

Test Report

Report No. : MTi250219007-0903E1

Date of issue : 2025-05-27

Applicant : OXAA Corp.

Product : 5 in 1 Wireless Charging Stand with Alarm

Clock & Speaker

Model(s) : OXWC1320, OXWC2320

FCC ID : 2BNYA-OXWC1320

Shenzhen Microtest Co., Ltd.

Report No.: MTi250219007-0903E1

Table of contents

	lic _{tot}	Table of contents	
A PARIS	Gene	ral Description	4
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	4 6 6
2	Sumr	mary of Test Result	7 8
	3.1	Test laboratory	8
4 5	List of Evalu	of test equipmentuation Results (Evaluation)	12
6		Spectrum Matter Test Results (RF)	12
P	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 Photogra Appendix	Conducted Emission at AC power line 20dB Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz) phs of the test setup phs of the EUT (A: 20dB Emission Bandwidth (B: Maximum conducted output power (C: Carrier frequency separation	13162024263135
Α Α Δ	 Appendix Appendix Appendix	CD: Time of occupancy	52 58 60

Report No.: MTi250219007-0903E1

Test Result Certific	cation					
Applicant	OXAA Cor	OXAA Corp.				
Applicant Address	6-3545 Od	-3545 Odyssey Dr, Mississauga, ON L5M 2S4, Canada				
Manufacturer	OXAA Cor	p. WiCl				
Manufacturer Address	6-3545 Od	lyssey Dr, Mississauga, ON L5l	M 2S4, Canada			
Factory	Shenzhen	Aodehong Electronic Technolo	gy Co.,Ltd.			
Factory Address		, Building 2, Gaoya industrial p Street, Longgang District, She	ark, No. 8 Liuhe Road, Liuyue, nzhen City, Guangdong Province,			
Product description	n					
Product name	5 in 1 Wire	eless Charging Stand with Alarn	n Clock & Speaker			
Trademark	OXAA					
Model name	OXWC132	20	X			
Series Model(s)	OXWC232	20	crojest			
Standards	47 CFR Pa	CFR Part 15.247				
Test Method	KDB 5580 ANSI C63.	74 D01 15.247 Meas Guidance .10-2013	e v05r02			
Testing Informatio	n	*				
Date of test	2025-02-2	5 to 2025-05-23				
Test result	Pass		, Lest			
Prepared t	by:	Yanice.Xie	Yanice Xie			
Reviewed I	by:	David Lee	David. Lee			
Approved I	oy:	Lewis Lian	Yanice Xie David. Lee Lewis lian			

Report No.: MTi250219007-0903E1

1 General Description

1.1 Description of the EUT

EUI			
5 in 1 Wireless Charging Stand with Alarm Clock & Speaker			
OXWC1320			
eries Model(s): OXWC2320			
All the models are the same circuit and module, except the model name and color.			
Input:QC/PD 9V=3A Min Output:5W/7.5W/10W/15W(Smart Phone) Output:5W (Earphone) Output:2.5W (Smart Watch) Output:4 Ω 5W(BT Device) Battery:DC 3.7V 1000mAh 3.7Wh			
Cable: USB-C to USB-C cable 1.4m*1			
1.0			
1.0			
MTi250219007-09-R001			
V5.3			
2402-2480MHz			
79			
type: GFSK, π/4-DQPSK			
PCB Antenna			
-0.58 dBi			

1.2 Description of test modes

No. Emission test modes			
Mode1	TX-GFSK	, the	
Mode2	TX-π/4-DQPSK	(OKE)	

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
10	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465

Report No	MTi250219007-0903E1
INCOULTING	. WHIZOUZ 13007-0303E I

							174.4
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
60	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List Operation Band:

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10

Report No.: MTi250219007-0903E1

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment lis	st	10	
Description	Model	Serial No.	Manufacturer
HUAWEI QUICK CHARGE(65W)	HW-200200ZP1	JN67LSN7N03451	HUAWEI
Support cable list			
Description	Length (m)	From	То
vict _{Or} 1	/	1	/

