





# **TEST REPORT**

FCC DTS ax Test for LGSWNAX61 Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2509-FC005

DATE OF ISSUE September 3, 2025

> Tested by Sang Hoon Lee

Technical Manager Jong Seok Lee MA

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Brugini Huh BongJai Huh / CEO







HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

# TEST REPORT

REPORT NO.

HCT-RF-2509-FC005

DATE OF ISSUE

September 03, 2025

| Applicant                  | LG Electronics Inc. 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 17709, Republic of Korea                                              |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name<br>Model Name | RF Module<br>LGSWNAX61                                                                                                                        |
| FCC ID                     | 2BO3LLGSWNAX61                                                                                                                                |
| Date of Test               | July 21, 2025 ~ August 29, 2025                                                                                                               |
| FCC Classification         | Digital Transmission System(DTS)                                                                                                              |
| Test Standard Used         | FCC Rule Part(s): Part 15.247                                                                                                                 |
| Test Results               | PASS                                                                                                                                          |
| Location of Test           | ■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea) |
| Brand                      | LG                                                                                                                                            |

F-TP22-03 (Rev. 06) Page 2 of 57



#### **REVISION HISTORY**

The revision history for this test report is shown in table.

| Revision No. | Date of Issue      | Description     |
|--------------|--------------------|-----------------|
| 0            | September 03, 2025 | Initial Release |

# Notice

#### Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked  $^{\star}.$ 

Information provided by the applicant is marked \*\*.

Test results provided by external providers are marked \*\*\*.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA. (KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

F-TP22-03 (Rev. 06) Page 3 of 57



# CONTENTS

| 1. EUT DESCRIPTION                           | 5  |
|----------------------------------------------|----|
| ANTENNA CONFIGURATIONS                       | 6  |
| 2. TEST METHODOLOGY                          | 8  |
| EUT CONFIGURATION                            | 8  |
| EUT EXERCISE                                 | 8  |
| GENERAL TEST PROCEDURES                      | 8  |
| DESCRIPTION OF TEST MODES                    | 8  |
| 3. INSTRUMENT CALIBRATION                    | 9  |
| 4. FACILITIES AND ACCREDITATIONS             | 9  |
| FACILITIES                                   | 9  |
| EQUIPMENT                                    | 9  |
| 5. ANTENNA REQUIREMENTS                      | 10 |
| 6. MEASUREMENT UNCERTAINTY                   | 10 |
| 7. DESCRIPTION OF TESTS                      | 11 |
| 8. SUMMARY TEST OF RESULTS                   | 29 |
| 9. TEST RESULT                               | 30 |
| 9.1 DUTY CYCLE                               | 30 |
| 9.2 6 dB BANDWIDTH / 99% Occupied Bandwidth  | 31 |
| 9.3 OUTPUT POWER                             | 34 |
| 9.4 POWER SPECTRAL DENSITY                   | 36 |
| 9.5 BAND EDGE / CONDUCTED SPURIOUS EMISSIONS | 39 |
| 9.6 RADIATED SPURIOUS EMISSIONS              | 46 |
| 9.7 RADIATED RESTRICTED BAND EDGES           | 50 |
| 9.7.1 Channel 1, 11                          | 50 |
| 9.7.2 Channel 12, 13                         | 52 |
| 10. LIST OF TEST EQUIPMENT                   | 55 |
| 11. ANNEX A_TEST SETUP PHOTO                 | 57 |



# 1. EUT DESCRIPTION

| Model                 | LGSWNAX61                                           |                        |           |  |
|-----------------------|-----------------------------------------------------|------------------------|-----------|--|
| Additional Model      | -                                                   |                        |           |  |
| EUT Type              | RF Module                                           |                        |           |  |
| Power Supply          | DC 3.30 V                                           |                        |           |  |
| Frequency Range       | 2 412 MHz ~ 2 472 MHz                               | 7_                     |           |  |
|                       | Peak Power                                          | SISO(Ant.1)            | 23.05 dBm |  |
| Max. RF Output Power  |                                                     | SISO(Ant.2)            | 23.39 dBm |  |
|                       |                                                     | MIMO_CDD(Ant.1+ Ant.2) | 26.24 dBm |  |
|                       | Average Power                                       | SISO(Ant.1)            | 13.79 dBm |  |
|                       |                                                     | SISO(Ant.2)            | 14.15 dBm |  |
|                       |                                                     | MIMO_CDD(Ant.1+ Ant.2) | 16.98 dBm |  |
| Modulation Type       | OFDM, OFDMA                                         |                        |           |  |
| Number of Channels    | 13 Channels                                         |                        |           |  |
| Antenna Specification | Type: Metal Press                                   |                        |           |  |
| Serial number         | Conducted : 6C15DB1726F0<br>Radiated : 0827A8A35F68 |                        |           |  |

F-TP22-03 (Rev. 06) Page 5 of 57



#### ANTENNA CONFIGURATIONS

#### 1. Antenna configuration

| Configurations | SI          | SO | MIMO |     |  |
|----------------|-------------|----|------|-----|--|
| Configurations | ANT.1 ANT.2 |    | CDD  | SDM |  |
| 802.11ax(HE20) | 0           | 0  | 0    | 0   |  |

#### Note:

- (1) O = Support, X = Not Support
- (2) SISO = Single Input Single Output
- (3) SDM = Spatial Diversity Multiplexing
- (4) CDD = Cyclic Delay Diversity
- 2. This device supports simultaneous transmission operation, which allows for two channels to operate independent of one another in the 2.4 GHz and 5 GHz or 6GHz Bands simultaneously on each antenna.

| Simultaneous<br>transmission Scenario             | 2.4 GHz<br>WiFi<br>Ant.1 | 2.4 GHz<br>WiFi<br>Ant.2 | 5 GHz<br>WiFi<br>Ant.1 | 5 GHz<br>WiFi<br>Ant.2 | 6 GHz<br>WiFi<br>Ant.1 | 6 GHz<br>WiFi<br>Ant.2 | Bluetooth | Test<br>Case |
|---------------------------------------------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------|--------------|
| Bluetooth +<br>2.4 GHz WiFi MIMO                  | on                       | on                       | -                      | -                      | -                      | -                      | on        |              |
| Bluetooth +<br>5 GHz WiFi MIMO                    | -                        | -                        | on                     | on                     | -                      | -                      | on        | Scenario 1   |
| Bluetooth +<br>6 GHz WiFi MIMO                    | -                        | -                        |                        |                        | on                     | on                     | on        |              |
| 2.4 GHz WiFi SISO +<br>5 GHz WiFi SISO            | -                        | on                       | on                     | -                      | -                      | -                      | -         |              |
| 2.4 GHz WiFi SISO +<br>6 GHz WiFi SISO            | -                        | on                       | -                      | -                      | on                     | -                      | -         |              |
| Bluetooth +  2.4 GHz WiFi SISO +  6 GHz WiFi SISO | -                        | on                       | -                      | -                      | on                     | -                      | on        |              |
| Bluetooth +  2.4 GHz WiFi SISO +  5 GHz WiFi SISO | -                        | on                       | on                     | -                      | -                      | -                      | on        | Scenario 2   |

F-TP22-03 (Rev. 06) Page 6 of 57



#### 3. Directional Gain Calculation

According to KDB 662911 D01 Multiple Transmitter Output v02r01 F) 2) e) (iii), f) ii)

$$\mathsf{Directional\ Gain}(\mathsf{CDD}) = \ \mathbf{10} \ \cdot \ \log \left[ \frac{\sum_{j=1}^{N_{SS}} (\sum_{k=1}^{N_{ANT}} g_{j,k})^2}{N_{ANT}} \right]$$

Directional gain(SDM) = Gmax + 10·LOG(N<sub>ANT</sub>/ N<sub>ss</sub>)

| Ant Gain |      | Nant/ Nss   | Directional Gain (dBi) |      |  |
|----------|------|-------------|------------------------|------|--|
| (d       | Bi)  | INANI/ INSS | CDD                    | SDM  |  |
| ANT.1    | 0.49 | 2 /2        | 2.00                   | 0.60 |  |
| ANT.2    | 0.69 | 2/2         | 3.60                   | 0.69 |  |

#### <u>Note</u>

According to to ANSI C63.10-2020 section 14.6.3, the directional gain is calculated using the formula, where  $G_N$  is the gain of the nth antenna and  $N_{ANT}$  is the total number of antennas used.

$$\begin{aligned} \text{Directional gain(CDD)} &= 10 \cdot log(((10^{(\text{ANT.0 Gain/20})} + 10^{(\text{ANT.1 Gain/20})})^2)/2) \text{ dBi} \\ &\quad \text{Directional gain(SDM)} &= \text{Gmax} + 10 \cdot log(N_{\text{ANT}}/N_{\text{SS}}) \end{aligned}$$

# Sample MIMO Calculation:

Ex) ANT.1:11.58 dBm ANT.2:12.08 dBm

$$MIMO = ANT.1 + ANT.2$$

(11.58 dBm + 12.08 dBm) = (14.387 mW + 16.143 mW) = 30.53 mW = 14.88 dBm

F-TP22-03 (Rev. 06) Page 7 of 57



#### 2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version: 2020) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

#### **FUT CONFIGURATION**

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### **EUT EXERCISE**

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

#### GENERAL TEST PROCEDURES

#### **Conducted Emissions**

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version: 2020) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

#### **Radiated Emissions**

According to the requirements in Section 6.3 ~ Section 6.6 of ANSI C63.10. (Version: 2020),

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes.

#### DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

F-TP22-03 (Rev. 06) Page 8 of 57



#### 3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

#### 4. FACILITIES AND ACCREDITATIONS

#### **FACILITIES**

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 11, 2024 (Registration Number: KR0032).

#### **EQUIPMENT**

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 06) Page 9 of 57



# 5. ANTENNA REQUIREMENTS

#### According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

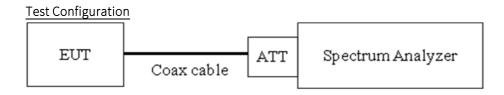
- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

#### 6. MFASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2020.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.


| Parameter                                | Expanded Uncertainty (±kHz)                     |
|------------------------------------------|-------------------------------------------------|
| X dB, 99% Bandwidth                      | 95 (Confidence level about 95 %, <i>k=2</i> )   |
| Frequency stability                      | 28 (Confidence level about 95 %, <i>k=2</i> )   |
| Parameter                                | Expanded Uncertainty (±dB)                      |
| Conducted Disturbance (150 kHz ~ 30 MHz) | 1.54 (Confidence level about 95 %, <i>k</i> =2) |
| Conducted Output Power(Power Meter)      | 0.54 (Confidence level about 95 %, k=2)         |
| Conducted Output Power(Signal Analyzer)  | 0.68 (Confidence level about 95 %, k=2)         |
| Power Spectral Density                   | 1.03 (Confidence level about 95 %, k=2)         |
| Band Edge (Out of Band Emissions)        | 0.70 (Confidence level about 95 %, k=2)         |
| Radiated Disturbance (9 kHz ~ 30 MHz)    | 4.36 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (30 MHz ~ 1 GHz)    | 5.68 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (1 GHz ~ 18 GHz)    | 5.75 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (18 GHz ~ 40 GHz)   | 5.82 (Confidence level about 95 %, <i>k</i> =2) |

F-TP22-03 (Rev. 06) Page 10 of 57



#### 7. DESCRIPTION OF TESTS

#### 7.1. Duty Cycle



#### **Test Procedure**

Test Standard Used: Section 11.6 in ANSI C63.10-2020

We tested according to the zero-span measurement method.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if  $T \le 6.25$  microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to

- 1. RBW = 8 MHz (the largest available value)
- 2.  $VBW = 8 MHz (\ge RBW)$
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T<sub>total</sub> and T<sub>on</sub>
- 8. Calculate Duty Cycle =  $T_{on}/T_{total}$  and Duty Cycle Factor = 10log(1/Duty Cycle)

F-TP22-03 (Rev. 06) Page 11 of 57



#### 7.2. 6 dB Bandwidth

#### Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

# EUT Coax cable ATT Spectrum Analyzer

#### Test Procedure

Test Standard Used: Section 11.8 in ANSI C63.10-2020

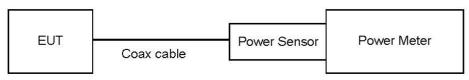
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to

- 1) RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- 2) VBW  $\geq$  3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = No faster than coupled (auto) time.
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note: We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.

