

Test Report

Report No. : MTi250219007-0803E1

Date of issue : 2025-03-25

Applicant : OXAA Corp.

Product : 4- in- 1 Foldable Wireless Charging Power Bank

Model(s) : OXWC1351, OXWC2351

FCC ID : 2BNYA-OXWC1351

Shenzhen Microtest Co., Ltd.

TEST REPORT

Report No.: MTi250219007-0803E1

Microtest

Table of contents

		A	
		Table of contents	
	iiCiO		
1	Gene	Pral Description Description of the EUT	 4
(F)	1.1	Description of the EUT	 2
	1.2	Description of test modes	 4
	1.3	Environmental Conditions	
	1.4	Description of support units	 5
	1.5	Measurement uncertainty	5
2	Sum	mary of Test Result	
3	Test	Facilities and accreditations	7
	3.1	Test laboratory	 7
4	List	of test equipment	8
5	Evalu	uation Results (Evaluation)	10
	5.1	uation Results (Evaluation)Antenna requirement	 10
6	Radi	o Spectrum Matter Test Results (RF)	 11
	6.1	Conducted Emission at AC power line	 11
	6.2	20dB Occupied Bandwidth	
	6.3	Emissions in frequency bands (below 30MHz)	 19
	6.4	Emissions in frequency bands (30MHz - 1GHz)	 23
PI	hotogra	aphs of the test setupaphs of the EUT	 27
P	hotogra	aphs of the EUT	28
	iiCiO		
() ()		· oSl	

Report No.: MTi250219007-0803E1

Test Result Certific	cation					
Applicant	OXAA Co	rp.				
Applicant Address	6-3545 Oc	dyssey Dr, Mississauga, ON L5	SM 2S4, Canada			
Manufacturer	OXAA Coi	rp.				
Manufacturer Address	6-3545 Odyssey Dr, Mississauga, ON L5M 2S4, Canada					
Factory	Shenzhen	Shenzhen Aodehong Electronic Technology Co.,Ltd.				
Factory Address		Elegant Industrial Park, No.8 L nggang District, Shenzhen,Chin				
Product description	on					
Product name	4- in- 1 Fc	oldable Wireless Charging Pow	er Bank			
Trademark	OXAA					
Model name	OXWC13	51				
Series Model(s)	OXWC23	51	test			
Standards	47 CFR P	art 15C	Mici			
Test Method	ANSI C63	.10-2013				
Testing Informatio	n	A.				
Date of test	2025-02-2	25 to 2025-03-21				
Test result	Pass	PANCIO				
Prepared I	oy:	Yanice.Xie	Yanice Xie			
Reviewed	by:	David Lee	David. Lee			
Approved	by:	Lewis Lian	Yanice Xie Dowid. Lee Lewis lian			

Report No.: MTi250219007-0803E1

1 General Description

1.1 Description of the EUT

4- in- 1 Foldable Wireless Charging Power Bank OXWC1351 OXWC2351 All the models are the same circuit and module, except the model name and color.
OXWC2351 All the models are the same circuit and module, except the model
All the models are the same circuit and module, except the model
name and color.
Input:QC/PD 18W Min Type-C Battery Capacity:8000mAh Output:5W/7.5W/10W(Smart Phone) Output:5W(Earbuds) Output:2W(Smart Watch)
Cable: Type-C to Type-C 1.2m*1
1.0
1.0
MTi250219007-08-R001
Coil 1:115-205kHz Coil 2:115-205kHz Coil 3:300-350kHz
ASK
Coil

1.2 Description of test modes

No.	Emission test modes		
Mode1	Wireless output(5W)+Earbuds(5W)+Watch(2W)		
Mode2	Wireless output(7.5W)+Earbuds(5W)+Watch(2W)		
Mode3	Wireless output(10W)+Earbuds(5W)+Watch(2W)		
Mode4	Charing+Wireless output(5W)+Earbuds(5W)		
Mode5	Charing+Wireless output(5W)+Watch(2W)		
Mode6	Charing+Wireless output Earbuds(5W)+Watch(2W)		
Mode7	Charing+Wireless output(5W)		
Mode8	Charing+Wireless output(7.5W)		
Mode9	Charing+Wireless output(10W)		
Mode10	Charing+Wireless Watch(2W)		
Mode11 Charing+Wireless Earbuds(5W)			
Mode12	Standby		

