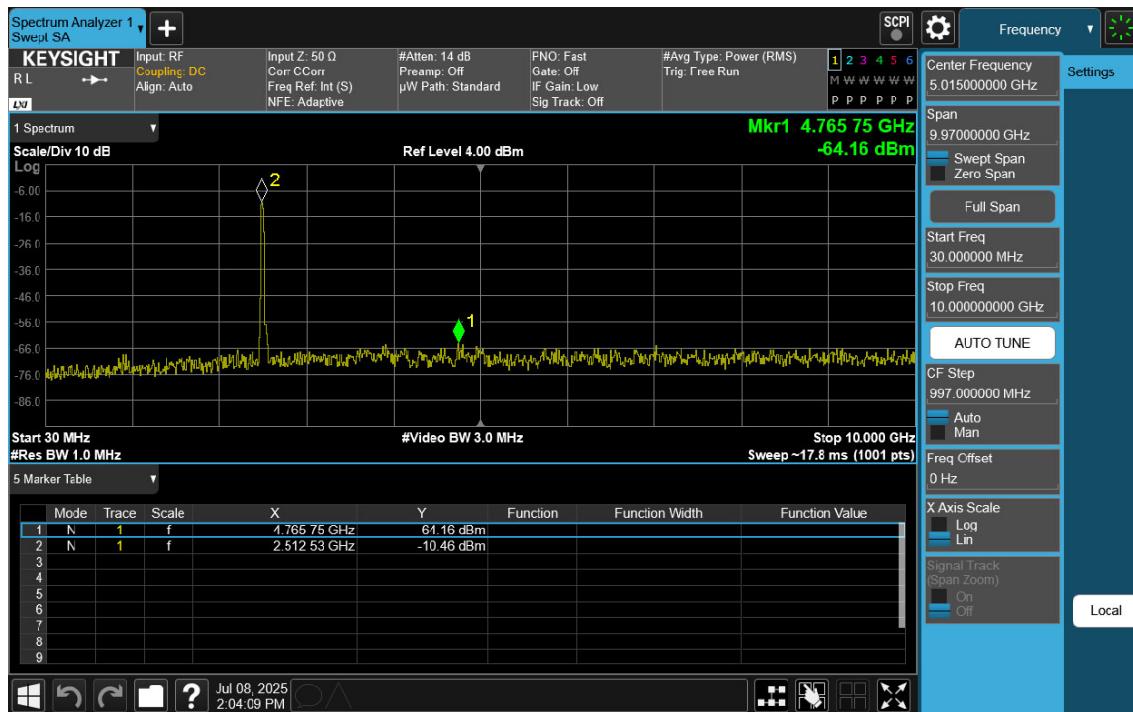

PCC 15MHz Ch20825 RB75 Offset0 SCC 10MHz Ch20945 RB50 Offset0

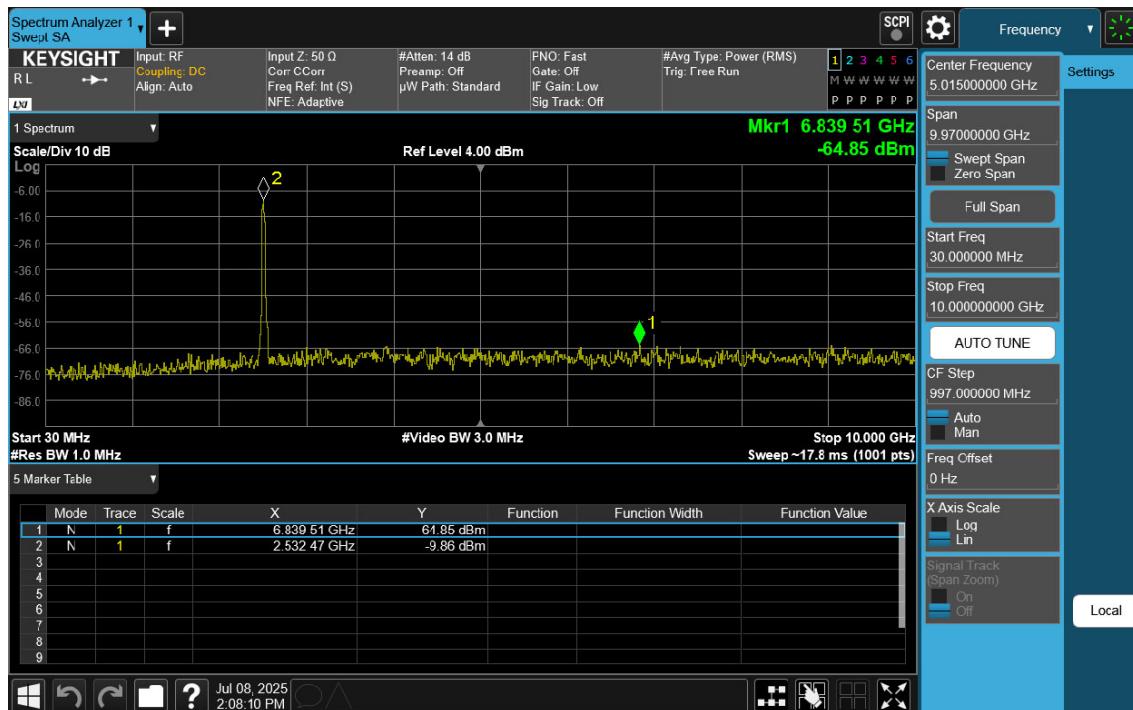

PCC 15MHz Ch21051 RB1 Offset0 SCC 10MHz Ch21171 RB1 Offset49

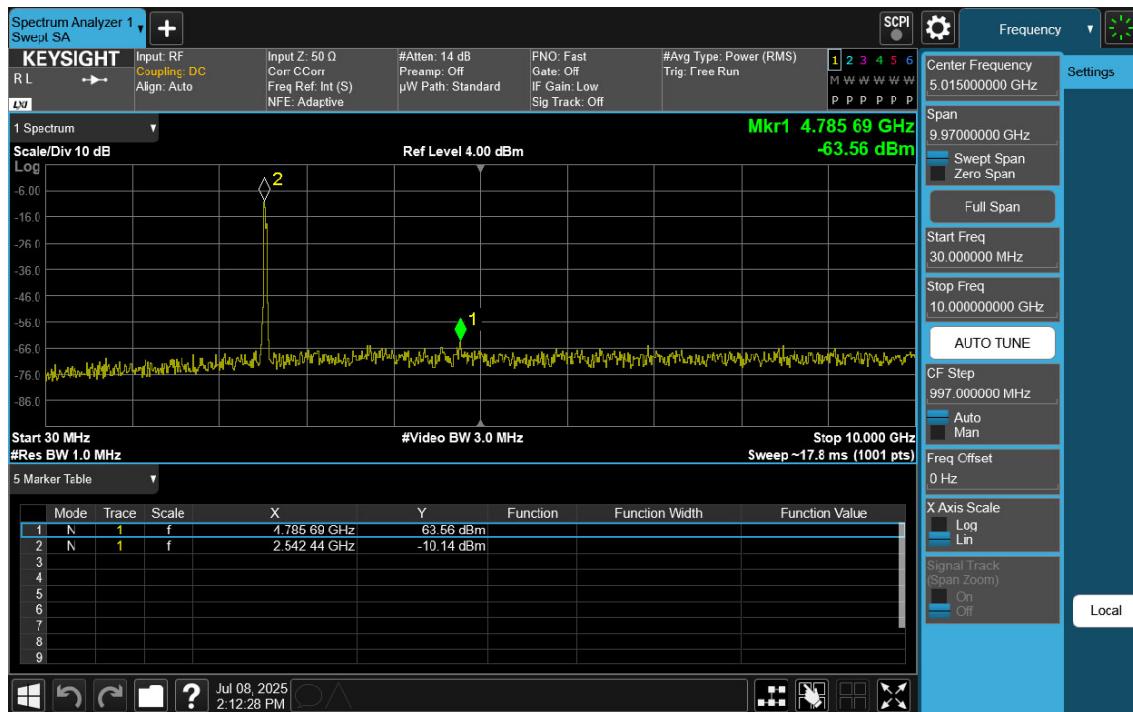