F-TP22-03 (Rev. 06) Page 12 of 57




#### 7.3. Output Power

#### Limit

The maximum permissible conducted output power is 1 Watt.

#### **Test Configuration**



# <u>Test Procedure</u>

Test Standard Used(Peak): Section 11.9.1.2 in ANSI C63.10-2020
Test Standard Used(Average): Section 11.9.2.3 in ANSI C63.10-2020

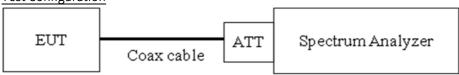
The transmitter output is connected to the Power Meter.

- Peak Power
- : Measure the peak power of the transmitter.
- Average Power
  - 1) Measure the duty cycle.
  - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
  - 3) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

#### Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor

F-TP22-03 (Rev. 06) Page 13 of 57




#### 7.4. Power Spectral Density

#### Limit

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3 kHz BW.

#### **Test Configuration**



#### **Test Procedure**

Test Standard Used: Section 11.10 in ANSI C63.10-2020

The transmitter output is connected to the Spectrum Analyzer.

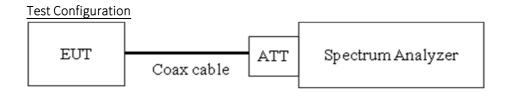
The spectrum analyzer is set to:

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the DTS bandwidth.
- 3) RBW =  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ .
- 4) VBW  $\geq$  3 x RBW.
- 5) Sweep = No faster than coupled (auto) time.
- 6) Detector = Peak.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss

F-TP22-03 (Rev. 06) Page 14 of 57




#### 7.5. Conducted Band Edge (Out of Band Emissions) & Conducted Spurious Emissions

#### Limit

The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 20 dBc]



#### **Test Procedure**

Test Standard Used: Section 11.11 in ANSI C63.10-2020

The transmitter output is connected to the spectrum analyzer.

The spectrum analyzer is set to:

- 1) RBW = 100 kHz
- 2) VBW  $\geq$  3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = No faster than coupled (auto) time.
- 7) Ensure that the number of measurement points  $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

F-TP22-03 (Rev. 06) Page 15 of 57



# Factors for frequency

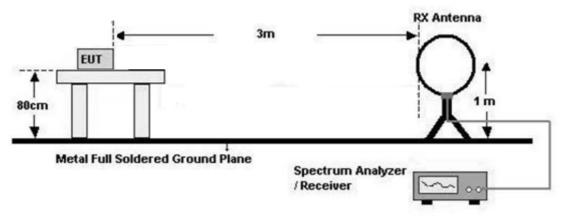
| Freq(MHz) | Factor(dB) |
|-----------|------------|
| 30        | 10.10      |
| 100       | 10.11      |
| 200       | 10.15      |
| 300       | 10.18      |
| 400       | 10.19      |
| 500       | 10.26      |
| 600       | 10.25      |
| 700       | 10.28      |
| 800       | 10.29      |
| 900       | 10.30      |
| 1000      | 10.30      |
| 2000      | 10.52      |
| 2400      | 10.60      |
| 2500      | 10.60      |
| 3000      | 10.62      |
| 4000      | 10.67      |
| 5000      | 10.80      |
| 6000      | 10.90      |
| 7000      | 10.90      |
| 8000      | 10.94      |
| 9000      | 11.04      |
| 10000     | 11.14      |
| 11000     | 11.18      |
| 12000     | 11.22      |
| 13000     | 11.28      |
| 14000     | 11.35      |
| 15000     | 11.44      |
| 16000     | 11.49      |
| 17000     | 11.53      |
| 18000     | 11.57      |
| 19000     | 11.63      |
| 20000     | 11.68      |
| 21000     | 11.71      |
| 22000     | 11.80      |
| 23000     | 11.82      |
| 24000     | 11.93      |
| 25000     | 11.95      |

Note: 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss + Cable loss

F-TP22-03 (Rev. 06) Page 16 of 57

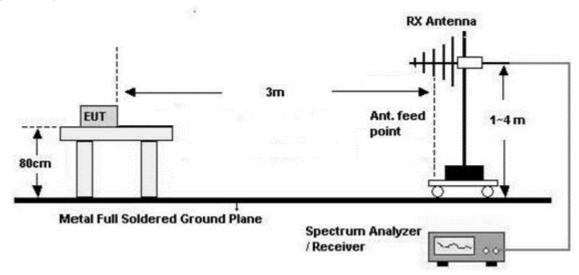



#### 7.6. Radiated Test

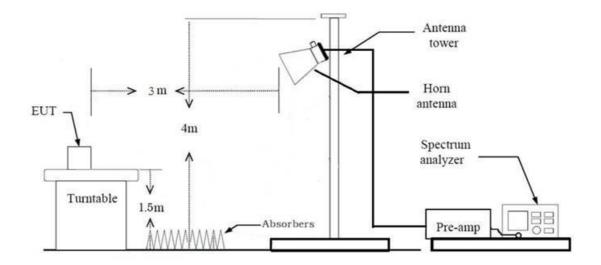
#### Limit

| Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 – 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 – 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 – 30      | 30                    | 30                       |
| 30-88           | 100                   | 3                        |
| 88-216          | 150                   | 3                        |
| 216-960         | 200                   | 3                        |
| Above 960       | 500                   | 3                        |

# **Test Configuration**


# Below 30 MHz




F-TP22-03 (Rev. 06) Page 17 of 57



30 MHz - 1 GHz



Above 1 GHz



F-TP22-03 (Rev. 06) Page 18 of 57



#### Test Procedure of Radiated spurious emissions (Below 30 MHz)

Test Standard Used: Section 6.4 in ANSI C63.10-2020

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) =  $40\log(3 \text{ m}/300 \text{ m}) = -80 \text{ dB}$

Measurement Distance : 3 m

7. Distance Correction Factor(0.490 MHz - 30 MHz) =  $40\log(3 \text{ m/30 m}) = -40 \text{ dB}$ Measurement Distance : 3 m

8. Spectrum Setting

- Frequency Range = 9 kHz ~ 30 MHz
- Detector = Peak
- Trace = Max hold
- -RBW = 9 kHz
- VBW ≥ 3 x RBW
- 9. Total = Measured value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

#### KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result

F-TP22-03 (Rev. 06) Page 19 of 57



#### Test Procedure of Radiated spurious emissions (Below 1 GHz)

Test Standard Used: Section 6.5 in ANSI C63.10-2020

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
  - (1) Measurement Type(Peak):
    - Measured Frequency Range: 30 MHz 1 GHz
    - Detector = Peak
    - Trace = Max hold
    - RBW = 100 kHz
    - VBW ≥ 3 x RBW
  - (2) Measurement Type(Quasi-peak):
    - Measured Frequency Range: 30 MHz 1 GHz
    - Detector = Quasi-Peak
    - RBW = 120 kHz

In general, (1) is used mainly

- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

F-TP22-03 (Rev. 06) Page 20 of 57



#### Test Procedure of Radiated spurious emissions (Above 1 GHz)

Test Standard Used: Section 6.6 in ANSI C63.10-2020

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting
  - (1) Measurement Type(Peak):
    - Measured Frequency Range: 1 GHz 25 GHz
    - Detector = Peak
    - Trace = Maxhold
    - RBW = 1 MHz
    - VBW ≥ 3 x RBW
  - (2) Measurement Type(Average): Duty cycle ≥ 98 %
    - Measured Frequency Range: 1 GHz 25 GHz
    - Detector = RMS
    - Averaging type = power (*i.e.*, RMS)
    - -RBW = 1MHz
    - VBW ≥ 3 x RBW
    - Sweep time = auto.
    - Trace mode = average (at least 100 traces).
  - (3) Measurement Type(Average): Duty cycle < 98%, duty cycle variations are less than  $\pm 2\%$ 
    - Measured Frequency Range: 1 GHz 25 GHz
    - Detector = RMS
    - Averaging type = power (i.e., RMS)
    - RBW = 1 MHz
    - VBW ≥ 3 x RBW
    - Sweep time = auto.
    - Trace mode = average (at least 100 traces).
    - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle.
    - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1.
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions

F-TP22-03 (Rev. 06) Page 21 of 57



from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 10. Total(Measurement Type : Peak)
  - = Measured value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle ≥ 98 %)

= Measured value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)

Total(Measurement Type: Average, Duty cycle < 98 %)

- = Measured value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F)
- + Duty Cycle Factor

#### Test Procedure of Radiated Restricted Band Edge

Test Standard Used: Section 6.10 & 11.12 in ANSI C63.10-2020

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting
  - (1) Measurement Type(Peak):
    - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
    - Detector = Peak
    - Trace = Maxhold
    - -RBW = 1MHz
    - VBW ≥ 3 x RBW
  - (2) Measurement Type(Average): Duty cycle ≥ 98 %
    - Measured Frequency Range : 2310 MHz  $\sim$  2390 MHz/ 2483.5 MHz  $\sim$  2500 MHz
    - Detector = RMS
    - Averaging type = power (i.e., RMS)
    - -RBW = 1MHz
    - VBW ≥ 3 x RBW
    - Sweep time = auto.
    - Trace mode = average (at least 100 traces).
  - (3) Measurement Type(Average): Duty cycle < 98 %, duty cycle variations are less than  $\pm 2$  %
    - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz

F-TP22-03 (Rev. 06) Page 22 of 57



- Detector = RMS
- Averaging type = power (i.e., RMS)
- -RBW = 1MHz
- VBW ≥ 3 x RBW
- Sweep time = auto.
- Trace mode = average (at least 100 traces).
- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle.
- Duty Cycle Factor (dB): Please refer to the please refer to section 9.1.
- (4) Measurement Type (Average, Integration Method): Duty cycle  $\geq$  98 %
  - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
  - Detector = RMS
  - Averaging type = power (*i.e.*, RMS)
  - -RBW = 100 kHz
  - VBW ≥ 3 x RBW
  - Sweep time = auto.
  - Trace mode = average (at least 100 traces).
  - Compute the power by integrating the spectrum over 1 MHz using the analyzer's band-power measurement function with band limits set equal to the emission frequency ( $f_{emission}$ )  $\pm$  0.5 MHz. If the instrument does not have a band-power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by  $f_{emission} \pm$  0.5 MHz
- (5) Measurement Type (Average, Integration Method): Duty cycle < 98 %, duty cycle variations are less than  $\pm 2\,\%$ 
  - Measured Frequency Range: 1 GHz 25 GHz
  - Detector = RMS
  - Averaging type = power (*i.e.*, RMS)
  - -RBW = 100 kHz
  - VBW ≥ 3 x RBW
  - Sweep time = auto.
  - Trace mode = average (at least 100 traces).
  - Compute the power by integrating the spectrum over 1 MHz using the analyzer's band-power measurement function with band limits set equal to the emission frequency ( $f_{emission}$ )  $\pm$  0.5 MHz. If the instrument does not have a band-power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by  $f_{emission} \pm$  0.5 MHz.
  - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle.
  - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1.