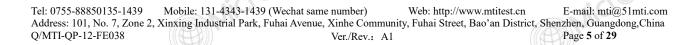
Report No.: MTi250219007-0803E1

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list			NiCTO'S
Description	Model	Serial No.	Manufacturer
iWatch	Apple Watch SE	FH7PP6BAG91J6	Apple
HUAWEI QUICK CHARGE(65W)	HW-200200ZP1	JN67LSN7N03451	HUAWEI
wireless charging load	YBZ1.1	rest 1	YBZ
Air Pods	MQD83CH/A		Apple
Support cable list			
Description	Length (m)	From	То
1	1	1	1.05

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTi250219007-0803E1

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15.209	Pass

Mhici otest

TEST REPORT

Report No.: MTi250219007-0803E1

Microfest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093
Nu.	Microtest

Report No.: MTi250219007-0803E1

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
ri C	COL	Conducted Emiss	ion at AC power	line		
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03- 20	2025-03- 19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03- 21	2025-03- 20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03- 20	2025-03- 19
		20dB Occup	ied Bandwidth		, K	CLO
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03- 20	2025-03- 19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2024-03- 21	2025-03- 20
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2024-03- 21	2025-03- 20
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2024-03- 21	2025-03 20
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2024-03- 21	2025-03 20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2024-03- 21	2025-03 20
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2024-03- 20	2025-03 19
9	DC Power Supply	Agilent	E3632A	MY400276 95	2024-03- 21	2025-03 20
	En En	nissions in frequenc	y bands (below	30MHz)	3	
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03 22
3	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03 19
	Em	issions in frequency	y bands (30MHz	- 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03 19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06 10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03 19

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Du
	rest	Conducted Emiss	ion at AC power	line		
10	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 14	2026-03 13
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2025-03- 18	2026-03 17
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03 17
		20dB Occup	ied Bandwidth			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2025-03- 18	2026-03 17
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2025-03- 14	2026-03 13
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-0 13
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 14	2026-0 13
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 14	2026-0 13
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-0 17
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 14	2026-0 13
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2025-03- 14	2026-0 13
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-0 17
	En	nissions in frequenc	y bands (below	30MHz)	"CLO	
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-0 13
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-0 22
3	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-0 17
	Em	issions in frequency	y bands (30MHz	- 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-0 13
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2025-05- 23	2027-0 22
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-0 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-0 17
Mic	Milphile					

Report No.: MTi250219007-0803E1

Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

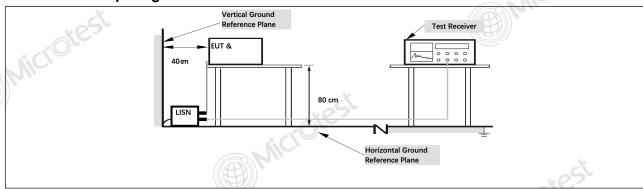
Microtest

The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi250219007-0803E1

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
· est	*Decreases with the logarithm of	the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	e: 22.3 °C		Humidity:	55 %	Atmospheric Pressure:	100 kPa	
Pre test mode:	Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12						
Final test mode.				pre-test mode is recorded in	were tested, only the data the report	of the worst	