PCC 15MHz Ch21051 RB1 Offset74 SCC 10MHz Ch21171 RB1 Offset0

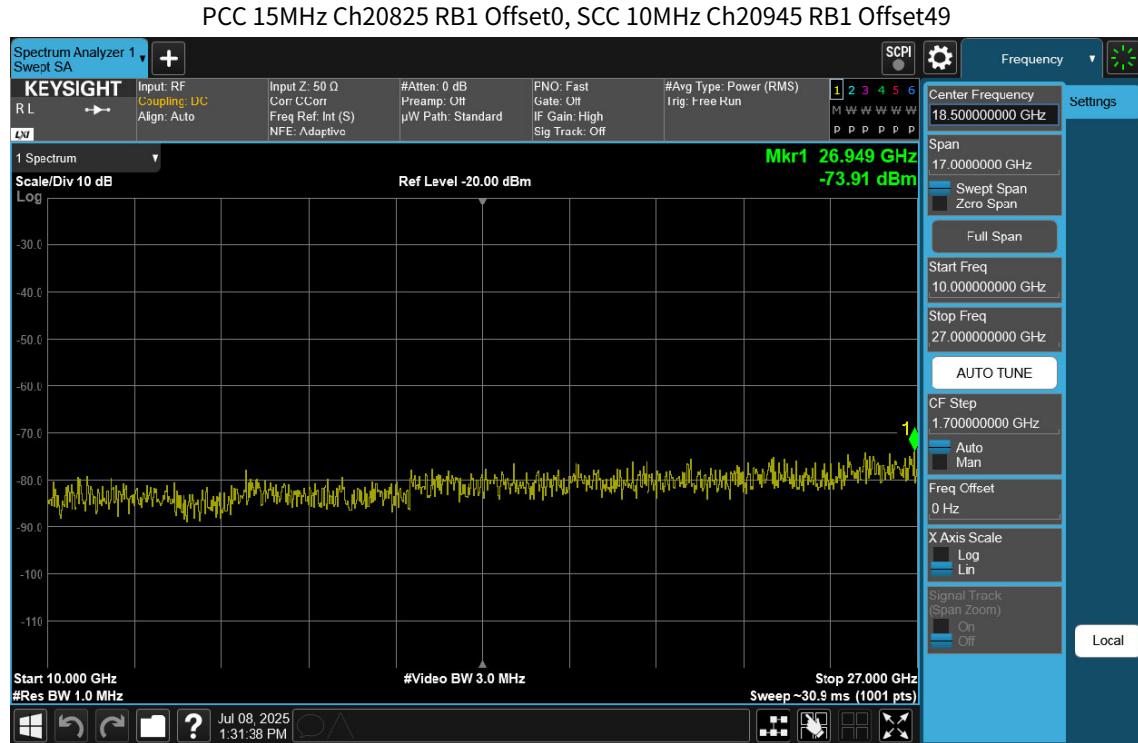

PCC 15MHz Ch21051 RB75 Offset0 SCC 10MHz Ch21171 RB50 Offset0


PCC 15MHz Ch21277 RB1 Offset0 SCC 10MHz Ch21397 RB1 Offset49