F-TP22-03 (Rev. 06) Page 23 of 57



- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 10. Total (Measurement Type: Peak)
  - = Peak Measured Value

Total(Measurement Type: Average, Duty cycle ≥ 98 %)

= Average Measured Value

Total(Measurement Type: Average, Duty cycle < 98 %)

- = Average Measured Value + Duty Cycle Factor
  - We apply to the offset in the range 1 GHz 18 GHz.
  - The offset = Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

F-TP22-03 (Rev. 06) Page 24 of 57



#### 7.7. AC Power line Conducted Emissions

#### Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN).

| Fraguency Dange (MUz) | Limits                  | (dBµV)                  |
|-----------------------|-------------------------|-------------------------|
| Frequency Range (MHz) | Quasi-peak              | Average                 |
| 0.15 to 0.50          | 66 to 56 <sup>(a)</sup> | 56 to 46 <sup>(a)</sup> |
| 0.50 to 5             | 56                      | 46                      |
| 5 to 30               | 60                      | 50                      |

<sup>(</sup>a) Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

#### **Test Configuration**

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

#### **Test Procedure**

Test Standard Used: Section 6.2 in ANSI C63.10-2020

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors: Quasi Peak and Average Detector.

#### Sample Calculation

Quasi-peak (Final Result) = Measured Value + Correction Factor

F-TP22-03 (Rev. 06) Page 25 of 57



# 7.8. Test RU offset for Tones

| BW    | Tones | RU offset |     | Test RU offset |      |
|-------|-------|-----------|-----|----------------|------|
| (MHz) | (T)   | KO Oliset | Low | Mid            | High |
|       | 26    | 0~8       | 0   | 4              | 8    |
| 20    | 52    | 37~40     | 37  | 38             | 40   |
| 20    | 106   | 53~54     | 53  | -              | 54   |
|       | 242   | 61        | -   | 61             | -    |

F-TP22-03 (Rev. 06) Page 26 of 57



#### 7.9. Worst case configuration and mode

#### Conducted test

1. All data rate of operation were investigated and the worst case results are reported.

(Worst case : MCS0)

2. Band Edge (Conducted)

: All Mode (Channel, Tones, RU Offset) of operation were investigated and the worst case configuration results are reported.

| Tones | Channel       | RU Index |
|-------|---------------|----------|
| 26    | 1, 11, 12, 13 | 0, 8     |
| 52    | 1, 11, 12, 13 | 37, 40   |
| 106   | 1, 11, 12, 13 | 53, 54   |
| 242   | 1, 11, 12, 13 | 61       |
| SU    | 1, 11, 12, 13 | -        |

<sup>3.</sup> All test was performed with continuous signal.(Duty Cycle ≥ 98%)

#### Radiated test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
  - Mode: Stand alone(Connector Type FFC / HW ver.1.0), Stand alone(Connector Type Harness / HW ver.1.1)
  - Worstcase: Stand alone(Connector Type FFC / HW ver.1.0)
- 2. All data rate of operation were investigated and the worst case results are reported.

(Worst case: MCS 0)

- 3. All Antenna of operation were investigated and the worst case results are reported
  - Antenna Operation Type: SISO, MIMO CDD(Ant.1+Ant.2), MIMO SDM(Ant.1+Ant.2)
  - Worst case: MIMO\_CDD(Ant.1+Ant.2)
- 4. EUT Axis
  - Radiated Spurious Emissions: Y
  - Radiated Restricted Band Edge: X
- 5. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
  - Position: Horizontal, Vertical, Parallel to the ground plane
- 6. All mode(Tone, RU Offset) of operation were investigated and the worst case configuration results are reported
- 7. All test was performed with continuous signal.(Duty Cycle ≥ 98%)

F-TP22-03 (Rev. 06) Page 27 of 57



[RSE Worst case]

| BW<br>(MHz) | Test  | Tones<br>(T) | Offset |  |  |
|-------------|-------|--------------|--------|--|--|
| 20          | RSE   | 26           | 4      |  |  |
| 20          | use . | 242          | 61     |  |  |

# [Bandedge Worst case]

| BW    | Toot      | Tones | Offset |       |  |
|-------|-----------|-------|--------|-------|--|
| (MHz) | Test      | (T)   | Lower  | Upper |  |
|       |           | 26    | 0      | 8     |  |
|       | Band Edge | 52    | 37     | 40    |  |
| 20    |           | 106   | 53     | 54    |  |
|       |           | 242   | 61     | 61    |  |
|       |           | SU    | -      | -     |  |

# Radiated test(Simultaneous transmission Scenario)

1. Please refer to the [DTS], [BT LE], [UNII]Test Report.

# AC Power line Conducted Emissions

1. Please refer to the [DTS] Test Report.

F-TP22-03 (Rev. 06) Page 28 of 57



# 8. SUMMARY TEST OF RESULTS

| Test Description                     | FCC Part<br>Section(s)             | Test Limit         | Test Condition | Test<br>Result |
|--------------------------------------|------------------------------------|--------------------|----------------|----------------|
| 6 dB Bandwidth                       | § 15.247(a)(2)                     | > 500 kHz          |                | PASS           |
| Conducted Maximum<br>Output Power    | § 15.247(b)(3)                     | < 1 Watt           |                | PASS           |
| Power Spectral Density               | Power Spectral Density § 15.247(e) |                    | Conducted      | PASS           |
| Band Edge<br>(Out of Band Emissions) | § 15.247(d)                        | Conducted > 20 dBc |                | PASS           |
| AC Power line Conducted Emissions    | § 15.207                           | cf. Section 7.7    |                | N/A<br>(Notel) |
| Radiated Spurious Emissions          | § 15.247(d),<br>15.205,<br>15.209  | cf. Section 7.6    |                | PASS           |
| Radiated Restricted Band Edge        | § 15.247(d),<br>15.205,<br>15.209  | cf. Section 7.6    | Radiated       | PASS           |

# Note:

- 1. Please refer to the [DTS] Test Report.
- 2. The decision rule applies 'simple acceptance'

F-TP22-03 (Rev. 06) Page 29 of 57



# 9. TEST RESULT

# 9.1 DUTY CYCLE

| Mode     | Worst Data rate | T <sub>on</sub> | T <sub>total</sub> | Duty Cycle | Duty Cycle Factor<br>(dB) |
|----------|-----------------|-----------------|--------------------|------------|---------------------------|
| 802.11ax | MCS0            | -               | -                  | -          | -                         |

# Note:

- 1. Duty Cycle Factor = 10Xlog(1/Duty Cycle). where, Duty Cycle =  $T_{on} / T_{total}$
- 2. Test was performed with continuous Tx.

F-TP22-03 (Rev. 06) Page 30 of 57



# 9.2 6 dB BANDWIDTH / 99% Occupied Bandwidth

# Limit : > 500 kHz

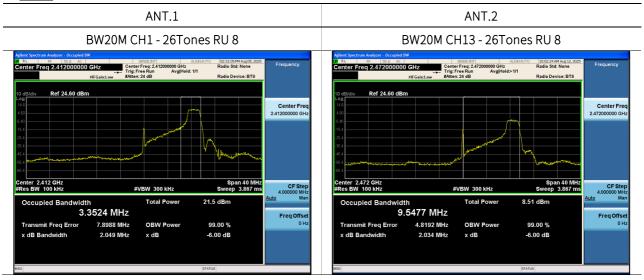
# [ANT.1]

|      | _     |     | 60             | IB Bandwidth [MI | Hz]             | 99% Occupied Bandwidth [MHz] |                |                 |  |
|------|-------|-----|----------------|------------------|-----------------|------------------------------|----------------|-----------------|--|
| Mode | Freq. | CH. | RU Index : Low | RU Index : Mid   | RU Index : High | RU Index : Low               | RU Index : Mid | RU Index : High |  |
|      | [MHz] |     | ANT2           | ANT2             | ANT2            | ANT2                         | ANT2           | ANT2            |  |
|      | 2412  | 1   | 2.083          | 2.574            | 2.049           | 3.473                        | 4.018          | 3.352           |  |
| HE20 | 2437  | 6   | 2.099          | 2.668            | 2.122           | 3.035                        | 3.442          | 3.024           |  |
| 26T  | 2462  | 11  | 2.062          | 2.654            | 2.076           | 3.036                        | 3.436          | 2.991           |  |
| 201  | 2467  | 12  | 2.063          | 2.583            | 2.056           | 3.299                        | 4.122          | 3.265           |  |
|      | 2472  | 13  | 2.074          | 2.588            | 2.086           | 3.289                        | 3.938          | 3.360           |  |
|      | 2412  | 1   | 4.179          | 4.177            | 4.159           | 5.375                        | 5.701          | 5.388           |  |
| HE20 | 2437  | 6   | 4.149          | 4.167            | 4.216           | 4.860                        | 5.028          | 4.841           |  |
| 52T  | 2462  | 11  | 4.158          | 4.204            | 4.159           | 4.929                        | 4.949          | 4.966           |  |
| 321  | 2467  | 12  | 4.173          | 4.144            | 4.145           | 5.315                        | 5.791          | 5.351           |  |
|      | 2472  | 13  | 4.191          | 4.194            | 4.131           | 5.305                        | 5.821          | 5.330           |  |
|      | 2412  | 1   | 8.322          | -                | 8.347           | 8.459                        | -              | 8.476           |  |
| HE20 | 2437  | 6   | 8.399          | -                | 8.275           | 8.591                        | -              | 8.595           |  |
| 106T | 2462  | 11  | 8.404          | -                | 8.446           | 8.569                        | -              | 8.599           |  |
| 1001 | 2467  | 12  | 8.380          | -                | 8.309           | 8.450                        | -              | 8.419           |  |
|      | 2472  | 13  | 8.297          | -                | 8.326           | 8.488                        | -              | 8.419           |  |
|      | 2412  | 1   | -              | 18.81            | -               | -                            | 18.786         | -               |  |
| HE20 | 2437  | 6   | -              | 18.92            | -               | -                            | 18.948         | -               |  |
| 242T | 2462  | 11  | -              | 18.89            | -               | -                            | 18.923         | -               |  |
| 2421 | 2467  | 12  | -              | 18.84            | -               | -                            | 18.756         | -               |  |
|      | 2472  | 13  | -              | 18.91            | -               | -                            | 18.796         | -               |  |
|      | 2412  | 1   | -              | 18.86            | -               | -                            | 18.804         | -               |  |
| HE20 | 2437  | 6   | -              | 18.89            | -               | -                            | 19.014         | -               |  |
|      | 2462  | 11  | -              | 18.90            | -               | -                            | 18.980         | -               |  |
| SU   | 2467  | 12  | -              | 18.90            | -               | -                            | 18.793         | -               |  |
|      | 2472  | 13  | -              | 18.76            | -               | -                            | 18.765         | -               |  |

