

Test Report

Report No. : CQASZ20250701775E-01

Applicant: Changsha Angsi E-commerce Co., Ltd.

Address of Applicant: Room 139, Bldg A1, No. 1839 Fenglin 3rd Rd, Leifeng St, Xiangjiang New Dist, Changsha, Hunan 410200 China

Equipment Under Test (EUT):

Product: Diagnostic Tools, GOOLOO OBD, Deepscan

Model No.: DeepScan, DS100, DS200

Test Model No.: DeepScan

FCC ID: 2BNZ7-DSCAN

Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Date of Receipt: 2025-07-31

Date of Test: 2025-07-31 to 2025-08-11

Date of Issue: 2025-8-14

Test Result : **PASS***

***In the configuration tested, the EUT complied with the standards specified above.**

Tested By:

lewis zhou
(Lewis Zhou)

Reviewed By:

Timo Lei
(Timo Lei)

Approved By:

Jack Ai
(Jack Ai)

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20250300543E-01	Rev.01	Initial report	2025-4-15
CQASZ20250701775E-01	Rev.02	Update report	2025-8-14

Note:

This test report (Ref. No.: CQASZ20250701775E-01)

All test data comes from source test reports (Ref. No.: CQASZ20250300543E-01).

Only on the basis of the original report Add EUT Name, the series model No., Brand Name, add Photographs of EUT. Because the series model has been added, So tests were added.

Note: Report is for Class II Permissive Change only. Added test: Radiated Spurious emissions and Restricted bands around fundamental frequency (Radiated Emission). Other test data refer to Original equipment (FCC ID: 2BNZ7-DSCAN), the original FCC ID issue date: 05/05/2025.

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	/	N/A
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15.247	ANSI C63.10-2013	N/A
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	N/A
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	N/A
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	5
4.3 ADDITIONAL INSTRUCTIONS	8
4.4 TEST ENVIRONMENT	9
4.5 DESCRIPTION OF SUPPORT UNITS	9
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	10
4.7 TEST LOCATION	11
4.8 TEST FACILITY	11
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	11
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER.....	11
4.11 EQUIPMENT LIST	12
5 TEST RESULTS AND MEASUREMENT DATA	13
5.1 ANTENNA REQUIREMENT	13
5.1.1 Radiated Emission below 1GHz	14
5.1.2 Transmitter Emission above 1GHz	18
6 PHOTOGRAPHS - EUT TEST SETUP	20
6.1 RADIATED EMISSION	20
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	22

4 General Information

4.1 Client Information

Applicant:	Changsha Angsi E-commerce Co., Ltd.
Address of Applicant:	Room 139, Bldg A1, No. 1839 Fenglin 3rd Rd, Leifeng St, Xiangjiang New Dist, Changsha, Hunan 410200 China
Manufacturer:	Changsha Angsi E-commerce Co., Ltd.
Address of Manufacturer:	Room 139, Bldg A1, No. 1839 Fenglin 3rd Rd, Leifeng St, Xiangjiang New Dist, Changsha, Hunan 410200 China
Factory:	Changsha Angsi E-commerce Co., Ltd.
Address of Factory:	Room 139, Bldg A1, No. 1839 Fenglin 3rd Rd, Leifeng St, Xiangjiang New Dist, Changsha, Hunan 410200 China

4.2 General Description of EUT

Product Name:	Diagnostic Tools, GOOLOO OBD, Deepscan
Model No.:	DeepScan, DS100, DS200
Test Model No.:	DeepScan
Trade Mark:	 GOOLOO ALWAYS GOOD TO GO
Software Version:	DeepScan 1.0
Hardware Version:	TP015_BT_V0_2
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK
Transfer Rate:	1Mbps/2Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	<input checked="" type="checkbox"/> Mobile <input type="checkbox"/> Portable
Test Software of EUT:	FCC_assist_1.0.4
Antenna Type:	PCB antenna
Antenna Gain:	0.06dBi
Power Supply:	Power supply DC12V
Simultaneous Transmission	<input type="checkbox"/> Simultaneous TX is supported and evaluated in this report. <input checked="" type="checkbox"/> Simultaneous TX is not supported.

Note:

Model No.: DeepScan, DS100, DS200.