1.5 Measurement uncertainty

Microtest

))	
Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Microlest

TEST REPORT

Report No.: MTi250219007-0903E1

Microtest

Microtest

2 Summary of Test Result

No.	Item	Requirement	Result
1(Antenna requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d)	Pass
9	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
		OKC	

Microtest

TEST REPORT

Report No.: MTi250219007-0903E1

Microfest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093
	Microtest

Report No.: MTi250219007-0903E1

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
xiC'	Conducted Emission at AC power line								
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03- 20	2025-03- 19			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03- 21	2025-03- 20			
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03- 20	2025-03- 19			

Emissions in non-restricted frequency bands 20dB Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time

1	Wideband Radio	Rohde&schwarz	CMW500	149155	2024-03-	2025-03-
	Communication Tester	Trondcascriwarz	OWW	143133	20	19
2	ESG Series Analog	Agilent	E4421B	GB400512	2024-03-	2025-03-
2	Ssignal Generator	Agiletit	E4421D	40	21	20
3	PXA Signal Analyzer	Agilent	N9030A	MY513502	2024-03-	2025-03-
3	PAA Signal Analyzei	Agliefit	N9030A	96	21	20
4	Synthesized Sweeper	Agilent	83752A	3610A019	2024-03-	2025-03-
4	Synthesized Sweeper	Agriefit	03/32A	57	21	20
5	MXA Signal Analyzer	Agilent	N9020A	MY501434	2024-03-	2025-03-
	WAA Signal Analyzei	Agiletit	N9020A	83	21	20
6	RF Control Unit	Tonscend	JS0806-1	19D80601	2024-03-	2025-03-
0	KF Control offic	Torisceria	330000-1	52	21	20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601	2024-03-	2025-03-
	Band Reject Filter Group	Torisceria	J30000-F	60	21	20
8	ESG Vector Signal	Agilent	N5182A	MY501437	2024-03-	2025-03-
0	Generator	Agliefit	NOTOZA	62	20	19
9	DC Power Supply	Agilent	E3632A	MY400276	2024-03-	2025-03-
9	DC Fowel Supply	Agiletit	EJUJZA	95	21	20
MIC		D	: (D!:-4-	-1\		

3.0		_		95		20			
Mile	Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)								
	En	nissions in frequenc	cy bands (above	: 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-	2025-03-			
	21111 100011001101	rtonaoaoannai2)	101100	20	19			
2	Double Ridged	schwarabeck	BBHA 9120 D	2278	2023-06-	2025-06-			
	Broadband Horn Antenna	Scriwarabeck	DDNA 9120 D	2210	17	16			
3	A molifier	Agilent	8449B	3008A0112	2024-03-	2025-03-			
J	Amplifier	Aglient	04490	0	20	19			
4	MXA signal analyzer	Agilopt	N9020A	MY544408	2024-03-	2025-03-			
4	WA Signal analyzei	Agilent	INSUZUA	59	21	20			
5	PXA Signal Analyzer	Agilopt	NOOSOA	MY513502	2024-03-	2025-03-			
3	PAA Signal Analyzei	Agilent	N9030A	96	21	20			
6	Horn ontonno	Cobwarzbook	BBHA 9170	00097	2023-06-	2025-06-			
0	Horn antenna	Schwarzbeck	DDDA 9170	00987	17	16			
7	Dro amplifier	Chana Dtranias	EWLAN1840	210405001	2024-03-	2025-03-			
4.0	Pre-amplifier	Space-Dtronics	G	210405001	21	20			

Emissions in frequency bands (below 1GHz)

1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Report No.: MTi250219007-0903E1

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03- 19

n. iciotest									
Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
	Conducted Emissi	on at AC power	line		IICI				
EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 14	2026-03- 13				
Artificial mains network	Schwarzbeck	NSLK 8127	183	2025-03- 18	2026-03- 17				
Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03- 17				
	EMI Test Receiver Artificial mains network	Conducted Emissi EMI Test Receiver Rohde&schwarz Artificial mains network Schwarzbeck Artificial Mains Network Rohde &	Conducted Emission at AC power EMI Test Receiver Rohde&schwarz ESCI3 Artificial mains network Schwarzbeck NSLK 8127 Artificial Mains Network Rohde & ESH2-75	Conducted Emission at AC power line EMI Test Receiver Rohde&schwarz ESCI3 101368 Artificial mains network Schwarzbeck NSLK 8127 183 Artificial Mains Network Rohde & ESH2-75 100263	Conducted Emission at AC power line EMI Test Receiver Rohde&schwarz ESCI3 101368 2025-03- 14 Artificial mains network Schwarzbeck NSLK 8127 183 2025-03- 18 Artificial Mains Network Rohde & ESH2-75 100263 2025-03-				

Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time

Emissions in non-restricted frequency bands 20dB Bandwidth

1		111 Charles 177				
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2025-03- 18	2026-03- 17
2	ESG Series Analog Ssignal Generator Agilent		E4421B	GB400512 40	2025-03- 14	2026-03- 13
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03- 13
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 14	2026-03- 13
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 14	2026-03- 13
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-03- 17
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 14	2026-03- 13
8	ESG Vector Signal Generator			MY501437 62	2025-03- 14	2026-03- 13
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-03- 17
	Er	Band edge emi	ssions (Radiated by bands (above		VICLO	
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06- 16
3	Amplifier	Agilent	8449B	3008A0112 0	2025-03- 18	2026-03- 17
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2025-03- 14	2026-03- 13
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03-

Microfest

TEST REPORT

Report No.: MTi250219007-0903E1

Microfest

Microtest

	No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
	6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06- 16
	70	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2025-03- 19	2026-03- 18
	10.	E	missions in frequen	cy bands (below	1GHz)		
	1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
	2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10
	3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
	4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17
	Mic	otest	<i>2.</i> (rotest			

Report No.: MTi250219007-0903E1

Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test	
Requirement	

MNicrotest

Microtest

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

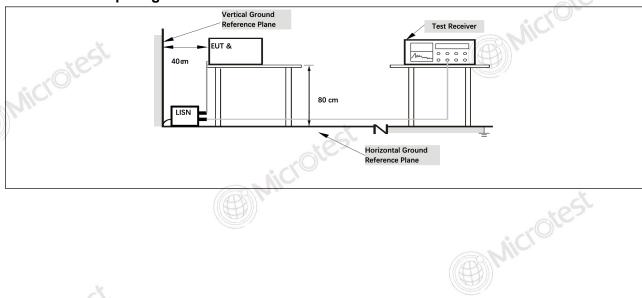
The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi250219007-0903E1

6 Radio Spectrum Matter Test Results (RF)

6.1 Conducted Emission at AC power line

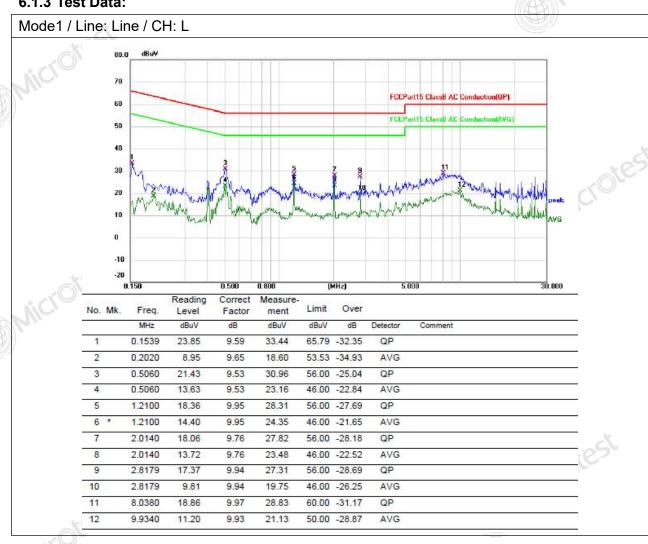

Test Requirement:	section, for an intentional radiato utility (AC) power line, the radio the AC power line on any frequent 30 MHz, shall not exceed the lim	CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this an intentional radiator that is designed to be connected to the public ower line, the radio frequency voltage that is conducted back onto it line on any frequency or frequencies, within the band 150 kHz to all not exceed the limits in the following table, as measured using a ms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµ\	·05				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50	1			
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25.9 °C		Humidity:	69 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2				
		All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report					