F-TP22-03 (Rev. 06) Page 31 of 57



# [ANT.2]


|             |       |     | 60             | B Bandwidth [MI | Hz]             | 99% Occupied Bandwidth [MHz] |                |                 |  |
|-------------|-------|-----|----------------|-----------------|-----------------|------------------------------|----------------|-----------------|--|
| Mode        | Freq. | CH. | RU Index : Low | RU Index : Mid  | RU Index : High | RU Index : Low               | RU Index : Mid | RU Index : High |  |
|             | [MHz] |     | ANT2           | ANT2            | ANT2            | ANT2                         | ANT2           | ANT2            |  |
|             | 2412  | 1   | 2.054          | 2.651           | 2.062           | 9.555                        | 3.975          | 9.571           |  |
| 11500       | 2437  | 6   | 2.095          | 2.643           | 2.122           | 9.851                        | 3.402          | 9.911           |  |
| HE20<br>26T | 2462  | 11  | 2.080          | 2.624           | 2.085           | 9.881                        | 3.405          | 9.914           |  |
| 201         | 2467  | 12  | 2.066          | 2.593           | 2.099           | 9.552                        | 4.079          | 9.537           |  |
|             | 2472  | 13  | 2.066          | 2.610           | 2.034           | 9.558                        | 4.193          | 9.548           |  |
|             | 2412  | 1   | 4.116          | 4.152           | 4.167           | 9.484                        | 6.004          | 9.528           |  |
| LIEGO       | 2437  | 6   | 4.202          | 4.152           | 4.151           | 9.715                        | 5.784          | 6.126           |  |
| HE20        | 2462  | 11  | 4.263          | 4.119           | 4.229           | 7.466                        | 5.703          | 7.866           |  |
| 52T         | 2467  | 12  | 4.183          | 4.169           | 4.138           | 8.170                        | 6.079          | 7.545           |  |
|             | 2472  | 13  | 4.196          | 4.171           | 4.144           | 9.494                        | 6.061          | 9.248           |  |
|             | 2412  | 1   | 8.328          | -               | 8.303           | 9.493                        | -              | 9.510           |  |
| HE20        | 2437  | 6   | 8.442          | -               | 8.409           | 9.659                        | -              | 9.618           |  |
| 106T        | 2462  | 11  | 8.393          | -               | 8.315           | 9.662                        | -              | 9.623           |  |
| 1001        | 2467  | 12  | 8.323          | -               | 8.308           | 9.446                        | -              | 9.253           |  |
|             | 2472  | 13  | 8.296          | -               | 8.261           | 9.523                        | -              | 9.481           |  |
|             | 2412  | 1   | -              | 18.77           | -               | -                            | 18.780         | -               |  |
| HE20        | 2437  | 6   | -              | 18.96           | -               | -                            | 18.930         | -               |  |
| 242T        | 2462  | 11  | -              | 18.90           | -               | -                            | 18.941         | -               |  |
| 2421        | 2467  | 12  | -              | 18.89           | -               | -                            | 18.774         | -               |  |
|             | 2472  | 13  | -              | 18.82           | -               | -                            | 18.777         | -               |  |
|             | 2412  | 1   | -              | 18.75           | -               | -                            | 18.787         | -               |  |
| HE20        | 2437  | 6   | -              | 18.98           | -               | -                            | 19.000         | -               |  |
|             | 2462  | 11  | -              | 18.86           | -               | -                            | 18.999         | -               |  |
| SU          | 2467  | 12  | -              | 18.81           | -               | -                            | 18.785         | -               |  |
|             | 2472  | 13  | -              | 18.69           | -               | -                            | 18.771         | -               |  |

F-TP22-03 (Rev. 06) Page 32 of 57



#### ■ Test Plots

Note: In order to simplify the report, attached plots were only the narrowest 6 dB BW channel.



F-TP22-03 (Rev. 06) Page 33 of 57



#### 9.3 OUTPUT POWER

# Limit: 30dBm

# Peak Power

#### Note:

1. MIMO Peak Power =  $10 \cdot log((10^{Ant.1 Peak power /10}))+(10^{Ant.2 Peak power /10}))$ 

# [MIMO\_CDD(Ant.1+Ant.2)]

|             | F     |                  |       |              |       | Total F | Peak Powe   | r [dBm] |       |             |       |
|-------------|-------|------------------|-------|--------------|-------|---------|-------------|---------|-------|-------------|-------|
| Mode        | Freq. | req.<br>[Hz] CH. | RI    | U Index : Lo | OW    | R       | U Index : M | 1id     | RI    | J Index : H | igh   |
|             | [MHZ] |                  | ANT1  | ANT2         | MIMO  | ANT1    | ANT2        | MIMO    | ANT1  | ANT2        | MIMO  |
|             | 2412  | 1                | 22.84 | 22.67        | 25.77 | 23.05   | 23.39       | 26.24   | 22.67 | 22.99       | 25.84 |
| 11520       | 2437  | 6                | 22.39 | 22.82        | 25.62 | 22.48   | 23.01       | 25.76   | 22.60 | 22.69       | 25.65 |
| HE20        | 2462  | 11               | 22.29 | 22.71        | 25.51 | 22.69   | 23.21       | 25.97   | 22.66 | 22.83       | 25.76 |
| 26T         | 2467  | 12               | 19.63 | 20.04        | 22.85 | 20.01   | 20.52       | 23.29   | 20.01 | 20.59       | 23.32 |
|             | 2472  | 13               | 8.83  | 9.35         | 12.11 | 9.55    | 10.13       | 12.86   | 9.43  | 9.80        | 12.63 |
|             | 2412  | 1                | 22.90 | 23.15        | 26.04 | 23.00   | 23.26       | 26.15   | 23.03 | 23.12       | 26.09 |
| LIEGO       | 2437  | 6                | 22.77 | 22.92        | 25.86 | 22.86   | 22.95       | 25.92   | 22.87 | 22.85       | 25.87 |
| HE20<br>52T | 2462  | 11               | 22.74 | 22.82        | 25.79 | 23.01   | 23.21       | 26.12   | 22.96 | 23.19       | 26.09 |
| 321         | 2467  | 12               | 19.54 | 20.28        | 22.94 | 19.72   | 20.47       | 23.13   | 20.35 | 20.70       | 23.54 |
|             | 2472  | 13               | 12.44 | 12.27        | 15.37 | 12.24   | 12.62       | 15.44   | 12.66 | 13.00       | 15.85 |
|             | 2412  | 1                | 22.90 | 23.07        | 25.99 | -       | -           | -       | 22.96 | 23.24       | 26.12 |
| HE20        | 2437  | 6                | 22.55 | 22.78        | 25.68 | -       | -           | -       | 22.65 | 22.96       | 25.82 |
| 106T        | 2462  | 11               | 22.42 | 22.92        | 25.69 | -       | -           | -       | 22.78 | 23.03       | 25.92 |
| 1001        | 2467  | 12               | 19.87 | 20.08        | 22.99 | -       | -           | -       | 20.40 | 20.63       | 23.53 |
|             | 2472  | 13               | 13.12 | 12.30        | 15.74 | -       | -           | -       | 13.46 | 12.79       | 16.15 |
|             | 2412  | 1                | -     | -            | -     | 22.46   | 22.78       | 25.63   | -     | -           | -     |
| HE20        | 2437  | 6                | -     | -            | -     | 22.68   | 22.73       | 25.71   | -     | -           | -     |
| 242T        | 2462  | 11               | -     | -            | -     | 22.67   | 22.91       | 25.80   | -     | -           | -     |
| 2421        | 2467  | 12               | -     | -            | -     | 19.63   | 20.19       | 22.93   | -     | -           | -     |
|             | 2472  | 13               | -     | -            | -     | 16.71   | 17.27       | 20.01   | -     | -           | -     |
|             | 2412  | 1                | -     | -            | -     | 22.57   | 22.94       | 25.77   | -     | -           | -     |
| HE20        | 2437  | 6                | -     | -            | -     | 22.53   | 22.78       | 25.67   | -     | -           | -     |
| SU SU       | 2462  | 11               | -     | -            | -     | 22.55   | 22.79       | 25.68   | -     | -           | -     |
| 30          | 2467  | 12               | -     | -            | -     | 19.99   | 20.30       | 23.16   | -     | -           | -     |
|             | 2472  | 13               | -     | -            | -     | 16.88   | 17.44       | 20.18   | -     | -           | -     |

F-TP22-03 (Rev. 06) Page 34 of 57



# Average Power

#### Note:

- 1. Ant Total Power [dBm] = Measured Power [dBm] + Duty Cycle Factor [dB]
- 2. MIMO Total Power =  $10 \cdot \log((10^{(Ant.1 Total power /10))} + (10^{(Ant.2 Total power /10))})$

# [MIMO\_CDD(Ant.1+Ant.2)]

|              |                | ' C.H. |       | Total Average Power [dBm] |       |       |             |       |       |             |       |  |  |
|--------------|----------------|--------|-------|---------------------------|-------|-------|-------------|-------|-------|-------------|-------|--|--|
| Mode         | Freq.<br>[MHz] |        | RI    | J Index : Lo              | OW    | R     | U Index : M | 1id   | RI    | J Index : H | gh    |  |  |
|              | [IVITIZ]       |        | ANT1  | ANT2                      | MIMO  | ANT1  | ANT2        | MIMO  | ANT1  | ANT2        | MIMO  |  |  |
|              | 2412           | 1      | 13.69 | 13.64                     | 16.68 | 13.64 | 14.15       | 16.92 | 13.50 | 13.94       | 16.74 |  |  |
| LIEGO        | 2437           | 6      | 13.32 | 13.72                     | 16.54 | 13.52 | 13.91       | 16.73 | 13.46 | 13.70       | 16.59 |  |  |
| HE20         | 2462           | 11     | 13.39 | 13.84                     | 16.63 | 13.59 | 13.98       | 16.80 | 13.59 | 13.88       | 16.75 |  |  |
| 26T          | 2467           | 12     | 10.41 | 10.92                     | 13.69 | 10.78 | 11.19       | 14.00 | 10.83 | 11.37       | 14.12 |  |  |
|              | 2472           | 13     | -0.24 | 0.11                      | 2.95  | 0.07  | 0.56        | 3.33  | 0.21  | 0.56        | 3.40  |  |  |
|              | 2412           | 1      | 13.69 | 14.08                     | 16.90 | 13.71 | 13.99       | 16.86 | 13.76 | 14.11       | 16.95 |  |  |
| LIEGO        | 2437           | 6      | 13.50 | 13.59                     | 16.56 | 13.45 | 13.79       | 16.63 | 13.58 | 13.80       | 16.70 |  |  |
| HE20         | 2462           | 11     | 13.57 | 13.79                     | 16.69 | 13.64 | 13.92       | 16.79 | 13.62 | 13.95       | 16.80 |  |  |
| 52T          | 2467           | 12     | 10.37 | 11.00                     | 13.71 | 10.42 | 10.89       | 13.68 | 10.98 | 11.40       | 14.21 |  |  |
|              | 2472           | 13     | 2.99  | 2.95                      | 5.98  | 2.54  | 3.04        | 5.81  | 3.21  | 3.45        | 6.34  |  |  |
|              | 2412           | 1      | 13.78 | 14.15                     | 16.98 | -     | -           | -     | 13.79 | 14.15       | 16.98 |  |  |
| LIEGO        | 2437           | 6      | 13.39 | 13.76                     | 16.59 | -     | -           | -     | 13.42 | 13.79       | 16.62 |  |  |
| HE20<br>106T | 2462           | 11     | 13.36 | 13.75                     | 16.57 | -     | -           | -     | 13.62 | 13.92       | 16.78 |  |  |
| 1001         | 2467           | 12     | 10.64 | 11.06                     | 13.87 | -     | -           | -     | 11.12 | 11.51       | 14.33 |  |  |
|              | 2472           | 13     | 3.94  | 3.15                      | 6.57  | -     | -           | -     | 4.31  | 3.56        | 6.96  |  |  |
|              | 2412           | 1      | -     | -                         | -     | 13.25 | 13.53       | 16.40 | -     | -           | -     |  |  |
| LIEGO        | 2437           | 6      | -     | -                         | -     | 13.34 | 13.53       | 16.45 | _     | -           | -     |  |  |
| HE20         | 2462           | 11     | -     | -                         | -     | 13.38 | 13.65       | 16.53 | -     | -           | -     |  |  |
| 242T         | 2467           | 12     | -     | -                         | -     | 10.32 | 10.84       | 13.60 | -     | -           | -     |  |  |
|              | 2472           | 13     | -     | -                         | -     | 7.47  | 8.02        | 10.76 | -     | -           | -     |  |  |
|              | 2412           | 1      | -     | -                         | -     | 13.35 | 13.71       | 16.55 | -     | -           | -     |  |  |
| LIEGO        | 2437           | 6      | -     | -                         | -     | 13.29 | 13.53       | 16.42 | -     | -           | -     |  |  |
| HE20         | 2462           | 11     | -     | -                         | -     | 13.29 | 13.54       | 16.43 | -     | -           | -     |  |  |
| SU           | 2467           | 12     | -     | -                         | -     | 10.73 | 11.06       | 13.91 | -     | -           | -     |  |  |
|              | 2472           | 13     | -     | -                         | -     | 7.65  | 8.18        | 10.93 | -     | -           | -     |  |  |