Their electrical circuit design, layout, components used and internal wiring are identical,

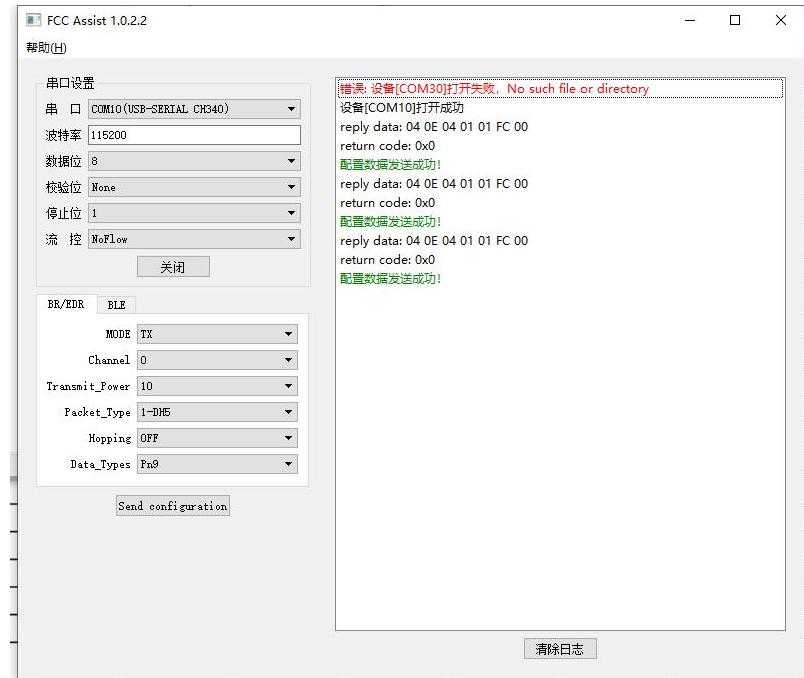
Only the appearance color and the components on the PCBA board are different.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz


4.3 Additional Instructions

EUT Test Software Settings:

Mode:	<input checked="" type="checkbox"/> Special software is used. <input type="checkbox"/> Through engineering command into the engineering mode. engineering command: *###3646633#**
EUT Power level:	Class 10

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Mode	Channel	Frequency(MHz)
DH1/DH3/DH5	CH0	2402
	CH39	2441
	CH78	2480
2DH1/2DH3/2DH5	CH0	2402
	CH39	2441
	CH78	2480

Run Software:

4.4 Test Environment

Operating Environment:	
Temperature:	25 °C
Humidity:	54% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
/	/	/	/	/

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10^{-8}
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8 °C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS (No. CNAS L5785)**

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- A2LA (Certificate No. 4742.01)**

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

- FCC Registration No.: 522263**

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

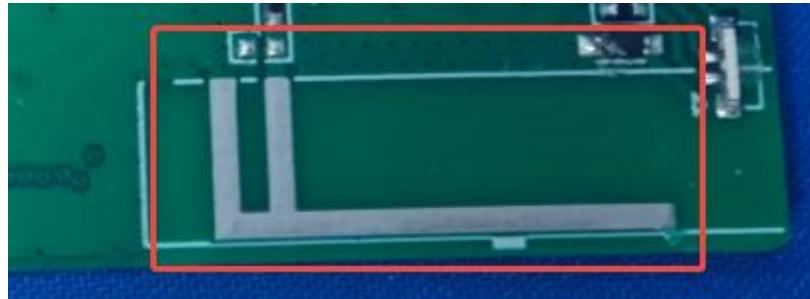
4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18-10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800-29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