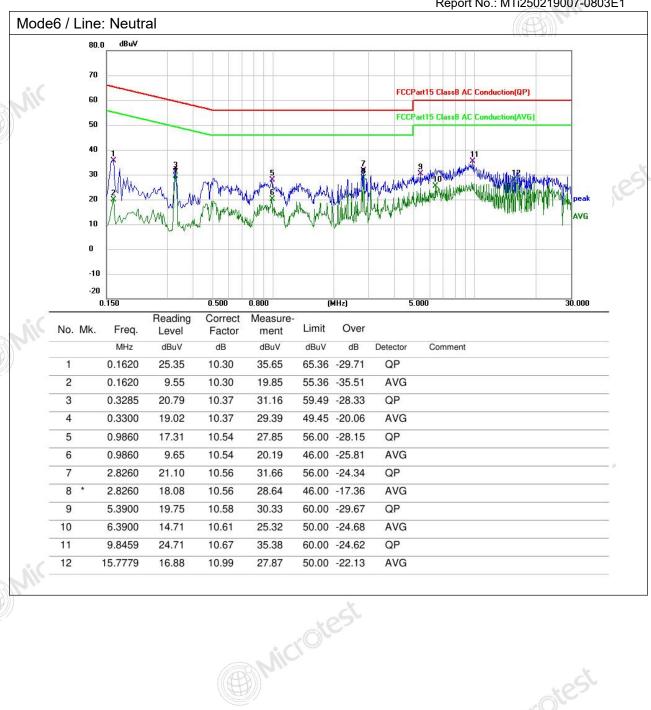
6.1.2 Test Setup Diagram:

TEST REPORT

Report No.: MTi250219007-0803E1

Mhici otest

6.1.3 Test Data:



Microfest

TEST REPORT

Report No.: MTi250219007-0803E1

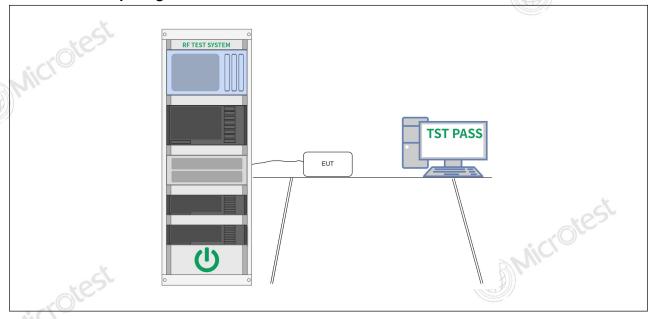
Report No.: MTi250219007-0803E1

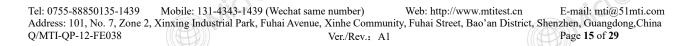
6.2 20dB Occupied Bandwidth

6.2 20dB Occupie		
Test Requirement:	47 CFR Part 15.215(c)	
Test Limit:	Refer to 47 CFR 15.215(c), intentior alternative provisions to the general 15.217 through 15.257 and in subpate to ensure that the 20 dB bandwidth bandwidth may otherwise be specific which the equipment operates, is codesignated in the rule section under	emission limits, as contained in §§ art E of this part, must be designed of the emission, or whatever ed in the specific rule section under ontained within the frequency band
Test Method:	ANSI C63.10-2013, section 6.9.2	Le te
Procedure:	a) The spectrum analyzer center frechannel center frequency. The span spectrum analyzer shall be between b) The nominal IF filter bandwidth (3 1% to 5% of the OBW and video bar approximately three times RBW, unlapplicable requirement.	range for the EMI receiver or two times and five times the OBW. 3 dB RBW) shall be in the range of indwidth (VBW) shall be less otherwise specified by the
Micr	c) Set the reference level of the instraignal from exceeding the maximum operation. In general, the peak of the than [10 log (OBW/RBW)] below the is given in 4.1.5.2. d) Steps a) through c) might require specified tolerances.	n input mixer level for linear e spectral envelope shall be more e reference level. Specific guidance
Microtest	e) The dynamic range of the instrummore than 10 dB below the target "— the requirement calls for measuring noise floor at the selected RBW shareference value. f) Set detection mode to peak and trg) Determine the reference value: Sunmodulated carrier or modulated sit to stabilize. Set the spectrum analyzed displayed trace (this is the reference h) Determine the "—xx dB down amp xx]. Alternatively, this calculation madelta function of the instrument. i) If the reference value is determine turn the EUT modulation ON, and einew trace on the spectrum analyzer Otherwise, the trace from step g) sh	exx dB down" requirement; that is, if the -20 dB OBW, the instrument all be at least 30 dB below the exace mode to max hold. The extra to transmit an ignal, as applicable. Allow the trace exer marker to the highest level of the exalue). Solitude" using [(reference value) - by be made by using the marker- extra the device of the existing trace or start at and allow the new trace to stabilize. The allow used for step j).
Microtest	marker is at or slightly below the "-xx step h). If a marker is below this "-xx shall be as close as possible to this the frequency difference between th marker at the lowest frequency of th such that the marker is at or slightly determined in step h). Reset the ma	f the spectral display, such that each x dB down amplitude" determined in x dB down amplitude" value, then it value. The occupied bandwidth is e two markers. Alternatively, set a e envelope of the spectral display, below the "-xx dB down amplitude" rker-delta function and move the sion until the delta marker amplitude