6.1.2 Test Setup Diagram:

Microfest


Microfest

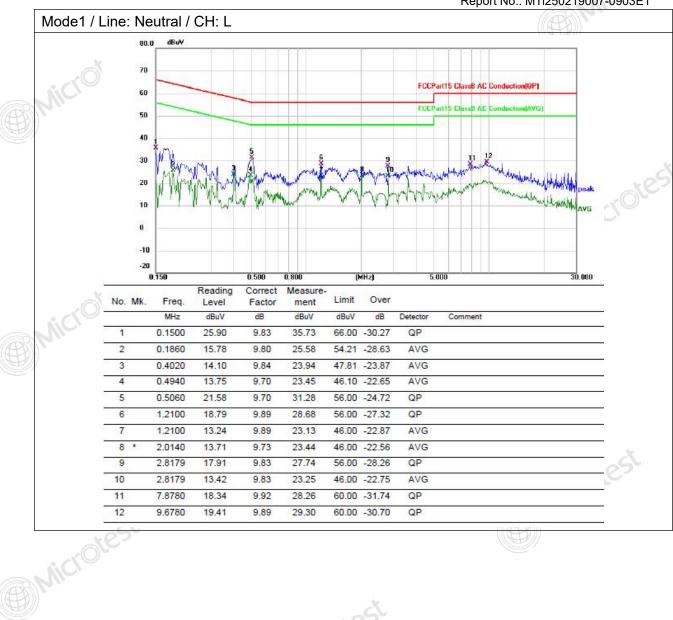
TEST REPORT

Report No.: MTi250219007-0903E1

Microtest

6.1.3 Test Data:

Microfest



Microtest

TEST REPORT

Report No.: MTi250219007-0903E1

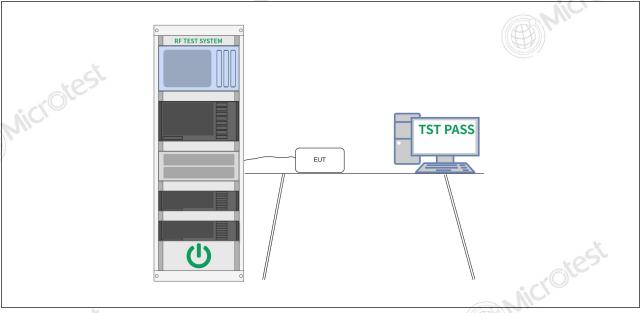
Microfest

Report No.: MTi250219007-0903E1

6.2 20dB Bandwidth

6.2 20dB Ba	nawiatn	
Test Requirement:	47 CFR 15.247(a)(1)	
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiated provisions to the general emission limits, as constant 15.257 and in subpart E of this part, must be abandwidth of the emission, or whatever bandwin the specific rule section under which the equipment is operated.	ontained in §§ 15.217 through designed to ensure that the 20 dB width may otherwise be specified juipment operates, is contained
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupie the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05	
Procedure:	a) The spectrum analyzer center frequency is center frequency. The span range for the EMI shall be between two times and five times the b) The nominal IF filter bandwidth (3 dB RBW 5% of the OBW and video bandwidth (VBW) s RBW, unless otherwise specified by the applic c) Set the reference level of the instrument as exceeding the maximum input mixer level for peak of the spectral envelope shall be more the the reference level. Specific guidance is giver d) Steps a) through c) might require iteration to tolerances. e) The dynamic range of the instrument at the than 10 dB below the target "-xx dB down" rerequirement calls for measuring the -20 dB C the selected RBW shall be at least 30 dB below	receiver or spectrum analyzer OBW. I) shall be in the range of 1% to shall be approximately three times cable requirement. Is required, keeping the signal from linear operation. In general, the han [10 log (OBW/RBW)] below in 4.1.5.2. It o adjust within the specified It is selected RBW shall be more equirement; that is, if the DBW, the instrument noise floor at
Microtest	reference value. f) Set detection mode to peak and trace mode g) Determine the reference value: Set the EU carrier or modulated signal, as applicable. Allo spectrum analyzer marker to the highest level reference value). h) Determine the "-xx dB down amplitude" us Alternatively, this calculation may be made by the instrument. i) If the reference value is determined by an u EUT modulation ON, and either clear the exist the spectrum analyzer and allow the new trace.	e to max hold. T to transmit an unmodulated ow the trace to stabilize. Set the l of the displayed trace (this is the ling [(reference value) – xx]. The using the marker-delta function of modulated carrier, then turn the sting trace or start a new trace on
Microtest	from step g) shall be used for step j). j) Place two markers, one at the lowest frequency of the envelope of the spectral disp slightly below the "-xx dB down amplitude" de below this "-xx dB down amplitude" value, the to this value. The occupied bandwidth is the fit two markers. Alternatively, set a marker at the of the spectral display, such that the marker is down amplitude" determined in step h). Reset move the marker to the other side of the emis amplitude is at the same level as the reference	play, such that each marker is at or termined in step h). If a marker is en it shall be as close as possible requency difference between the e lowest frequency of the envelope is at or slightly below the "-xx dB to the marker-delta function and esion until the delta marker