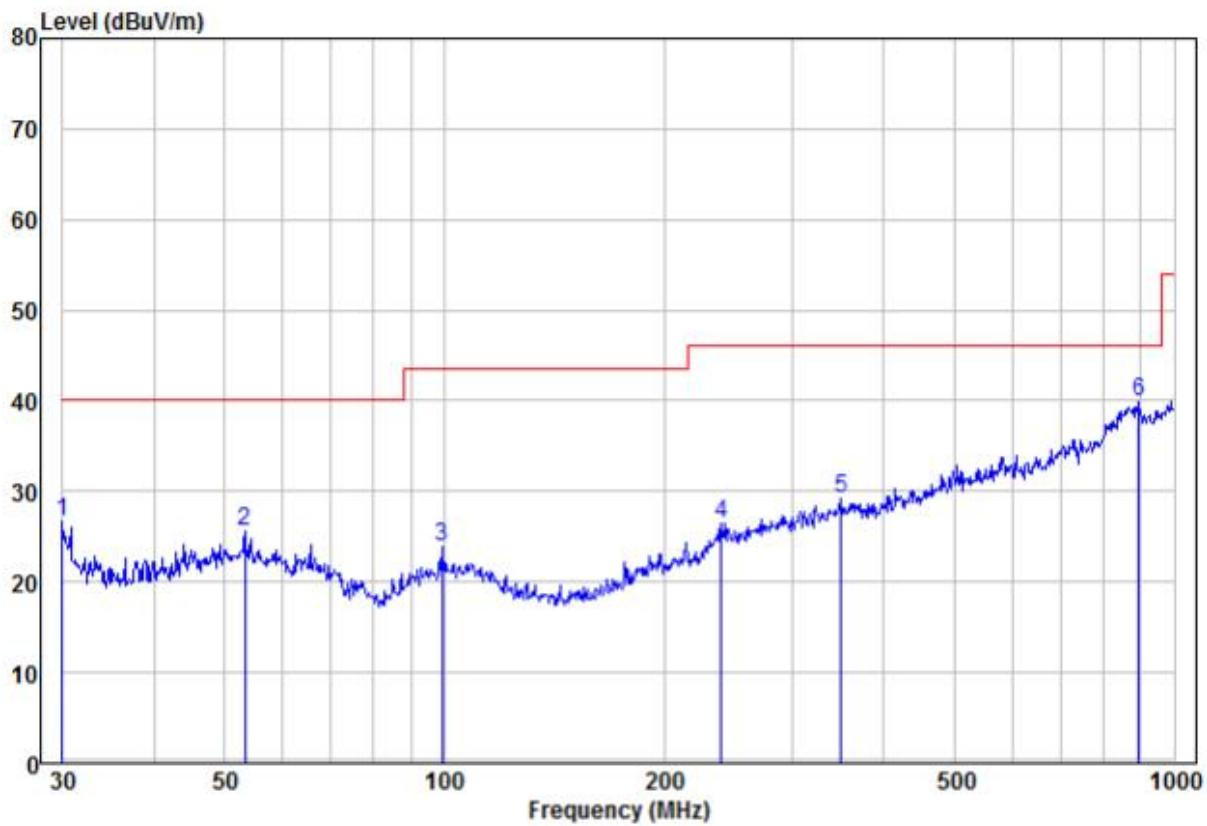
Test software:


	Manufacturer	Software brand	Software version
Radiated Emissions test software	Tonscend	JS1120-3	Version:8
Conducted Emissions test software	Audix	e3	Version:9
RF Conducted test software	Audix	e3	V3.5.39

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data


5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
15.247(b) (4) requirement:	The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
EUT Antenna:	
<p>The antenna is PCB antenna.</p> <p>The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.</p> <p>This is either permanently attachment or a unique coupling that satisfies the requirement.</p>	