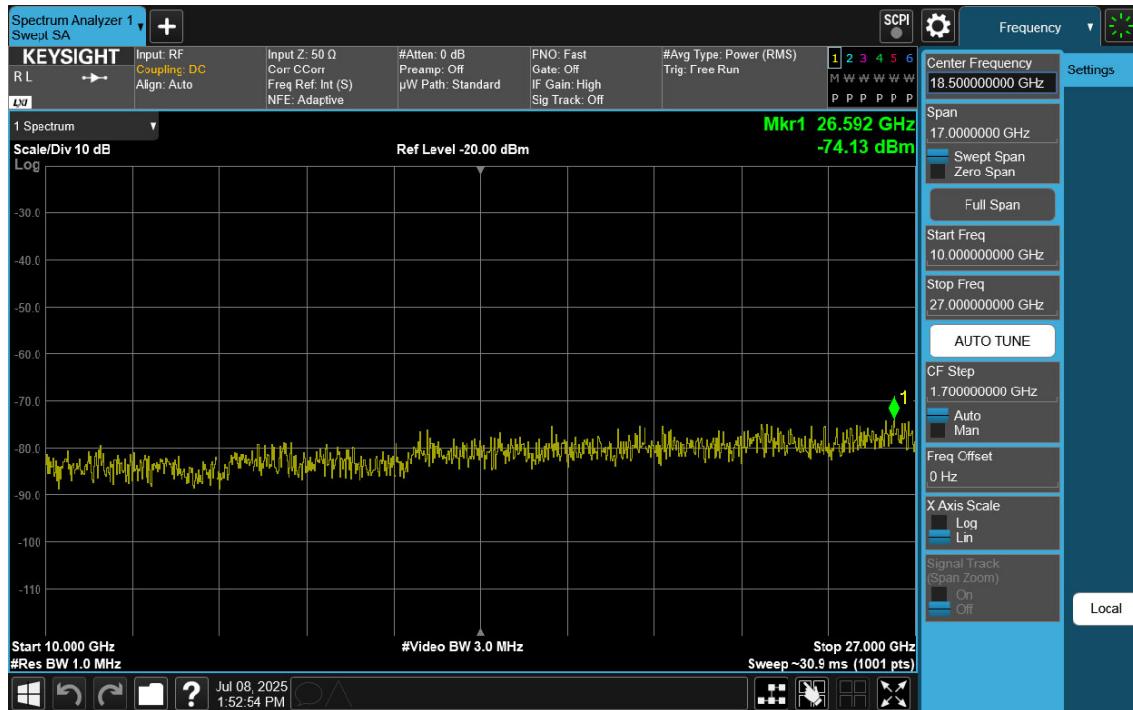

PCC 15MHz Ch21277 RB1 Offset74 SCC 10MHz Ch21397 RB1 Offset0

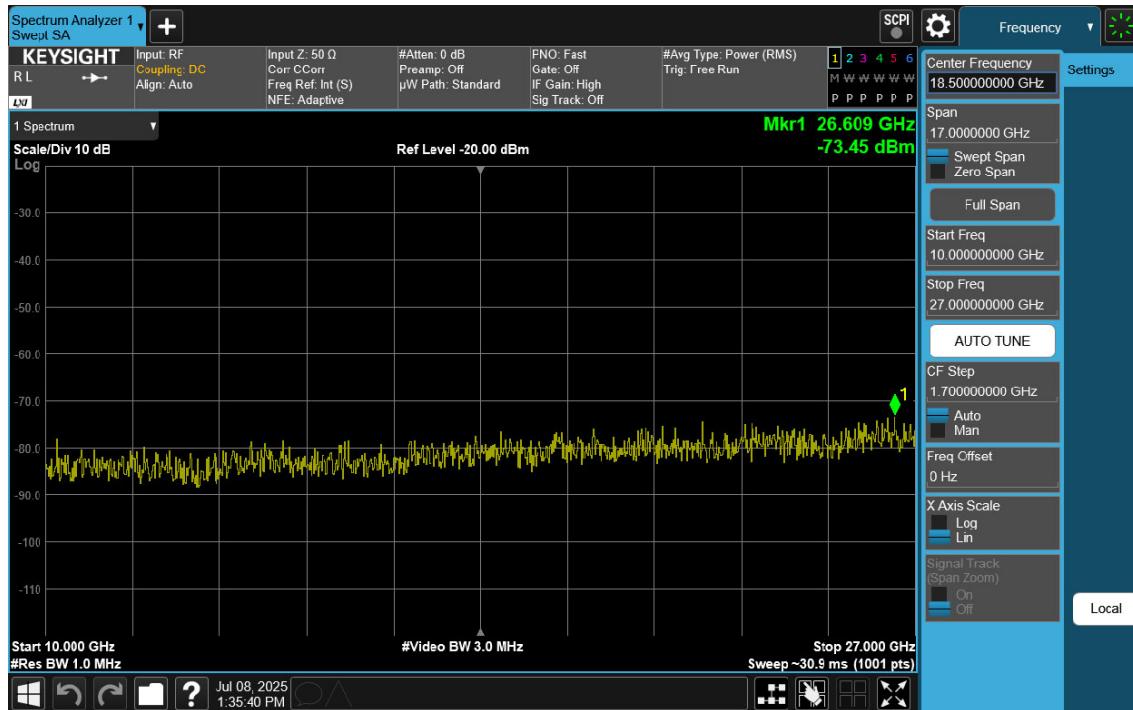

PCC 15MHz Ch21277 RB75 Offset0 SCC 10MHz Ch21397 RB50 Offset0


PCC 20MHz Ch20850 RB100 Offset0 SCC 20MHz Ch21048 RB100 Offset0