F-TP22-03 (Rev. 06) Page 35 of 57



#### 9.4 POWER SPECTRAL DENSITY

# Limit: 8 dBm/kHz

# Note:

1. MIMO Total PSD =  $10 \cdot log(((10^{Ant.1 PSD} / 10)) + (10^{Ant.2 PSD} / 10)))$ 

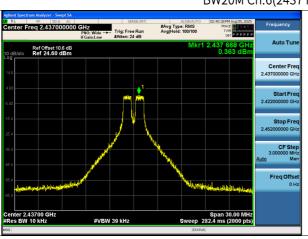
# [MIMO\_CDD(Ant.1+Ant.2)]

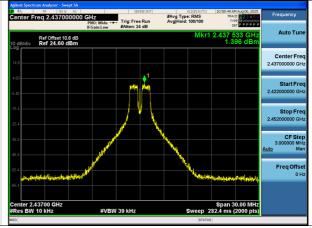
|       | _     | '   CH. |         |              | Total   | Power Spe | ectral Densi | ty [dBm/k | :Hz]    |             |        |
|-------|-------|---------|---------|--------------|---------|-----------|--------------|-----------|---------|-------------|--------|
| Mode  | Freq. |         | R       | U Index : Lo | )W      | RU        | J Index : Mi | d         | RU      | Index : Hig | ;h     |
|       | [MHz] |         | ANT1    | ANT2         | MIMO    | ANT1      | ANT2         | MIMO      | ANT1    | ANT2        | MIMO   |
| -     | 2412  | 1       | 0.795   | 0.592        | 3.705   | 0.724     | 0.818        | 3.782     | 0.378   | 1.375       | 3.915  |
| 11500 | 2437  | 6       | 0.686   | 0.778        | 3.743   | 0.363     | 1.396        | 3.920     | 0.540   | 0.782       | 3.673  |
| HE20  | 2462  | 11      | 0.658   | 0.621        | 3.650   | 0.321     | 0.839        | 3.598     | 0.641   | 1.181       | 3.930  |
| 26T   | 2467  | 12      | -2.332  | -1.451       | 1.141   | -2.315    | -2.308       | 0.699     | -2.161  | -1.859      | 1.003  |
|       | 2472  | 13      | -13.178 | -12.878      | -10.015 | -12.880   | -12.958      | -9.909    | -12.403 | -12.474     | -9.428 |
|       | 2412  | 1       | -2.183  | -1.327       | 1.276   | -2.339    | -1.192       | 1.283     | -1.615  | -1.233      | 1.590  |
| HE20  | 2437  | 6       | -2.156  | -2.207       | 0.829   | -1.889    | -1.801       | 1.166     | -2.197  | -2.193      | 0.815  |
| 52T   | 2462  | 11      | -1.849  | -2.233       | 0.974   | -1.912    | -1.912       | 1.098     | -2.307  | -2.017      | 0.851  |
| 321   | 2467  | 12      | -5.344  | -4.402       | -1.837  | -5.357    | -4.576       | -1.939    | -4.831  | -4.006      | -1.389 |
|       | 2472  | 13      | -12.679 | -12.397      | -9.525  | -13.284   | -12.263      | -9.733    | -12.543 | -11.829     | -9.161 |
|       | 2412  | 1       | -4.541  | -1.314       | 0.376   | -         | -            | -         | -5.100  | -1.357      | 0.173  |
| HE20  | 2437  | 6       | -5.103  | -2.558       | -0.636  | -         | -            | -         | -5.241  | -2.593      | -0.708 |
| 106T  | 2462  | 11      | -5.363  | -2.177       | -0.474  | -         | -            | -         | -5.067  | -2.136      | -0.348 |
| 1001  | 2467  | 12      | -8.062  | -5.120       | -3.336  | -         | -            | -         | -6.812  | -5.300      | -2.980 |
|       | 2472  | 13      | -14.987 | -10.843      | -9.428  | -         | -            | -         | -14.454 | -10.830     | -9.264 |
|       | 2412  | 1       | -       | -            | -       | -7.602    | -2.302       | -1.179    | -       | -           | -      |
| HE20  | 2437  | 6       | -       | -            | -       | -7.676    | -2.137       | -1.067    | -       | -           | -      |
| 242T  | 2462  | 11      | -       | -            | -       | -7.491    | -1.828       | -0.785    | -       | -           | -      |
| 2421  | 2467  | 12      | -       | -            | -       | -10.849   | -4.855       | -3.881    | -       | -           | -      |
|       | 2472  | 13      | -       | -            | -       | -13.843   | -6.174       | -5.488    | -       | -           | -      |
|       | 2412  | 1       | -       | -            | -       | -7.460    | -2.362       | -1.192    | -       | -           | -      |
| HE20  | 2437  | 6       | -       | -            | -       | -6.940    | -2.079       | -0.852    | -       | -           | -      |
| SU    | 2462  | 11      | -       | -            | -       | -7.552    | -1.758       | -0.743    | -       | -           | -      |
| 30    | 2467  | 12      | -       | -            | -       | -9.354    | -4.672       | -3.400    | -       | -           | -      |
|       | 2472  | 13      | -       | -            | -       | -13.092   | -6.381       | -5.541    | -       | -           | -      |

F-TP22-03 (Rev. 06) Page 36 of 57



Note: In order to simplify the report, attached plots were only the worst case PSD channel.


ANT.1 ANT.2


### BW20M Ch.1(2412 MHz) 26 Tones RU 8





### BW20M Ch.6(2437 MHz) 26 Tones RU 4





### BW20M Ch.11(2462 MHz) 26 Tones RU 8

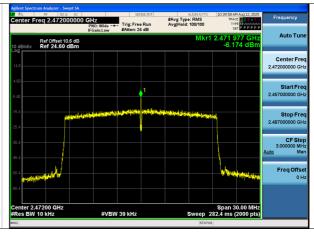




F-TP22-03 (Rev. 06) Page 37 of 57






### BW20M Ch.12(2467 MHz) 26 Tones RU 0





### BW20M Ch.13(2472 MHz) 242 Tones RU 61





F-TP22-03 (Rev. 06) Page 38 of 57



# 9.5 BAND EDGE / CONDUCTED SPURIOUS EMISSIONS

### Band Edge

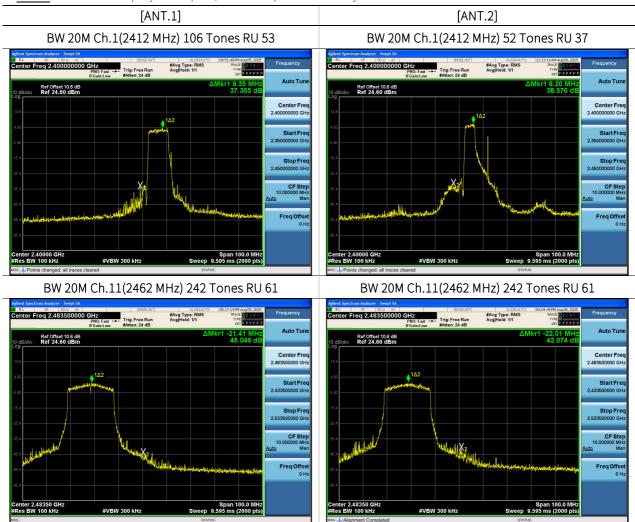
#Limit: 20 dBc

# [ANT.1]

| Mode | Freq.<br>[MHz] | CH. | RU Index | Measured Position | Band edge [dB] |
|------|----------------|-----|----------|-------------------|----------------|
|      | 2412           | 1   | Low      | Lowest Bandedge   | 46.983         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 51.480         |
| 26T  | 2467           | 12  | High     | Highest Bandedge  | 56.970         |
|      | 2472           | 13  | High     | Highest Bandedge  | 40.846         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 46.364         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 46.731         |
| 52T  | 2467           | 12  | High     | Highest Bandedge  | 56.512         |
|      | 2472           | 13  | High     | Highest Bandedge  | 39.309         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 37.355         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 49.717         |
| 106T | 2467           | 12  | High     | Highest Bandedge  | 50.090         |
|      | 2472           | 13  | High     | Highest Bandedge  | 39.143         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 45.480         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 45.046         |
| 242T | 2467           | 12  | High     | Highest Bandedge  | 42.503         |
|      | 2472           | 13  | High     | Highest Bandedge  | 42.960         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 46.295         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 46.716         |
| SU   | 2467           | 12  | High     | Highest Bandedge  | 42.035         |
|      | 2472           | 13  | High     | Highest Bandedge  | 41.511         |

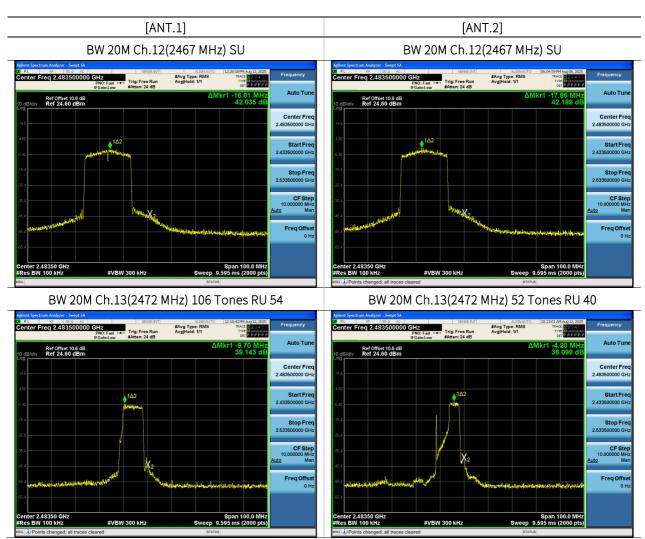
F-TP22-03 (Rev. 06) Page 39 of 57




# [ANT.2]

| ,    |                |     |          |                   |                |
|------|----------------|-----|----------|-------------------|----------------|
| Mode | Freq.<br>[MHz] | CH. | RU Index | Measured Position | Band edge [dB] |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 41.698         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 46.094         |
| 26T  | 2467           | 12  | High     | Highest Bandedge  | 52.770         |
|      | 2472           | 13  | High     | Highest Bandedge  | 41.085         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 38.576         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 47.450         |
| 52T  | 2467           | 12  | High     | Highest Bandedge  | 50.484         |
|      | 2472           | 13  | High     | Highest Bandedge  | 36.099         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 38.761         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 49.189         |
| 106T | 2467           | 12  | High     | Highest Bandedge  | 50.385         |
|      | 2472           | 13  | High     | Highest Bandedge  | 36.456         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 39.104         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 42.074         |
| 242T | 2467           | 12  | High     | Highest Bandedge  | 43.194         |
|      | 2472           | 13  | High     | Highest Bandedge  | 39.663         |
|      | 2412           | 1   | Low      | Lowest Bandedge   | 40.826         |
| HE20 | 2462           | 11  | High     | Highest Bandedge  | 45.688         |
| SU   | 2467           | 12  | High     | Highest Bandedge  | 42.189         |
|      | 2472           | 13  | High     | Highest Bandedge  | 38.585         |

F-TP22-03 (Rev. 06) Page 40 of 57




Note: In order to simplify the report, attached plots were only the worst case.