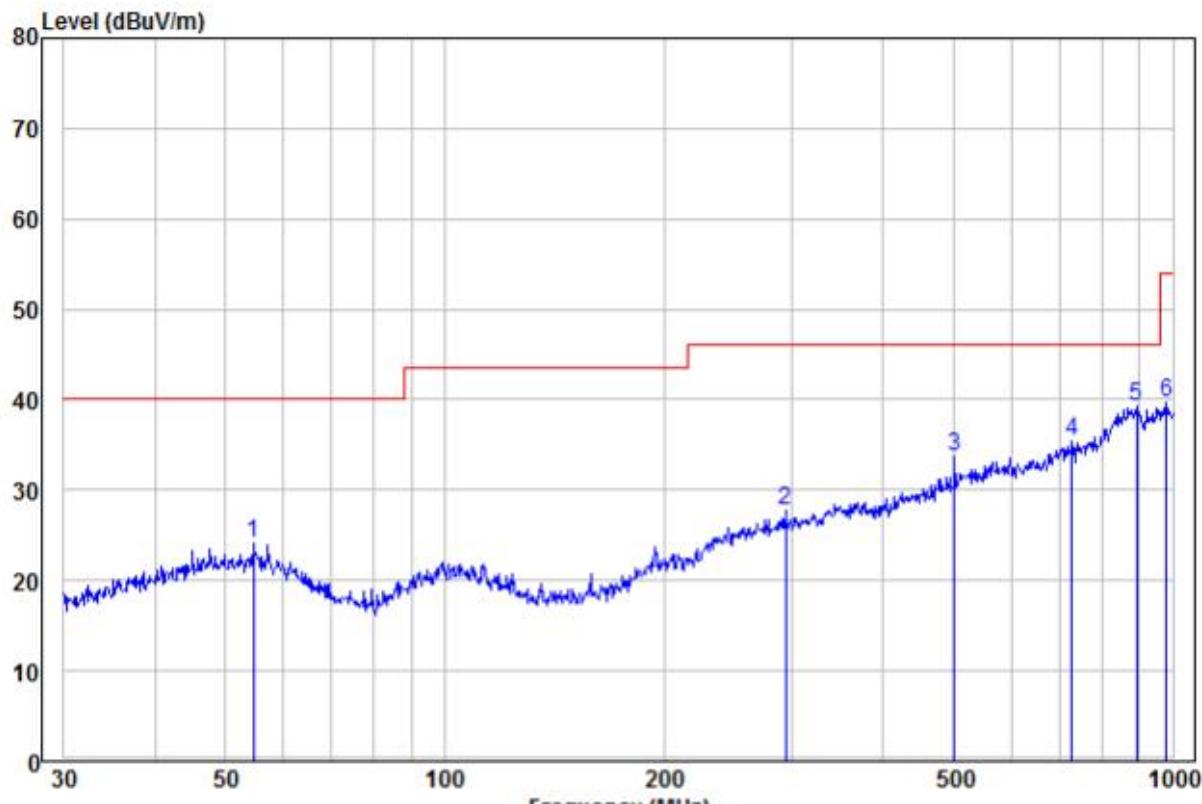
5.1.1 Radiated Emission below 1GHz

DS100

30MHz~1GHz		
Test mode:	Transmitting	Vertical

	Read			Limit		Over		APOS	TPOS
	Freq	Level	Factor	Level	Line	Limit	Remark		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	deg
1	30.00	18.06	8.51	26.57	40.00	-13.43	Peak	VERTICAL	100
2	53.32	11.76	13.81	25.57	40.00	-14.43	Peak	VERTICAL	100
3	99.18	11.06	12.85	23.91	43.50	-19.59	Peak	VERTICAL	100
4	239.99	10.54	15.90	26.44	46.00	-19.56	Peak	VERTICAL	100
5	349.25	10.17	18.97	29.14	46.00	-16.86	Peak	VERTICAL	100
6 pp	893.86	10.21	29.71	39.92	46.00	-6.08	Peak	VERTICAL	100

Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

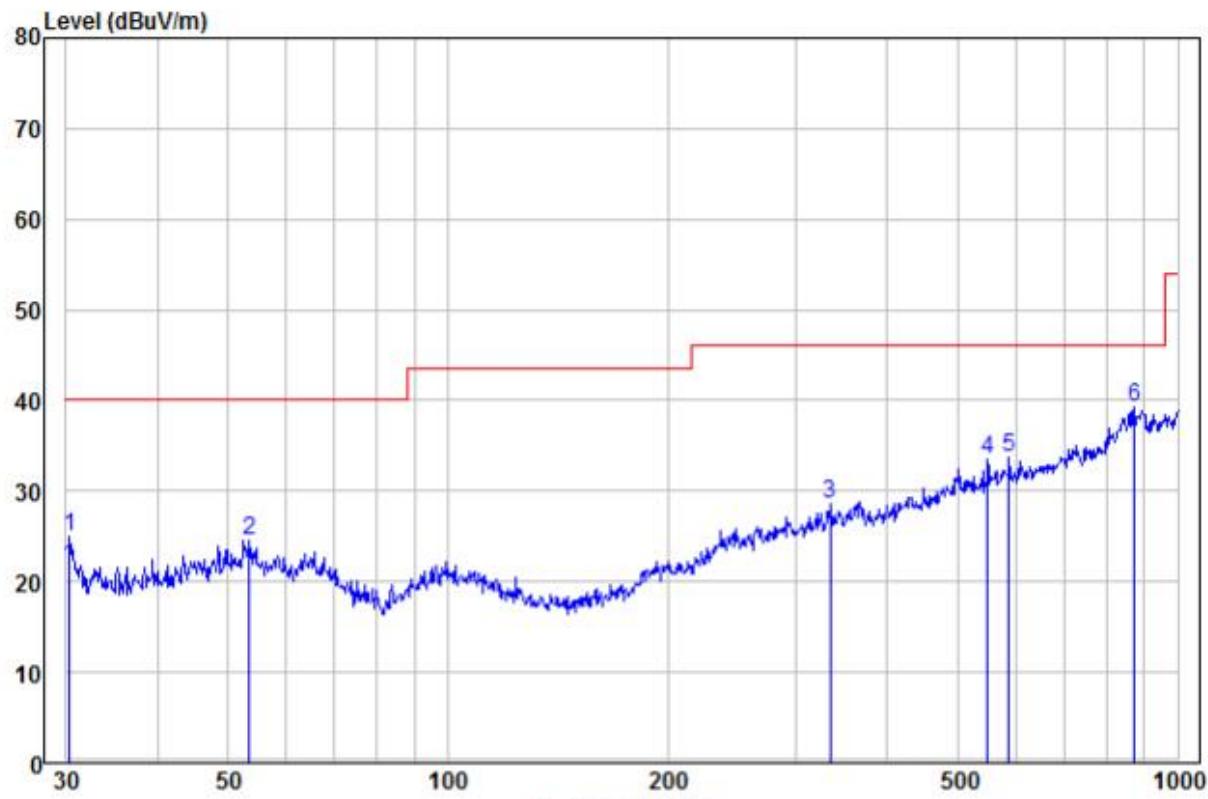
Test mode:	Transmitting	Horizontal
------------	--------------	------------

Freq	Read			Limit			Over Line	Over Limit	Remark	Pol/Phase	APos	TPos
	MHz	dBuV	dB/m	Level	MHz	dBuV/m						
1	54.64	10.24	13.82	24.06	40.00	-15.94	Peak			HORIZONTAL	100	58
2	294.11	10.18	17.60	27.78	46.00	-18.22	Peak			HORIZONTAL	100	39
3	501.18	11.76	21.84	33.60	46.00	-12.40	Peak			HORIZONTAL	100	114
4	726.81	10.64	24.67	35.31	46.00	-10.69	Peak			HORIZONTAL	100	133
5 pp	890.73	9.57	29.67	39.24	46.00	-6.76	Peak			HORIZONTAL	100	254
6	979.18	10.79	28.99	39.78	54.00	-14.22	Peak			HORIZONTAL	100	78

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,


Level = Read Level + Factor,

Over Limit=Level-Limit Line.