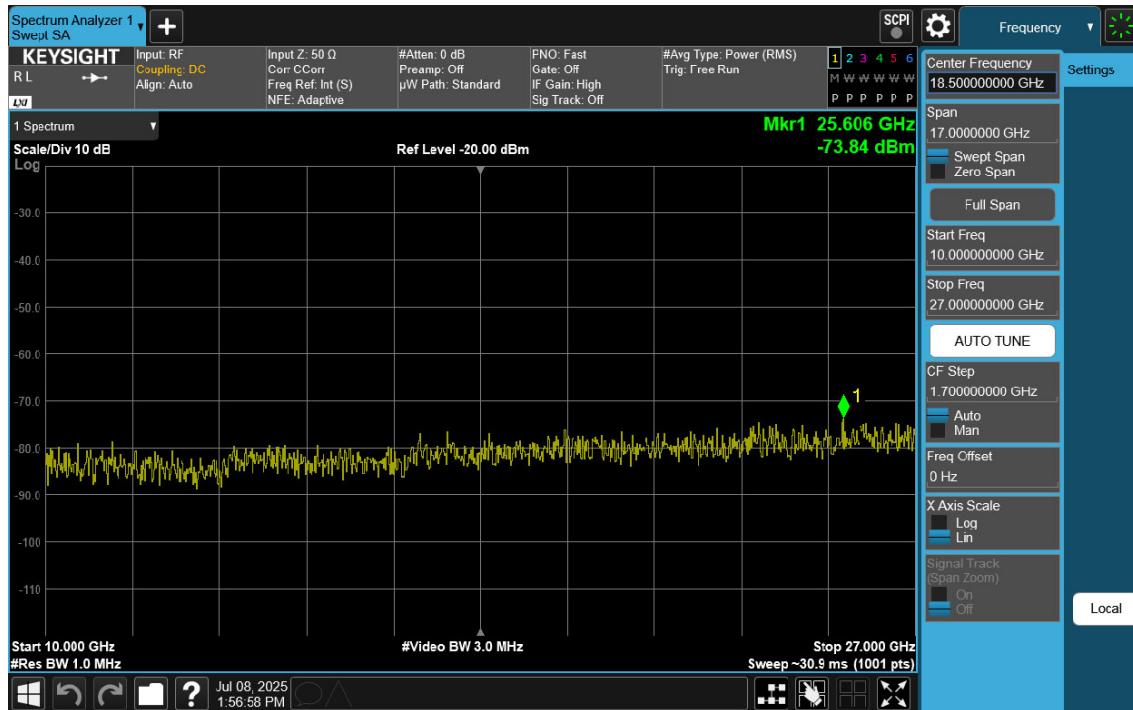

PCC 20MHz Ch21001 RB100 Offset0 SCC 20MHz Ch21199 RB100 Offset0

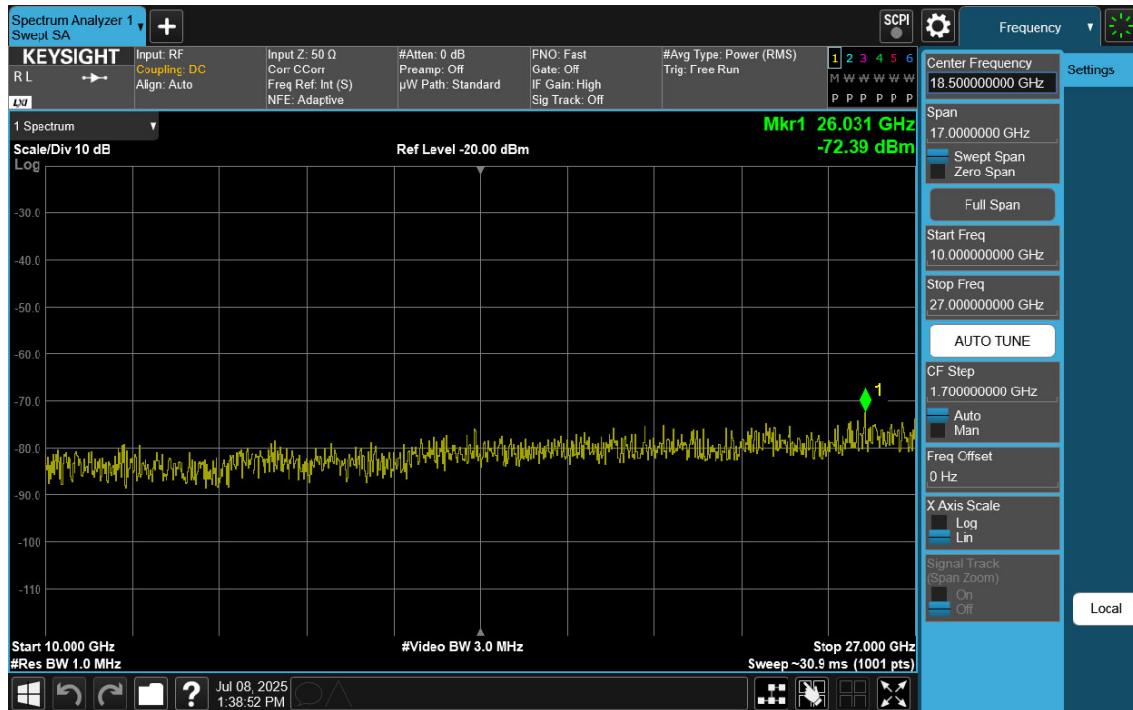
PCC 20MHz Ch21152 RB100 Offset0 SCC 20MHz Ch21350 RB100 Offset0