Report No.: MTi250219007-0803E1

Microtest


delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

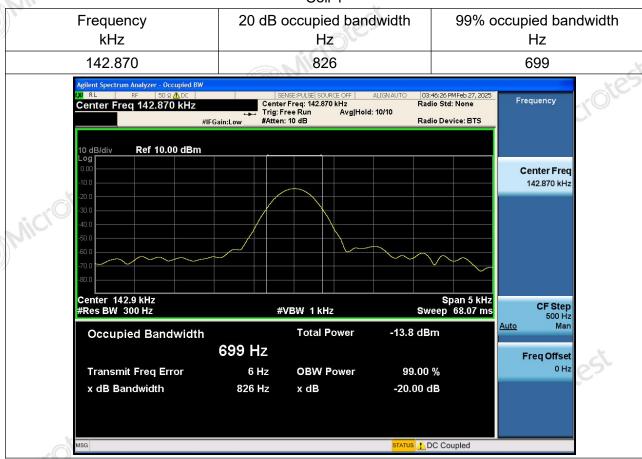

6.2.1 E.U.T. Operation:

	Operating Environment:							
	Temperature:	22.5 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa	
	Pre test mode:			Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12				
Final test mode:						were tested, only the data e11) is recorded in the repo		

6.2.2 Test Setup Diagram:

Microtest

TEST REPORT


Report No.: MTi250219007-0803E1

Microtest

6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Coil 1

Microlest

TEST REPORT

Report No.: MTi250219007-0803E1

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Coil 3

1 DC Coupled

Microtest

Microlest

TEST REPORT

Report No.: MTi250219007-0803E1

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Coil 2

! DC Coupled

Microtest

Report No.: MTi250219007-0803E1

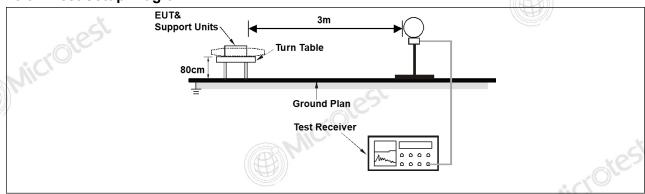
6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	In the emission table at The emission limits sho	this part, e.g., §§ 15.231 and pove, the tighter limit applies wn in the above table are based on the control of the control o	at the band edges.
atest	frequency bands 9–90 I Radiated emission limit measurements employi As shown in § 15.35(b) strength limits in paragr average limits. Howeve not exceed the maximu more than 20 dB under operation under paragra	ng a CISPR quasi-peak detector, 110–490 kHz and aboves in these three bands are bing an average detector. For frequencies above 1000 aphs (a) and (b) of this section, the peak field strength of a minimal permitted average limits any condition of modulation aph (b) of this section, the penillivolts/meter at 3 meters a	e 1000 MHz. ased on MHz, the field on are based on any emission shall specified above by . For point-to-point ask field strength
Test Method:	frequency bands 9–90 I Radiated emission limit measurements employi As shown in § 15.35(b) strength limits in paragr average limits. Howeve not exceed the maximu more than 20 dB under operation under paragra shall not exceed 2500 r	kHz, 110–490 kHz and aboves in these three bands are bing an average detector. For frequencies above 1000 aphs (a) and (b) of this section, the peak field strength of a minimum permitted average limits any condition of modulation aph (b) of this section, the pemillivolts/meter at 3 meters a	e 1000 MHz. ased on MHz, the field on are based on any emission shall specified above by . For point-to-point ask field strength