Report No.: MTi250219007-0903E1


Microtest

delta frequency reading at this point is the specified emission bandwidth.
k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Envi	ronmen	ıt:			St		
Temperature:	22.9°	С	Humidity:	61 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mode1, Mod		NiCl'			
Final test mode: Mode1, Mod			e1, Mode2				3

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Microlest

Please Refer to Appendix for Details.

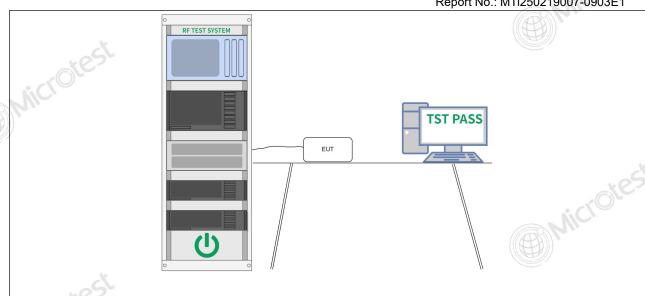
Report No.: MTi250219007-0903E1

6.3 Maximum Conducted Output Power

0.5 Maximum	ii Conducted Odtput Fower
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
Micie	 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
	e) A plot of the test results and setup description shall be included in the test report.
icrotest	NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

(Operating Envi	ronmer	nt:		-61		
Т	emperature:	22.9°	С	Humidity:	61 %	Atmospheric Pressure:	101 kPa
F	Pre test mode:	e: Mode1, Mo		e1, Mode2	CLO		
F	Final test mode: Mo		Mod	e1, Mode2			


6.3.2 Test Setup Diagram:

Report No.: MTi250219007-0903E1

Microfest

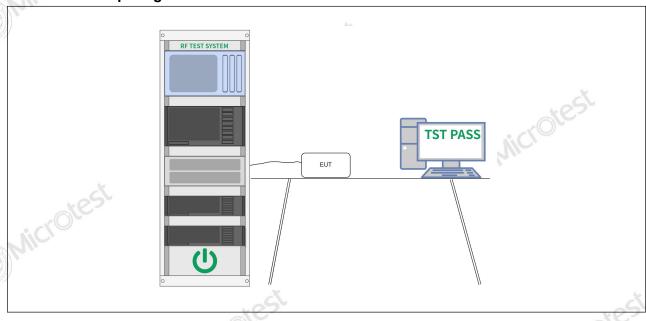
Microtest

6.3.3 Test Data:

Microtest

Microtest Please Refer to Appendix for Details.

Report No.: MTi250219007-0903E1


6.4 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	61 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mod		Mod	e1, Mode2			
Final test mode: Mo		Mod	e1, Mode2			

6.4.2 Test Setup Diagram:

Microtest

Microtest

TEST REPORT

Microtest

Report No.: MTi250219007-0903E1

Microfest

Microtest

Microtest

6.4.3 Test Data:

Please Refer to Appendix for Details.