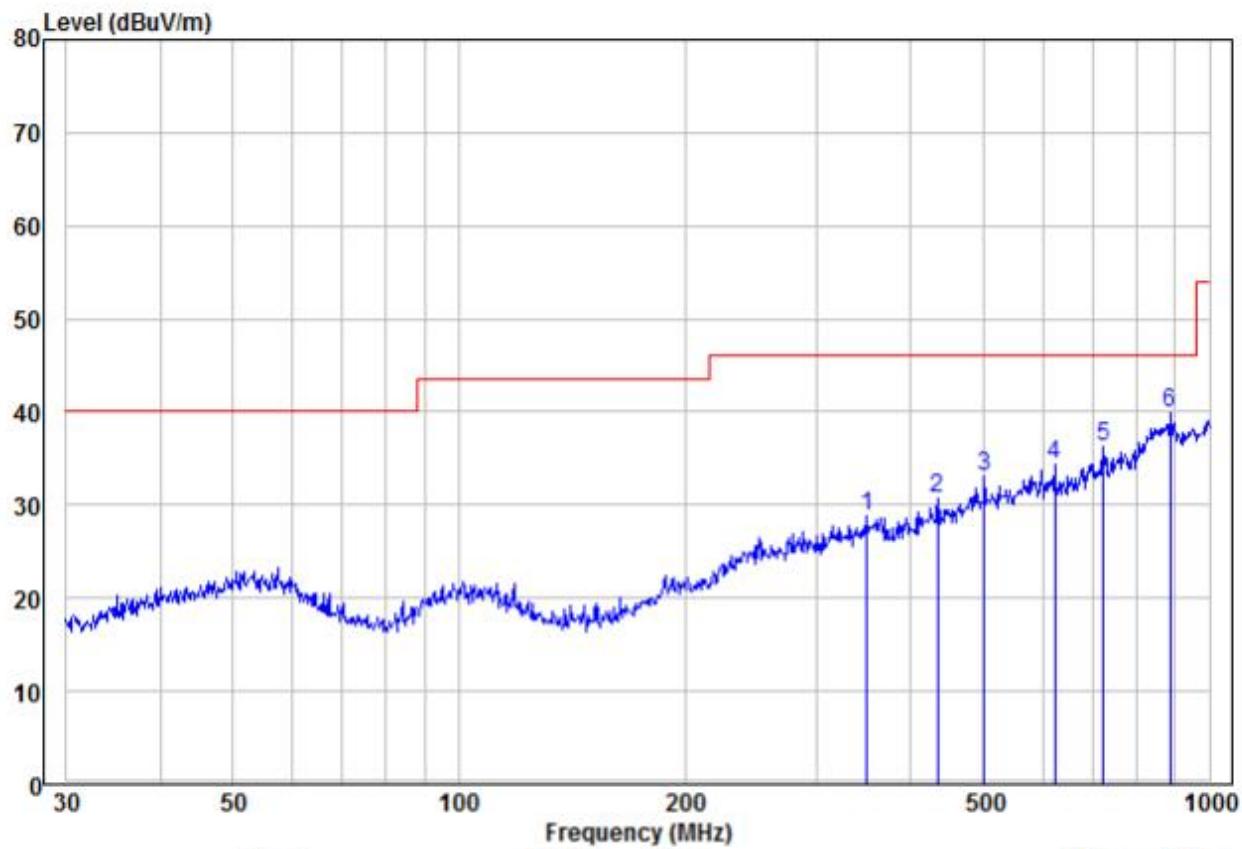
DS200

30MHz~1GHz

Test mode: Transmitting Vertical

Freq	Read		Level	Limit	Over	APos	TPos			
	Freq	Level	Factor	Line	Limit	Remark	Pol/Phase			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	deg	
1	30.32	16.38	8.64	25.02	40.00	-14.98	Peak	VERTICAL	100	24
2	53.51	10.69	13.81	24.50	40.00	-15.50	Peak	VERTICAL	100	36
3	333.69	9.89	18.59	28.48	46.00	-17.52	Peak	VERTICAL	100	87
4	549.02	11.14	22.30	33.44	46.00	-12.56	Peak	VERTICAL	100	21
5	586.84	11.13	22.54	33.67	46.00	-12.33	Peak	VERTICAL	100	163
6 pp	872.18	9.96	29.39	39.35	46.00	-6.65	Peak	VERTICAL	100	16

Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Test mode:	Transmitting	Horizontal
------------	--------------	------------

	Read							Limit	Over	APOS	TPOS
	Freq	Level	Factor	Level	Line	Limit	Remark				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB				cm	deg
1	349.25	9.87	18.97	28.84	46.00	-17.16	Peak	HORIZONTAL		100	70
2	434.07	10.76	19.93	30.69	46.00	-15.31	Peak	HORIZONTAL		100	55
3	501.18	11.21	21.84	33.05	46.00	-12.95	Peak	HORIZONTAL		100	95
4	622.89	11.39	23.06	34.45	46.00	-11.55	Peak	HORIZONTAL		100	19
5	721.73	11.68	24.61	36.29	46.00	-9.71	Peak	HORIZONTAL		100	10
6 pp	887.61	10.18	29.62	39.80	46.00	-6.20	Peak	HORIZONTAL		100	149

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.1.2 Transmitter Emission above 1GHz