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22.5 °C		Humidity:	43 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12				
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report				

Mhici otest

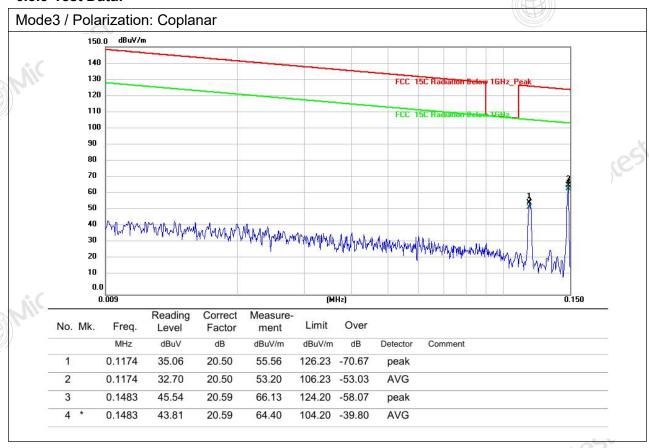

TEST REPORT

Report No.: MTi250219007-0803E1

Microtest

Microtest

6.3.2 Test Setup Diagram:

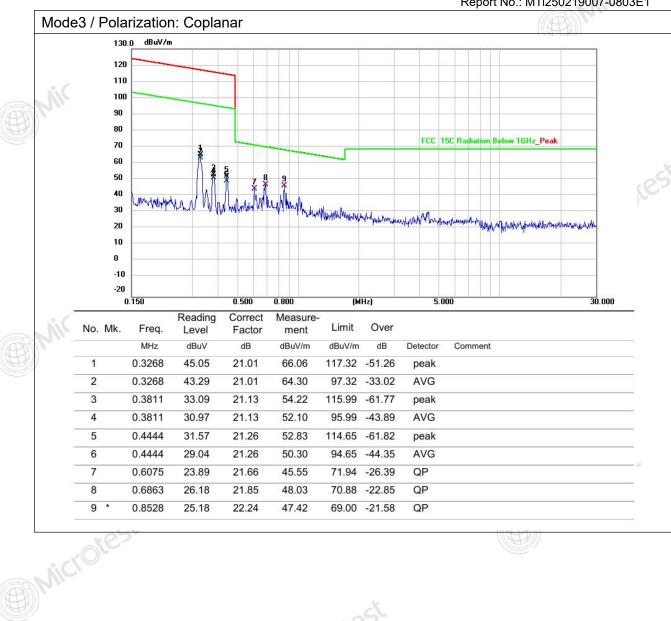

Microfest

TEST REPORT

Report No.: MTi250219007-0803E1

Microtest

6.3.3 Test Data:



Miciolesi **TEST REPORT**

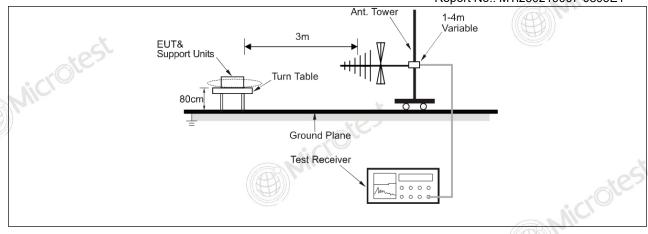
Report No.: MTi250219007-0803E1

Microtest

Report No.: MTi250219007-0803E1

6.4 Emissions in frequency bands (30MHz - 1GHz)

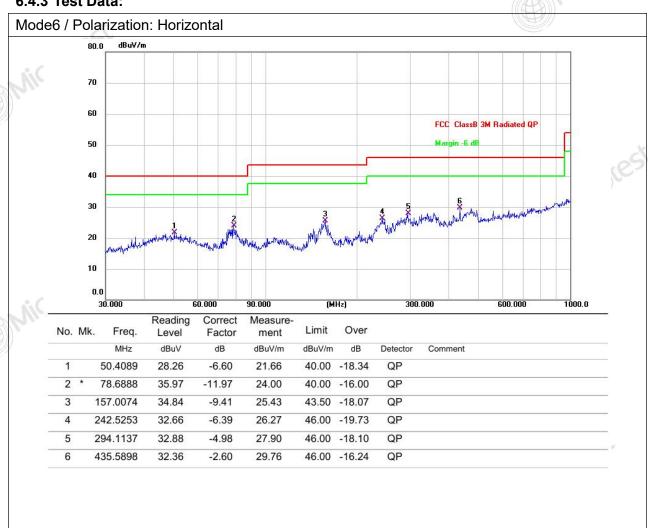
Test Requirement:	47 CFR Part 15.209		(Arrival)
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limi measurements employ As shown in § 15.35(b) strength limits in parag	this part, e.g., §§ 15.231 and bove, the tighter limit applies own in the above table are baing a CISPR quasi-peak detector, 110–490 kHz and abovets in these three bands are baing an average detector. If or frequencies above 1000 raphs (a) and (b) of this section	at the band edges. ased on ector except for the e 1000 MHz. ased on
atest	not exceed the maximumore than 20 dB under operation under paragr	er, the peak field strength of a um permitted average limits s any condition of modulation aph (b)of this section, the pe millivolts/meter at 3 meters a	any emission shall specified above by . For point-to-point ak field strength