F-TP22-03 (Rev. 06) Page 41 of 57





F-TP22-03 (Rev. 06) Page 42 of 57



# **Conducted Spurious Emissions**

#Limit: 20 dBc

[ANT.1]

|       | Гиол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | Conc           | lucted Spurious Emission | ıs [dB]         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|--------------------------|-----------------|
| Mode  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH. | RU Index : Low | RU Index : Mid           | RU Index : High |
|       | MHz   2412   2437   2462   2472   2412   2437   2462   2472   2412   2437   2462   2472   2412   2437   2462   242T   2467   2472   2412   2437   2462   2472   2412   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2437   2462   2462   2437   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2462   2 |     | ANT1           | ANT1                     | ANT1            |
|       | 2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | 65.628         | 65.719                   | 66.717          |
| 11520 | 2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   | 64.921         | 65.931                   | 65.708          |
|       | 2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | 63.948         | 65.614                   | 65.466          |
| 201   | 2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12  | 62.628         | 64.009                   | 63.528          |
|       | 2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | 51.806         | 51.404                   | 52.151          |
|       | 2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | 63.553         | 61.813                   | 62.416          |
| LIEGO | 2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   | 63.371         | 61.005                   | 62.920          |
|       | 2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | 62.990         | 61.651                   | 64.028          |
| 321   | 2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12  | 58.812         | 60.574                   | 59.194          |
|       | 2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | 50.301         | 51.667                   | 52.241          |
|       | 2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | 61.025         | -                        | 60.253          |
| LIEDO | 2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   | 59.787         | -                        | 60.438          |
|       | 2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | 60.743         | -                        | 60.922          |
| 1001  | 2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12  | 58.814         | -                        | 56.986          |
|       | 2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | 51.629         | -                        | 51.161          |
|       | 2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | -              | 58.129                   | -               |
| LIEDO | 2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   | -              | 55.923                   | -               |
|       | 2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | -              | 57.900                   | -               |
| 2421  | 2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12  | -              | 55.441                   | -               |
|       | 2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | -              | 53.214                   | -               |
|       | 2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | -              | 58.115                   | -               |
| HE30  | 2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   | -              | 57.734                   | -               |
| SU SU | 2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | -              | 56.632                   | -               |
| 30    | 2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12  | -              | 54.864                   | -               |
|       | 2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | -              | 52.992                   | -               |

F-TP22-03 (Rev. 06) Page 43 of 57



# [ANT.2]

|                                                                                                                                   | F***  |     | Cond           | ducted Spurious Emissior | ıs [dB]         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----|----------------|--------------------------|-----------------|
| Mode                                                                                                                              |       | CH. | RU Index : Low | RU Index : Mid           | RU Index : High |
| HE20 2462 2437 2462 2412 2437 2462 2427 2467 2467 2472 2412 2437 2467 2472 2412 2437 2467 2472 2412 2437 2467 2467 2467 2467 2467 | [MHZ] |     | ANT2           | ANT2                     | ANT2            |
|                                                                                                                                   | 2412  | 1   | 61.947         | 63.766                   | 64.000          |
| 11520                                                                                                                             | 2437  | 6   | 64.784         | 64.103                   | 64.787          |
|                                                                                                                                   | 2462  | 11  | 62.960         | 63.770                   | 64.597          |
| 201                                                                                                                               | 2467  | 12  | 62.230         | 61.937                   | 63.331          |
|                                                                                                                                   | 2472  | 13  | 51.257         | 51.691                   | 51.517          |
|                                                                                                                                   | 2412  | 1   | 64.089         | 61.593                   | 64.044          |
| LIEGO                                                                                                                             | 2437  | 6   | 62.392         | 63.494                   | 62.699          |
|                                                                                                                                   | 2462  | 11  | 62.554         | 62.753                   | 61.838          |
| 321                                                                                                                               | 2467  | 12  | 60.943         | 61.998                   | 62.273          |
|                                                                                                                                   | 2472  | 13  | 52.570         | 52.573                   | 52.158          |
|                                                                                                                                   | 2412  | 1   | 60.010         | -                        | 61.006          |
| LIEGO                                                                                                                             | 2437  | 6   | 59.905         | -                        | 61.015          |
|                                                                                                                                   | 2462  | 11  | 59.966         | -                        | 61.771          |
| 1001                                                                                                                              | 2467  | 12  | 58.218         | -                        | 58.753          |
|                                                                                                                                   | 2472  | 13  | 50.929         | -                        | 49.922          |
|                                                                                                                                   | 2412  | 1   | -              | 57.161                   | -               |
| LIEDO                                                                                                                             | 2437  | 6   | -              | 57.238                   | -               |
|                                                                                                                                   | 2462  | 11  | -              | 57.905                   | -               |
| 2421                                                                                                                              | 2467  | 12  | -              | 55.682                   | -               |
|                                                                                                                                   | 2472  | 13  | -              | 51.803                   | -               |
|                                                                                                                                   | 2412  | 1   | -              | 55.932                   | -               |
| HE20                                                                                                                              | 2437  | 6   | -              | 57.188                   | -               |
| SU SU                                                                                                                             | 2462  | 11  | -              | 57.386                   | -               |
| 30                                                                                                                                | 2467  | 12  | -              | 54.115                   | -               |
|                                                                                                                                   | 2472  | 13  | -              | 52.844                   | -               |

F-TP22-03 (Rev. 06) Page 44 of 57



#### Note:

In order to simplify the report, attached plots were only the worst case.

### [ANT.1] BW 20M Ch.13(2472 MHz) 52 Tones RU 37



#### [ANT.2] BW 20M Ch.13(2472 MHz) 106 Tones RU 54



#### Limit

ANT.1: -25.821 dBm, ANT.2: -27.370 dBm

F-TP22-03 (Rev. 06) Page 45 of 57



#### 9.6 RADIATED SPURIOUS EMISSIONS

### Frequency Range: 9 kHz - 30 MHz

| Frequency | Measured Value    | A.F+C.L+D.F | POL   | Total             | Limit             | Margin |  |  |  |  |
|-----------|-------------------|-------------|-------|-------------------|-------------------|--------|--|--|--|--|
| [MHz]     | [dB <b>µ</b> V/m] | [dB/m]      | [H/V] | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   |  |  |  |  |
| •         |                   |             |       |                   |                   |        |  |  |  |  |

#### No Critical peaks found

### Note:

- 1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ( $dB\mu V$ ) + Distance extrapolation factor

#### Frequency Range: Below 1 GHz

| Frequency               | Measured Value    | A.F+C.L | POL   | Total             | Limit             | Margin |  |  |  |
|-------------------------|-------------------|---------|-------|-------------------|-------------------|--------|--|--|--|
| [MHz]                   | [dB <b>µ</b> V/m] | [dB/m]  | [H/V] | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   |  |  |  |
| No Critical peaks found |                   |         |       |                   |                   |        |  |  |  |

#### Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

F-TP22-03 (Rev. 06) Page 46 of 57



Frequency Range: Above 1 GHz

# [MIMO\_CDD(Ant.1+Ant.2)]

| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 26T RU4 |          |        |             |
|-----------|----------------|-------|-------------|----------|----------------------------|----------|--------|-------------|
| CH.1      | 2412           | MHz   | Transfer    | Rate:    |                            | М        | CS0    |             |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                      | Limit    | Margin | Measurement |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                   | [dBµV/m] | [dB]   | Type        |
| 4824      | 53.61          | 0.00  | 1.95        | V        | 55.56                      | 73.98    | 18.42  | PK          |
| 4824      | 40.22          | 0.00  | 1.95        | V        | 42.17                      | 53.98    | 11.81  | AV          |
| 7236      | 44.29          | 0.00  | 10.48       | V        | 54.77                      | 73.98    | 19.21  | PK          |
| 7236      | 30.26          | 0.00  | 10.48       | V        | 40.74                      | 53.98    | 13.24  | AV          |
| 4824      | 55.12          | 0.00  | 1.95        | Н        | 57.07                      | 73.98    | 16.91  | PK          |
| 4824      | 41.13          | 0.00  | 1.95        | Н        | 43.08                      | 53.98    | 10.90  | AV          |
| 7236      | 42.09          | 0.00  | 10.48       | Н        | 52.57                      | 73.98    | 21.41  | PK          |
| 7236      | 29.82          | 0.00  | 10.48       | Н        | 40.30                      | 53.98    | 13.68  | AV          |

| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 26T RU4 |          |        |             |  |
|-----------|----------------|-------|-------------|----------|----------------------------|----------|--------|-------------|--|
| CH.6      | 2437           | MHz   | Transfer    | Rate:    |                            | MCS0     |        |             |  |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                      | Limit    | Margin | Measurement |  |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                   | [dBµV/m] | [dB]   | Type        |  |
| 4874      | 54.24          | 0.00  | 2.26        | V        | 56.50                      | 73.98    | 17.48  | PK          |  |
| 4874      | 39.09          | 0.00  | 2.26        | V        | 41.35                      | 53.98    | 12.63  | AV          |  |
| 7311      | 41.74          | 0.00  | 9.95        | V        | 51.69                      | 73.98    | 22.29  | PK          |  |
| 7311      | 29.49          | 0.00  | 9.95        | V        | 39.44                      | 53.98    | 14.54  | AV          |  |
| 4874      | 56.29          | 0.00  | 2.26        | Н        | 58.55                      | 73.98    | 15.43  | PK          |  |
| 4874      | 40.94          | 0.00  | 2.26        | Н        | 43.20                      | 53.98    | 10.78  | AV          |  |
| 7311      | 42.85          | 0.00  | 9.95        | Н        | 52.80                      | 73.98    | 21.18  | PK          |  |
| 7311      | 29.55          | 0.00  | 9.95        | Н        | 39.50                      | 53.98    | 14.48  | AV          |  |

| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 26T RU4 |          |        |             |
|-----------|----------------|-------|-------------|----------|----------------------------|----------|--------|-------------|
| CH.11     | 2462           | MHz   | Transfer    | Rate:    |                            | MCS0     |        |             |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                      | Limit    | Margin | Measurement |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                   | [dBµV/m] | [dB]   | Type        |
| 4924      | 53.72          | 0.00  | 3.14        | V        | 56.86                      | 73.98    | 17.12  | PK          |
| 4924      | 37.88          | 0.00  | 3.14        | V        | 41.02                      | 53.98    | 12.96  | AV          |
| 7386      | 41.56          | 0.00  | 10.39       | V        | 51.95                      | 73.98    | 22.03  | PK          |
| 7386      | 29.98          | 0.00  | 10.39       | V        | 40.37                      | 53.98    | 13.61  | AV          |
| 4924      | 54.59          | 0.00  | 3.14        | Н        | 57.73                      | 73.98    | 16.25  | PK          |
| 4924      | 38.91          | 0.00  | 3.14        | Н        | 42.05                      | 53.98    | 11.93  | AV          |
| 7386      | 43.36          | 0.00  | 10.39       | Н        | 53.75                      | 73.98    | 20.23  | PK          |
| 7386      | 30.06          | 0.00  | 10.39       | Н        | 40.45                      | 53.98    | 13.53  | AV          |