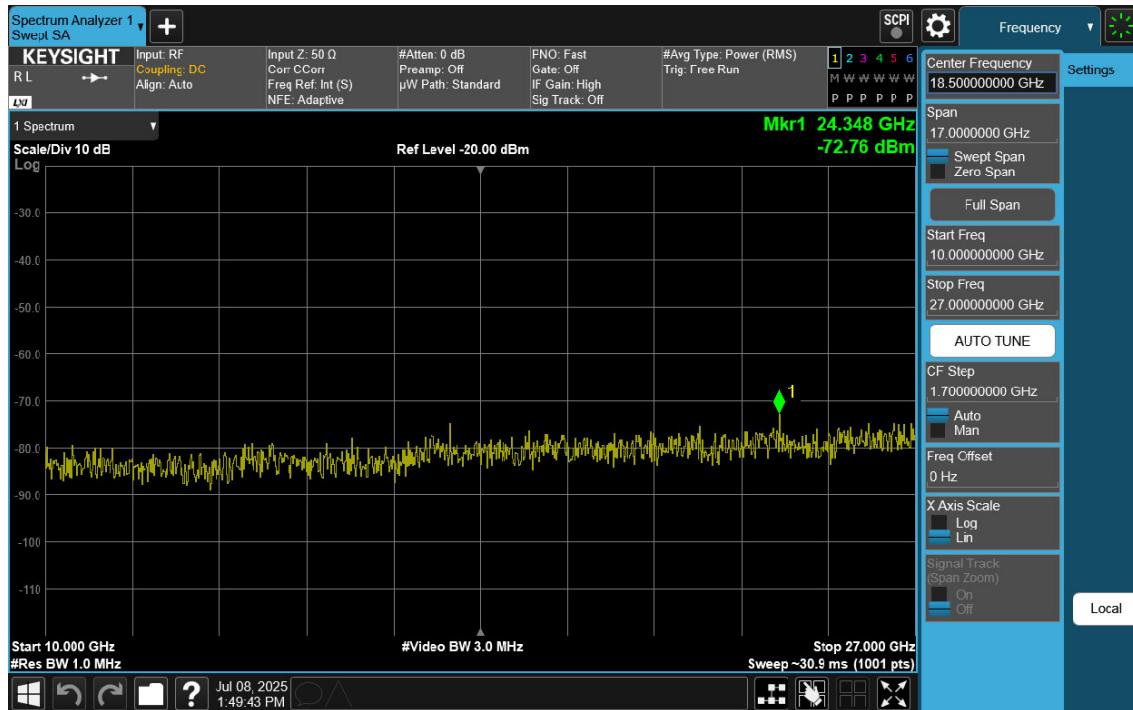

Frequency Range : 10GHz ~ 27GHz

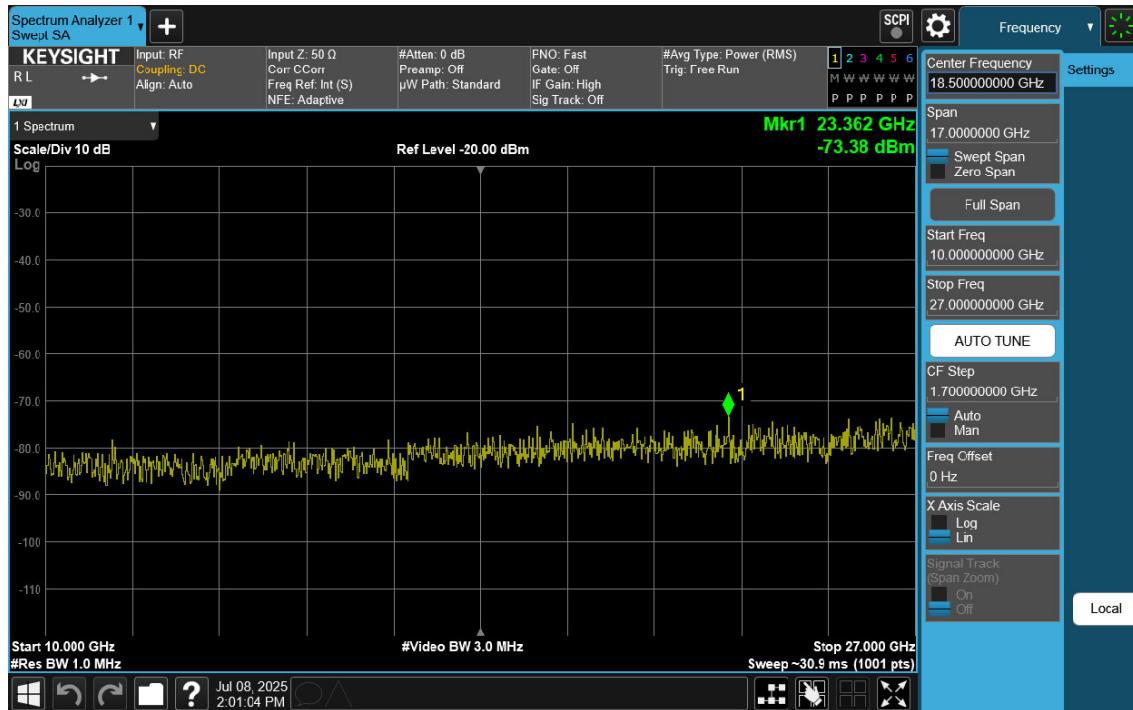

PCC 15MHz Ch20825 RB1 Offset74, SCC 10MHz Ch20945 RB1 Offset0

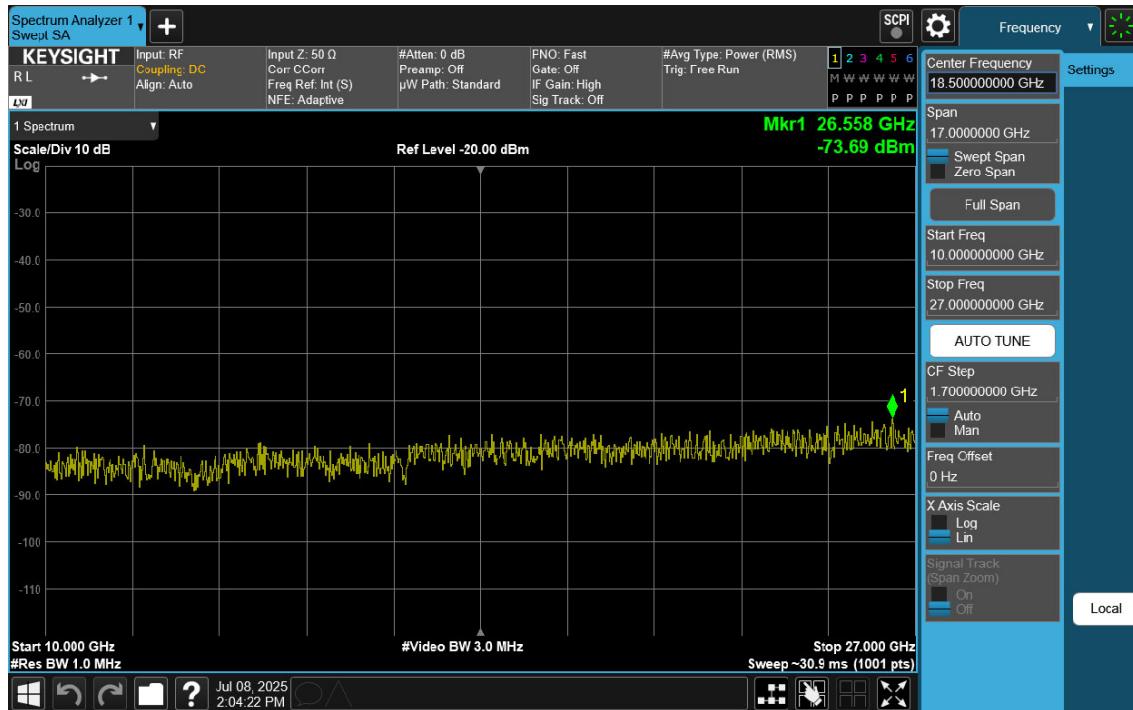

PCC 15MHz Ch20825 RB75 Offset0, SCC 10MHz Ch20945 RB50 Offset0