Test Method:	not exceed the maximumore than 20 dB under operation under paragraball not exceed 2500	er, the peak field strength of a um permitted average limits s any condition of modulation aph (b)of this section, the pe millivolts/meter at 3 meters a	any emission shall specified above by . For point-to-point ak field strength


6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C		H	lumidity:	34 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12				
		All of the listed pre-test mode were tested, only the data of the worst mode (Mode6) is recorded in the report				

6.4.2 Test Setup Diagram:

Report No.: MTi250219007-0803E1

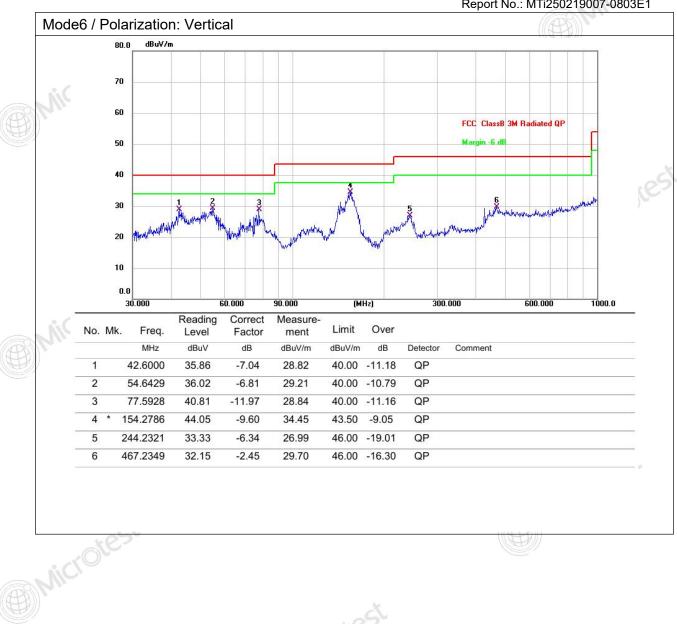


Report No.: MTi250219007-0803E1

Microtest

6.4.3 Test Data:

Microtest



MANICIOItest

TEST REPORT

Report No.: MTi250219007-0803E1

Microfest

TEST REPORT

Microtest

Report No.: MTi250219007-0803E1

Microfest

Microtest

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Microtest

Otest

Report No.: MTi250219007-0803E1

Photographs of the EUT

Refer to Appendix - EUT Photos

MNicrotest

Microfest

Report No.: MTi250219007-0803E1

Microtest

Microtest

- 1. This report is invalid without the seal and signature of the laboratory.
- 2. The test results of this report are only responsible for the samples submitted. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 3. The report shall not be partially reproduced without the written consent of the Laboratory.
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization.
- 5. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 6. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.