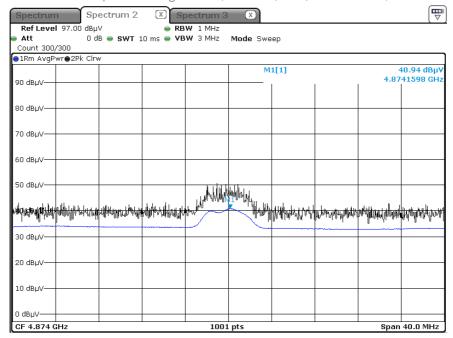
F-TP22-03 (Rev. 06) Page 47 of 57



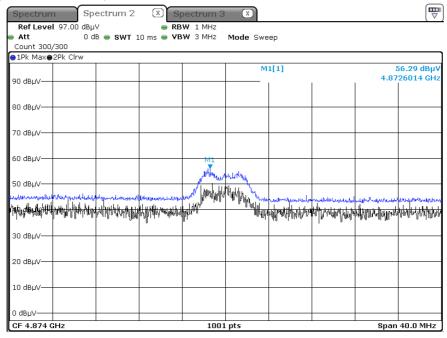
| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 242T RU61 |          |        |             |
|-----------|----------------|-------|-------------|----------|------------------------------|----------|--------|-------------|
| CH.1      | 2412           | MHz   | Transfer    | Rate:    | ate: MCS0                    |          |        |             |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                        | Limit    | Margin | Measurement |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                     | [dBµV/m] | [dB]   | Type        |
| 4824      | 47.69          | 0.00  | 1.95        | V        | 49.64                        | 73.98    | 24.34  | PK          |
| 4824      | 35.17          | 0.00  | 1.95        | V        | 37.12                        | 53.98    | 16.86  | AV          |
| 7236      | 40.52          | 0.00  | 10.48       | V        | 51.00                        | 73.98    | 22.98  | PK          |
| 7236      | 28.76          | 0.00  | 10.48       | V        | 39.24                        | 53.98    | 14.74  | AV          |
| 4824      | 50.57          | 0.00  | 1.95        | Н        | 52.52                        | 73.98    | 21.46  | PK          |
| 4824      | 36.48          | 0.00  | 1.95        | Н        | 38.43                        | 53.98    | 15.55  | AV          |
| 7236      | 40.91          | 0.00  | 10.48       | Н        | 51.39                        | 73.98    | 22.59  | PK          |
| 7236      | 28.80          | 0.00  | 10.48       | Н        | 39.28                        | 53.98    | 14.70  | AV          |

| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 242T RU61 |          |        |             |  |
|-----------|----------------|-------|-------------|----------|------------------------------|----------|--------|-------------|--|
| CH.6      | 2437           | MHz   | Transfer    | Rate:    |                              | MCS0     |        |             |  |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                        | Limit    | Margin | Measurement |  |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                     | [dBµV/m] | [dB]   | Type        |  |
| 4874      | 48.52          | 0.00  | 2.26        | ٧        | 50.78                        | 73.98    | 23.20  | PK          |  |
| 4874      | 35.13          | 0.00  | 2.26        | V        | 37.39                        | 53.98    | 16.59  | AV          |  |
| 7311      | 41.22          | 0.00  | 9.95        | V        | 51.17                        | 73.98    | 22.81  | PK          |  |
| 7311      | 29.19          | 0.00  | 9.95        | ٧        | 39.14                        | 53.98    | 14.84  | AV          |  |
| 4874      | 49.19          | 0.00  | 2.26        | Н        | 51.45                        | 73.98    | 22.53  | PK          |  |
| 4874      | 36.23          | 0.00  | 2.26        | Н        | 38.49                        | 53.98    | 15.49  | AV          |  |
| 7311      | 41.73          | 0.00  | 9.95        | Н        | 51.68                        | 73.98    | 22.30  | PK          |  |
| 7311      | 29.24          | 0.00  | 9.95        | Н        | 39.19                        | 53.98    | 14.79  | AV          |  |

| Band:     | DTS            |       | Operation   | Mode:    | 802.11ax_HE20 MCS0 242T RU61 |          |        |             |
|-----------|----------------|-------|-------------|----------|------------------------------|----------|--------|-------------|
| CH.11     | 2462           | MHz   | Transfer    | Rate:    |                              | MCS0     |        |             |
| Frequency | Measured value | D.C.F | CL+AF+DF-AG | ANT. POL | Total                        | Limit    | Margin | Measurement |
| [MHz]     | [dBµV]         | [dB]  | [dB/m]      | [H/V]    | [dBµV/m]                     | [dBµV/m] | [dB]   | Type        |
| 4924      | 46.25          | 0.00  | 3.14        | V        | 49.39                        | 73.98    | 24.59  | PK          |
| 4924      | 33.67          | 0.00  | 3.14        | ٧        | 36.81                        | 53.98    | 17.17  | AV          |
| 7386      | 41.29          | 0.00  | 10.39       | V        | 51.68                        | 73.98    | 22.30  | PK          |
| 7386      | 29.28          | 0.00  | 10.39       | V        | 39.67                        | 53.98    | 14.31  | AV          |
| 4924      | 47.80          | 0.00  | 3.14        | Н        | 50.94                        | 73.98    | 23.04  | PK          |
| 4924      | 34.55          | 0.00  | 3.14        | Н        | 37.69                        | 53.98    | 16.29  | AV          |
| 7386      | 42.00          | 0.00  | 10.39       | Н        | 52.39                        | 73.98    | 21.59  | PK          |
| 7386      | 29.39          | 0.00  | 10.39       | Н        | 39.78                        | 53.98    | 14.20  | AV          |


F-TP22-03 (Rev. 06) Page 48 of 57




### [MIMO\_CDD(Ant.1+Ant.2)]

Note: In order to simplify, Plots of worst case are only reported.

Radiated Spurious Emissions plot – Average result (802.11ax(HE20) 26 Tone RU 4, Ch.6 2nd Harmonic, Y-H)



Radiated Spurious Emissions plot - Peak result (802.11ax(HE20) 26 Tone RU 4, Ch.6 2nd Harmonic, Y-H)



F-TP22-03 (Rev. 06) Page 49 of 57



### 9.7 RADIATED RESTRICTED BAND EDGES

# 9.7.1 Channel 1, 11

# [MIMO\_CDD(Ant.1+Ant.2)]

| 8         | 02.11ax(MCS       | 0)                   | HE20        |          |                   | 242T      |        |             |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-----------|--------|-------------|
| Channel   | CI                | H 1                  | Freq        | 2412     | MHz               | RU offset |        | 61          |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit     | Margin | Measurement |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dBµV/m]  | [dB]   | Туре        |
| 2390.0    | 61.37             | 0.00                 | -           | Н        | 61.37             | 73.98     | 12.61  | PK          |
| 2390.0    | 48.41             | 0.00                 | -           | Н        | 48.41             | 53.98     | 5.57   | AV          |

| 8         | 02.11ax(MCS       | 0)                   | HE20        |          |                   | 242T              |        |             |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                | 111                  | Freq        | 2462     | MHz               | RU offset         |        | 61          |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 64.72             | 0.00                 | -           | Н        | 64.72             | 73.98             | 9.26   | PK          |
|           |                   |                      |             |          |                   |                   |        |             |

| 8         | 02.11ax(MCS0      | 0)                   | HE20        |          |          | 26T               |        |             |
|-----------|-------------------|----------------------|-------------|----------|----------|-------------------|--------|-------------|
| Channel   | CI                | <b>⊣</b> 1           | Freq        | 2412     | MHz      | RU offset         |        | 0           |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total    | Limit             | Margin | Measurement |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dBµV/m] | [dB <b>µ</b> V/m] | [dB]   | Type        |
| 2390.0    | 56.34             | 0.00                 | -           | Н        | 56.34    | 73.98             | 17.64  | PK          |
| 2390.0    | 44.87             | 0.00                 | -           | Н        | 44.87    | 53.98             | 9.11   | AV          |

| 8         | 02.11ax(MCS       | 0)                   | HE20        |          |                   | 26T               |        |             |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                | H 11                 | Freq        | 2462     | MHz               | RU offset         |        | 8           |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Type        |
| 2483.5    | 59.71             | 0.00                 | -           | Н        | 59.71             | 73.98             | 14.27  | PK          |
|           |                   |                      |             |          |                   |                   |        |             |

| 8         | 02.11ax(MCS         | 0)                   | HE20        | 52T      |                   |                   |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CI                  | H 1                  | Freq        | 2412     | . MHz             | RU offset         |        | 37          |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2390.0    | 56.12               | 0.00                 | -           | Н        | 56.12             | 73.98             | 17.86  | PK          |
| 2390.0    | 44.85               | 0.00                 | -           | Н        | 44.85             | 53.98             | 9.13   | AV          |

F-TP22-03 (Rev. 06) Page 50 of 57



| 8         | 02.11ax(MCS         | 0)                   | HE20        |          |                   | 52T               |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                  | 111                  | Freq        | 2462     | MHz               | RU offset         |        | 40          |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 58.53               | 0.00                 | -           | Н        | 58.53             | 73.98             | 15.45  | PK          |
| 2483.5    | 46.66               | 0.00                 | -           | Н        | 46.66             | 53.98             | 7.32   | AV          |

| 8         | 02.11ax(MCS         | 0)                   | HE20        |          |                   | 106T              |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | C                   | 11                   | Freq        | 2412     | MHz               | RU offset         |        | 53          |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
|           |                     |                      |             |          |                   |                   |        |             |
| 2390.0    | 59.05               | 0.00                 | -           | Н        | 59.05             | 73.98             | 14.93  | PK          |

| 8         | 02.11ax(MCS         | 0)                   | HE20        | 106T     |                   |                   |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                  | 111                  | Freq        | 2462     | MHz               | RU offset         |        | 54          |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 59.14               | 0.00                 | -           | Н        | 59.14             | 73.98             | 14.84  | PK          |
| 2483.5    | 46.90               | 0.00                 | -           | Н        | 46.90             | 53.98             | 7.08   | AV          |

| 8         | 02.11ax(MCS         | 0)                   |             | HE20     |          | CII               |        |             |
|-----------|---------------------|----------------------|-------------|----------|----------|-------------------|--------|-------------|
| Channel   | C                   | H 1                  | Freq        | 2412 MHz |          | SU                |        |             |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total    | Limit             | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dBµV/m] | [dB <b>µ</b> V/m] | [dB]   | Type        |
| 2390.0    | 60.78               | 0.00                 | -           | Н        | 60.78    | 73.98             | 13.20  | PK          |
|           |                     |                      |             |          |          |                   |        |             |

| 8         | 02.11ax(MCS       | 0)                   |             | HE20     |                   | SU                |        |             |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                | 11                   | Freq        | 2462     | MHz               |                   |        |             |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 64.60             | 0.00                 | -           | Н        | 64.60             | 73.98             | 9.38   | PK          |
| 2483.5    | 48.67             | 0.00                 | -           | Н        | 48.67             | 53.98             | 5.31   | AV          |

F-TP22-03 (Rev. 06) Page 51 of 57



# 9.7.2 Channel 12, 13

# [MIMO\_CDD(Ant.1+Ant.2)]

| 8         | 02.11ax(MCS       | 0)                   | HE20        | 242T     |                   |                   |        |             |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                | 112                  | Freq        | 2467     | MHz               | RU offset         |        | 61          |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dB <b>µ</b> V]   | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 62.93             | 0.00                 | -           | Н        | 62.93             | 73.98             | 11.05  | PK          |
| 2483.5    | 48.86             | 0.00                 | -           | Н        | 48.86             | 53.98             | 5.12   | AV          |

| 8         | 02.11ax(MCS         | 0)                   | HE20        |          |            | 242T       |        |             |
|-----------|---------------------|----------------------|-------------|----------|------------|------------|--------|-------------|
| Channel   | CH                  | 13                   | Freq        | 2472     | MHz        | RU offset  |        | 61          |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total      | Limit      | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dBuV/m]   | [dBµV/m]   | [dB]   | Type        |
|           |                     | լսեյ                 | [40/111]    | [1 1/ 4] | [UD#V/III] | [uD#V/III] | [ԱՄ]   |             |
| 2483.5    | 61.79               | 0.00                 | -           | H        | 61.79      | 73.98      | 12.19  | PK          |

| 802.11ax(MCS0) H |                   |                      | HE20        |          |                   | 26T       |        |             |
|------------------|-------------------|----------------------|-------------|----------|-------------------|-----------|--------|-------------|
| Channel          | CH                | 112                  | Freq        | 2467 MHz |                   | RU offset |        | 8           |
| Frequency        | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit     | Margin | Measurement |
| [MHz]            | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dBµV/m]  | [dB]   | Type        |
| 2483.5           | 57.92             | 0.00                 | -           | Н        | 57.92             | 73.98     | 16.06  | PK          |
| 2483.5           | 46.93             | 0.00                 | -           | Н        | 46.93             | 53.98     | 7.05   | AV          |

| 8         | 802.11ax(MCS0) HE20 |                      |             | 26T      |                   |                   |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel   | CH                  | 13                   | Freq        | 2472     | 2472 MHz          |                   | 8      |             |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]     | [dBµV]              | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5    | 70.45               | 0.00                 | -           | Н        | 70.45             | 73.98             | 3.53   | PK          |
| 2483.5    | 49.72               | 0.00                 | -           | Н        | 49.72             | 53.98             | 4.26   | AV          |

| 8         | 802.11ax(MCS0)    |                      | HE20        |          | 52T               |                   |          |             |  |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|----------|-------------|--|
| Channel   | CH                | 112                  | Freq        | 2467     | MHz               | RU offset         | ffset 40 |             |  |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin   | Measurement |  |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]     | Туре        |  |
| 2483.5    | 57.41             | 0.00                 | -           | Н        | 57.41             | 73.98             | 16.57    | PK          |  |
|           | ĺ                 |                      |             |          |                   |                   |          |             |  |