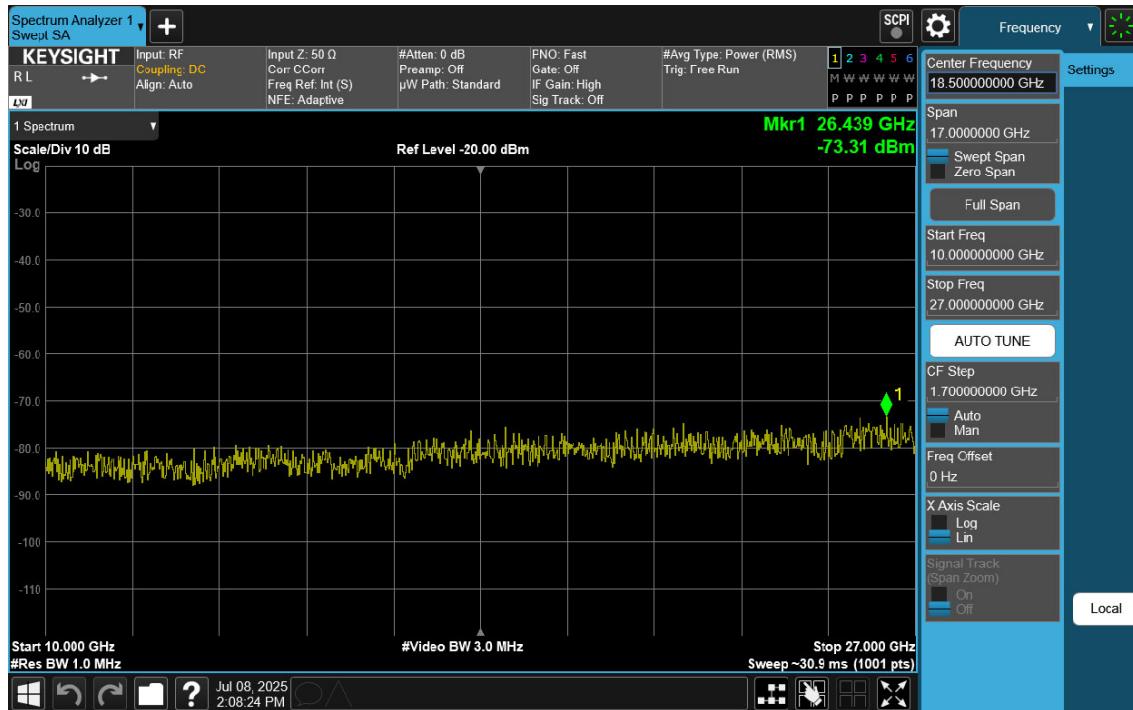

PCC 15MHz Ch21051 RB1 Offset0, SCC 10MHz Ch21171 RB1 Offset49

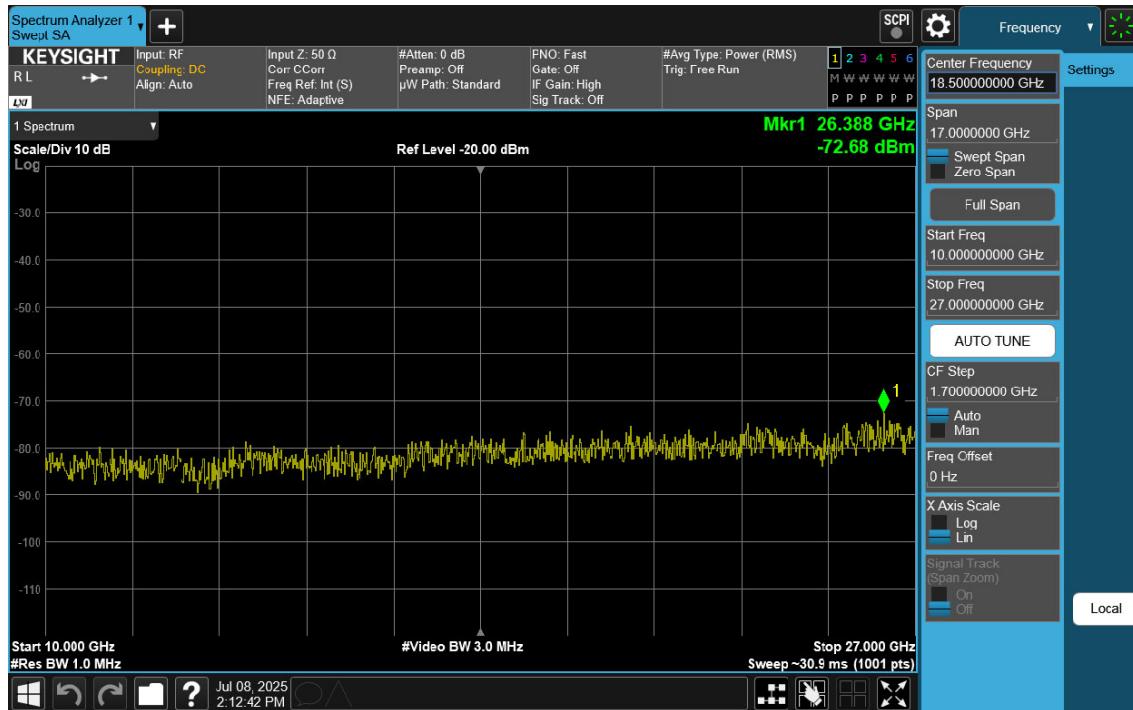

PCC 15MHz Ch21051 RB1 Offset74, SCC 10MHz Ch21171 RB1 Offset0

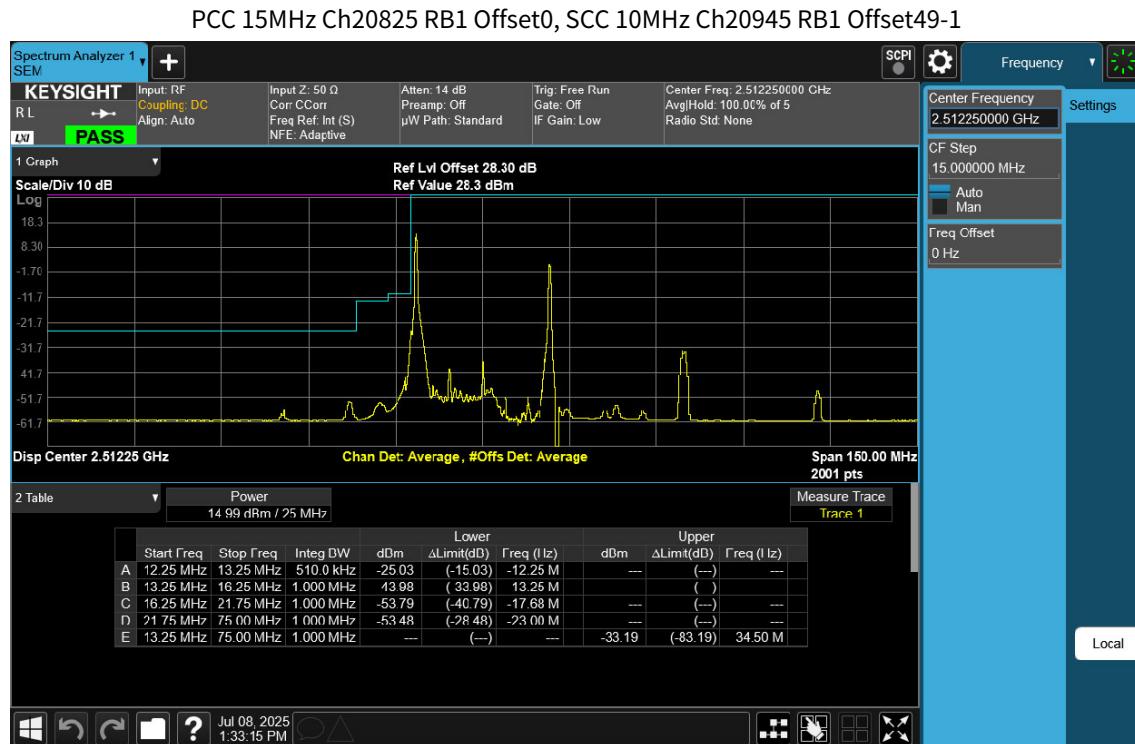