Worse case mode:		GFSK(DH5)		Test channel:		Lowest			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
							H/V	(m)	(Degree)
2390	55.04	-9.2	45.84	74	-28.16	Peak	H	1.5	256
2400	56.63	-9.39	47.24	74	-26.76	Peak	H	1.5	200
4804	54.13	-4.33	49.80	74	-24.20	Peak	H	1.5	164
7206	50.60	1.01	51.61	74	-22.39	Peak	H	1.5	280
2390	53.53	-9.2	44.33	74	-29.67	Peak	V	1.5	53
2400	56.74	-9.39	47.35	74	-26.65	Peak	V	1.5	122
4804	53.55	-4.33	49.22	74	-24.78	Peak	V	1.5	259
7206	48.35	1.01	49.36	74	-24.64	Peak	V	1.5	202

Worse case mode:		GFSK(DH5)		Test channel:		Middle			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
							H/V	(m)	(Degree)
4882	52.30	-4.11	48.19	74	-25.81	peak	H	1.5	125
7323	50.97	1.51	52.48	74	-21.52	peak	H	1.5	193
4882	52.29	-4.11	48.18	74	-25.82	peak	V	1.5	143
7323	49.83	1.51	51.34	74	-22.66	peak	V	1.5	342

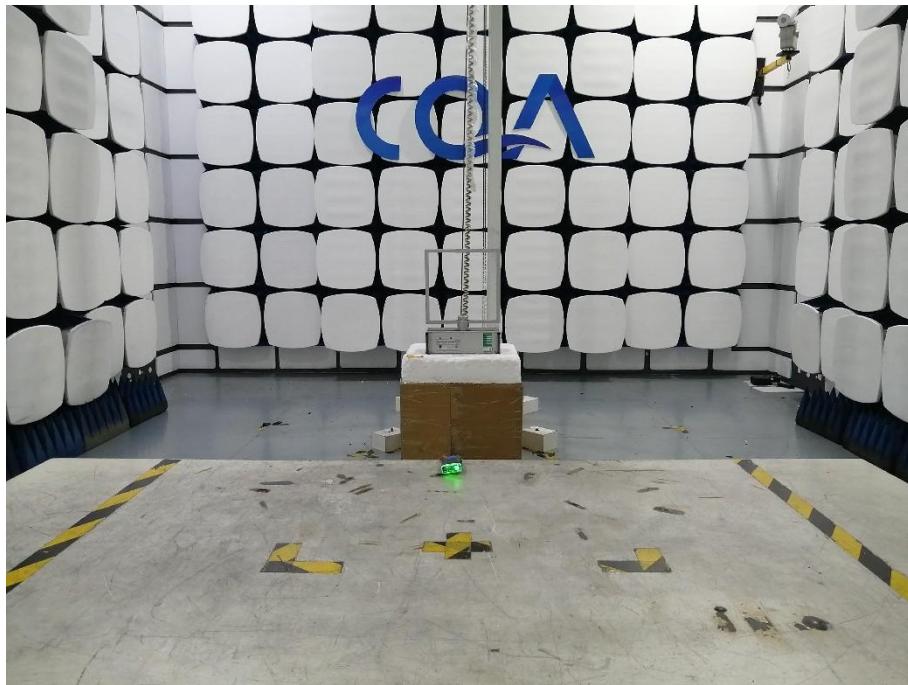
Worse case mode:		GFSK(DH5)		Test channel:		Highest			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
							H/V	(m)	(Degree)
2483.5	56.24	-9.29	46.95	74	-27.05	Peak	H	1.5	182
4960	51.12	-4.04	47.08	74	-26.92	Peak	H	1.5	200
7440	50.05	1.57	51.62	74	-22.38	Peak	H	1.5	342
2483.5	56.21	-9.29	46.92	74	-27.08	Peak	V	1.5	129
4960	50.10	-4.04	46.06	74	-27.94	Peak	V	1.5	56
7440	50.74	1.57	52.31	74	-21.69	Peak	V	1.5	124