F-TP22-03 (Rev. 06) Page 52 of 57

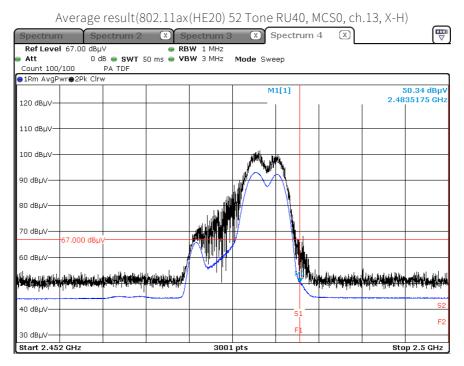


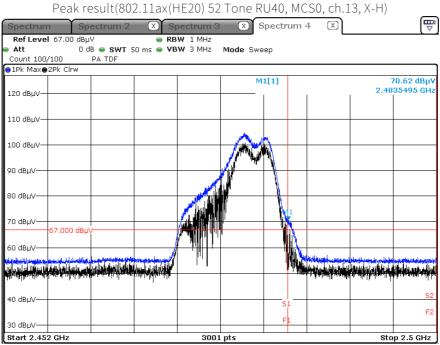
| 8         | 802.11ax(MCS0)      |                      | HE20        | 52T      |                   |          |        |             |
|-----------|---------------------|----------------------|-------------|----------|-------------------|----------|--------|-------------|
| Channel   | CH                  | 13                   | Freq        | 2472     | 2472 MHz          |          | 40     |             |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit    | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dBµV/m] | [dB]   | Туре        |
| 2483.5    | 70.62               | 0.00                 | -           | Н        | 70.62             | 73.98    | 3.36   | PK          |
|           | 1                   |                      |             |          |                   |          |        |             |

| 802.11ax(MCS0) HI |                     |                      | HE20        |          |          | 106T              |        |             |
|-------------------|---------------------|----------------------|-------------|----------|----------|-------------------|--------|-------------|
| Channel           | CH                  | 112                  | Freq        | 2467     | 2467 MHz |                   |        | 54          |
| Frequency         | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total    | Limit             | Margin | Measurement |
| [MHz]             | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dBµV/m] | [dB <b>µ</b> V/m] | [dB]   | Type        |
| 2483.5            | 58.82               | 0.00                 | -           | Н        | 58.82    | 73.98             | 15.16  | PK          |
| 2483.5            | 45.56               | 0.00                 | _           | Н        | 45.56    | 53.98             | 8.42   | AV          |

| 8         | 802.11ax(MCS0) HE2  |                      |             | 0 106T   |          |           |        |             |
|-----------|---------------------|----------------------|-------------|----------|----------|-----------|--------|-------------|
| Channel   | CH                  | H 13                 | Freq        | 2472 MHz |          | RU offset | 54     |             |
| Frequency | Measured<br>Value   | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total    | Limit     | Margin | Measurement |
| [MHz]     | [dB <sub>µ</sub> V] | [dB]                 | [dB/m]      | [H/V]    | [dBµV/m] | [dBµV/m]  | [dB]   | Туре        |
| 2483.5    | 69.57               | 0.00                 | -           | Н        | 69.57    | 73.98     | 4.41   | PK          |
|           |                     |                      |             |          |          |           |        |             |

| 802.11ax(MCS0) |                   |                      | HE20        |          |                   | CII               |        |             |
|----------------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|
| Channel        | CH                | l 12                 | Freq        | 2467 MHz |                   | SU                |        |             |
| Frequency      | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |
| [MHz]          | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |
| 2483.5         | 62.14             | 0.00                 | -           | Н        | 62.14             | 73.98             | 11.84  | PK          |
| 2483.5         | 48.95             | 0.00                 | -           | Н        | 48.95             | 53.98             | 5.03   | AV          |


| 8         | 802.11ax(MCS0)    |                      |             | HE20     |                   |                   | CII    |             |  |
|-----------|-------------------|----------------------|-------------|----------|-------------------|-------------------|--------|-------------|--|
| Channel   | CH                | ł 13                 | Freq        | 2472 MHz |                   | SU                |        |             |  |
| Frequency | Measured<br>Value | Duty Cycle<br>Factor | A.F+C.L+D.F | ANT. POL | Total             | Limit             | Margin | Measurement |  |
| [MHz]     | [dBµV]            | [dB]                 | [dB/m]      | [H/V]    | [dB <b>µ</b> V/m] | [dB <b>µ</b> V/m] | [dB]   | Туре        |  |
| 2483.5    | 62.18             | 0.00                 | -           | Н        | 62.18             | 73.98             | 11.80  | PK          |  |
| 2483.5    | 49.99             | 0.00                 | -           | Н        | 49.99             | 53.98             | 3.99   | AV          |  |


F-TP22-03 (Rev. 06) Page 53 of 57



#### [MIMO\_CDD(Ant.1+Ant.2)]

**Note:** In order to simplify the report, Plots of worst case are only reported.





F-TP22-03 (Rev. 06) Page 54 of 57



# 10. LIST OF TEST EQUIPMENT

### Conducted Test

| Equipment             | Model                      | Manufacturer    | Serial No. | Due to<br>Calibration | Calibration<br>Interval |
|-----------------------|----------------------------|-----------------|------------|-----------------------|-------------------------|
| LISN                  | ENV216                     | Rohde & Schwarz | 102245     | 07/15/2026            | Annual                  |
| EMI Test Receiver     | ESR                        | Rohde & Schwarz | 101910     | 08/20/2026            | Annual                  |
| Temperature Chamber   | SU-642                     | ESPEC           | 0093008124 | 02/11/2026            | Annual                  |
| Signal Analyzer       | N9030A                     | Agilent         | MY49431210 | 12/12/2025            | Annual                  |
| Power Measurement Set | OSP 120                    | Rohde & Schwarz | 101231     | 10/17/2025            | Annual                  |
| Power Meter           | N1911A                     | Agilent         | MY45100523 | 02/21/2026            | Annual                  |
| Power Sensor          | N1921A                     | Agilent         | MY57820067 | 02/04/2026            | Annual                  |
| Directional Coupler   | 87300B                     | Agilent         | 3116A03621 | 10/21/2025            | Annual                  |
| Power Splitter        | 11667B                     | Hewlett Packard | 5001       | 04/10/2026            | Annual                  |
| DC Power Supply       | E3632A                     | H.P             | KR75303243 | 04/16/2026            | Annual                  |
| Attenuator(10 dB)     | 8493C                      | Hewlett Packard | 07560      | 05/27/2026            | Annual                  |
| Software              | EMC32                      | Rohde & Schwarz | N/A        | N/A                   | N/A                     |
| Automation Software   | FCC WLAN<br>Conducted      | HCT CO., LTD    | -          | -                     | -                       |
| Automation Software   | FCC Bluetooth<br>Conducted | HCT CO., LTD    | -          | -                     | -                       |

### Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

F-TP22-03 (Rev. 06) Page 55 of 57



### Radiated Test

| Equipment                                 | Model                                  | Manufacturer              | Serial No.                 | Due to<br>Calibration | Calibration<br>Interval |
|-------------------------------------------|----------------------------------------|---------------------------|----------------------------|-----------------------|-------------------------|
| Controller<br>(Antenna mast & Turn Table) | CO3000                                 | Innco system              | CO3000/1031/<br>41190717/P | N/A                   | N/A                     |
| Antenna Mast                              | MA4640                                 | Innco system              | S2AM                       | 07/30/2025            | Annual                  |
| Turn Table                                | DS2000-S                               | Innco system              | N/A                        | N/A                   | N/A                     |
| Loop Antenna                              | FMZB 1513                              | Rohde & Schwarz           | 1513-333                   | 03/07/2026            | Biennial                |
| Hybrid Antenna                            | VULB 9168                              | Schwarzbeck               | 760                        | 02/17/2027            | Biennial                |
| Horn Antenna                              | BBHA 9120D                             | Schwarzbeck               | 02299                      | 01/29/2026            | Biennial                |
| Horn Antenna<br>(15GHz ~ 40 GHz)          | BBHA9170                               | Schwarzbeck               | BBHA9170342                | 09/20/2026            | Biennial                |
| Spectrum Analyzer                         | FSV40                                  | Rohde & Schwarz           | 100901                     | 02/21/2026            | Annual                  |
| Signal Analyzer                           | N9030A                                 | Agilent                   | MY52350879                 | 03/25/2026            | Annual                  |
| Attenuator(3 dB)                          | 18B-03                                 | Api tech.                 | 1                          | 04/21/2026            | Annual                  |
| Band Reject Filter                        | WRCJV12-4900-5100-5900-<br>6100-50SS   | Wainwright<br>Instruments | 5                          | 05/27/2026            | Annual                  |
| Band Reject Filter                        | WRCJV12-4900-5100-5900-<br>6100-50SS   | Wainwright<br>Instruments | 6                          | 05/27/2026            | Annual                  |
| Band Reject Filter                        | WRCJV2400/2483.5-<br>2370/2520-60/12SS | Wainwright<br>Instruments | 2                          | 12/26/2025            | Annual                  |
| Band Reject Filter                        | WRCJV5100/5850-40/50-<br>8EEK          | Wainwright<br>Instruments | 1                          | 01/09/2026            | Annual                  |
| RF Switching System                       | FMSR-04B (3G HPF+LNA)                  | T&M SYSTEM                | S2L1                       | 12/23/2025            | Annual                  |
| RF Switching System                       | FMSR-04B (10dB ATT+LNA)                | T&M SYSTEM                | S2L2                       | 12/23/2025            | Annual                  |
| RF Switching System                       | FMSR-04B (3dB ATT+LNA)                 | T&M SYSTEM                | S2L3                       | 12/23/2025            | Annual                  |
| RF Switching System                       | FMSR-04B (LNA)                         | T&M SYSTEM                | S2L4                       | 12/23/2025            | Annual                  |
| RF Switching System                       | FMSR-04B (7G HPF+LNA)                  | T&M SYSTEM                | S2L5                       | 12/23/2025            | Annual                  |
| Power Amplifier                           | CBL18265035                            | CERNEX                    | 22966                      | 11/07/2025            | Annual                  |
| Power Amplifier                           | CBL26405040                            | CERNEX                    | 25956                      | 02/19/2026            | Annual                  |
| Automation Software                       | FCC WLAN Radiated                      | HCT CO., LTD              | =                          | -                     | =                       |

### Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

F-TP22-03 (Rev. 06) Page 56 of 57



# 11. ANNEX A\_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

| No. | Description         |
|-----|---------------------|
| 1   | HCT-RF-2509-FC005-P |

F-TP22-03 (Rev. 06) Page 57 of 57