PCC 15MHz Ch21051 RB75 Offset0, SCC 10MHz Ch21171 RB50 Offset0

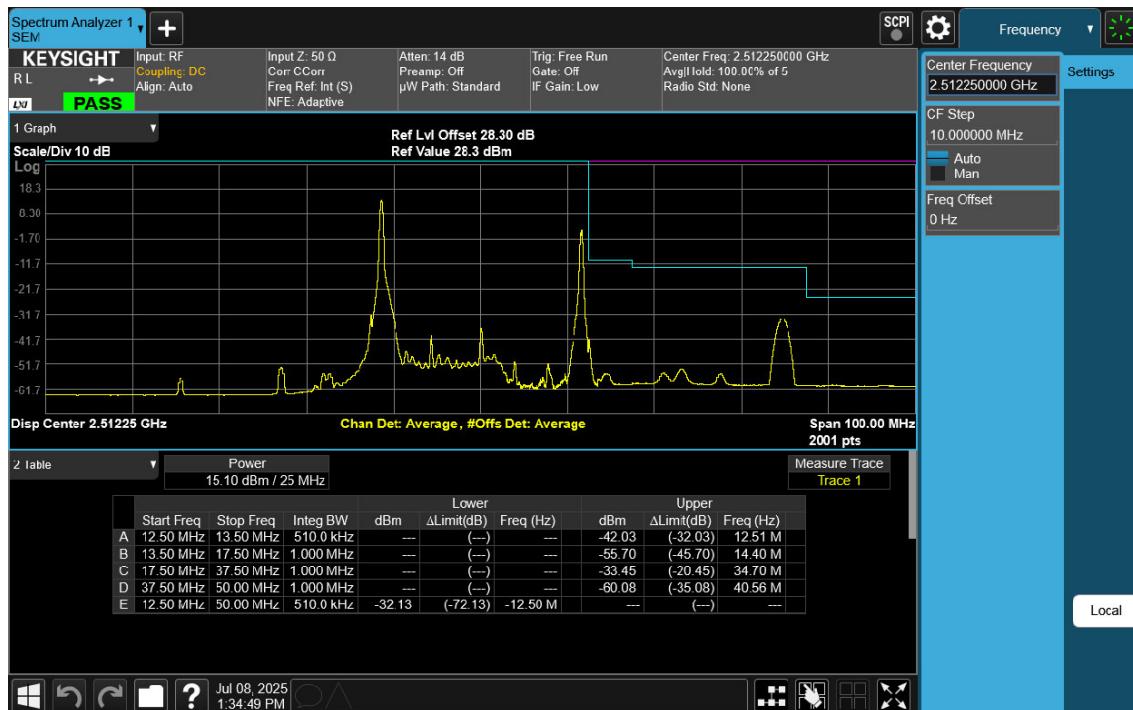

PCC 15MHz Ch21277 RB1 Offset0, SCC 10MHz Ch21397 RB1 Offset49


PCC 15MHz Ch21277 RB1 Offset74, SCC 10MHz Ch21397 RB1 Offset0


PCC 15MHz Ch21277 RB75 Offset0, SCC 10MHz Ch21397 RB50 Offset0


PCC 20MHz Ch20850 RB100 Offset0, SCC 20MHz Ch21048 RB100 Offset0


PCC 20MHz Ch21001 RB100 Offset0, SCC 20MHz Ch21199 RB100 Offset0


PCC 20MHz Ch21152 RB100 Offset0, SCC 20MHz Ch21350 RB100 Offset0

8.4 CHANNEL EDGE

PCC 15MHz Ch20825 RB1 Offset0, SCC 10MHz Ch20945 RB1 Offset49-2