Worse case mode:		$\pi/4$ DQPSK (2DH5)		Test channel:		Lowest			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)				
2390	55.08	-9.2	45.88	74	-28.12	Peak	H	1.5	32
2400	56.23	-9.39	46.84	74	-27.16	Peak	H	1.5	213
4804	53.56	-4.33	49.23	74	-24.77	Peak	H	1.5	225
7206	49.56	1.01	50.57	74	-23.43	Peak	H	1.5	265
2390	56.06	-9.2	46.86	74	-27.14	Peak	V	1.5	352
2400	54.62	-9.39	45.23	74	-28.77	Peak	V	1.5	325
4804	53.20	-4.33	48.87	74	-25.13	Peak	V	1.5	14
7206	50.82	1.01	51.83	74	-22.17	Peak	V	1.5	325

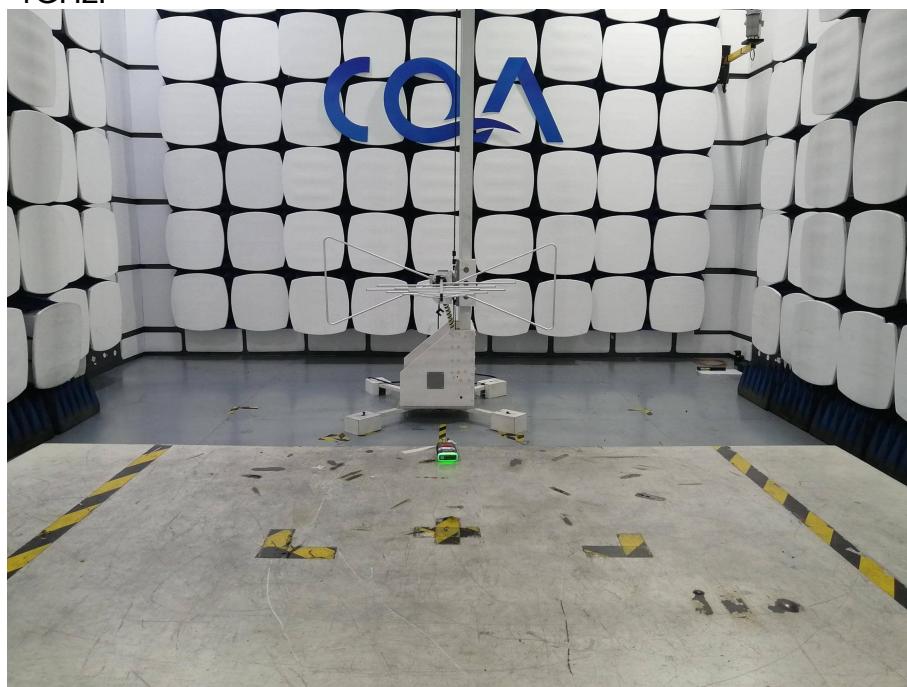
Worse case mode:		$\pi/4$ DQPSK (2DH5)		Test channel:		Middle			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)				
4882	51.35	-4.11	47.24	74	-26.76	peak	H	1.5	333
7323	50.16	1.51	51.67	74	-22.33	peak	H	1.5	335
4882	52.72	-4.11	48.61	74	-25.39	peak	V	1.5	211
7323	49.02	1.51	50.53	74	-23.47	peak	V	1.5	78

Worse case mode:		$\pi/4$ DQPSK (2DH5)		Test channel:		Highest			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detect or Type	Ant. Pol.	Antenna Height	Table Angle
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)				
2483.5	55.27	-9.29	45.98	74	-28.02	Peak	H	1.5	174
4960	52.20	-4.04	48.16	74	-25.84	Peak	H	1.5	342
7440	51.10	1.57	52.67	74	-21.33	Peak	H	1.5	305
2483.5	54.52	-9.29	45.23	74	-28.77	Peak	V	1.5	108
4960	49.40	-4.04	45.36	74	-28.64	Peak	V	1.5	47
7440	48.43	1.57	50.00	74	-24.00	Peak	V	1.5	71

Remark:


- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

$$\text{Final Test Level} = \text{Receiver Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Preamplifier Factor}$$
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


6 Photographs - EUT Test Setup

6.1 Radiated Emission

9KHz~30MHz:

30MHz~1GHz:

Above 1GHz:

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for Photographs of The EUT.

*** END OF REPORT ***