Mobile: 131-4343-1439 (Wechat same number) Tel: 0755-88850135-1439 Web: http://www.mtitest.cn Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Ver./Rev.: A1

Microfest

E-mail: mti@51mti.com Page 21 of 72

Report No.: MTi250219007-0903E1

Microtest

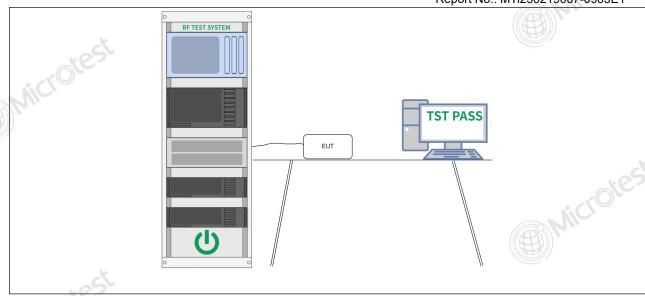
6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Mich	 b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.
	It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:

Operating Envi	ronmen	nt:				
Temperature:	22.9 °	С	Humidity:	61 %	Atmospheric Pressure:	101 kPa
Pre test mode:	re test mode: Mod		e1, Mode2		•	
Final test mode: Mo		Mod	e1, Mode2			

6.5.2 Test Setup Diagram:


Microlest

Report No.: MTi250219007-0903E1

Microfest

Microtest

6.5.3 Test Data:

Microtest

Please Refer to Appendix for Details.

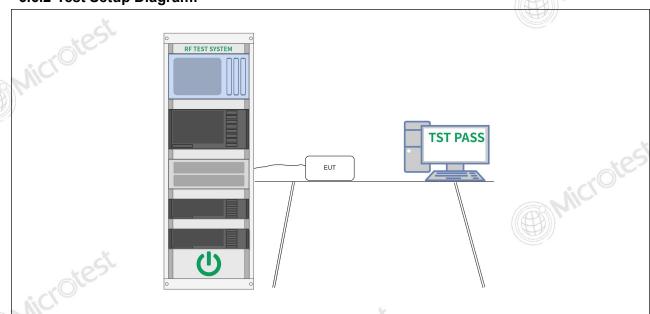
Report No.: MTi250219007-0903E1

6.6 Dwell Time

ne	
47 CFR 15.247(a)(1)(iii)	
Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employ Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are us	
ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	es
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak.	el;
Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the numb of hops over the period specified in the requirements. The sweep time shall equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirement) / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.	er be s, nts
	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employ Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the numbof hops over the period specified in the requirements. The sweep time shall equal to, or less than, the period specified in the requirements. Determine the number of hops over the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements. (Number of hops on spectrum analyzer) × (period specified in the requirement analyzer sweep time) The average time of occupancy is calculated fr

6.6.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.9 °	С	Humidity:	61 %	Atmo	ospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2					
Final test mode: Mod		Mod	e1, Mode2					-10



Report No.: MTi250219007-0903E1

Microtest

Microtest

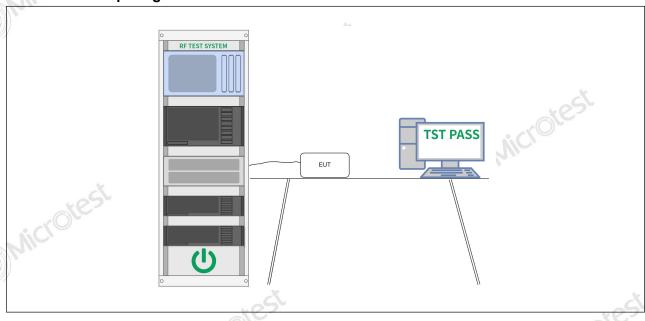
6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Microlest

Please Refer to Appendix for Details.

Report No.: MTi250219007-0903E1


6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

Operating Envi	ronmen	ıt:				. ~
Temperature:	22.9 °	С	Humidity:	61 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1, Mode2			
Final test mode	e :	Mod	e1. Mode2			

6.7.2 Test Setup Diagram:

Microtest

Microtest

TEST REPORT

Microtest

Report No.: MTi250219007-0903E1

Microfest

Microtest

Microtest

6.7.3 Test Data:

Please Refer to Appendix for Details.

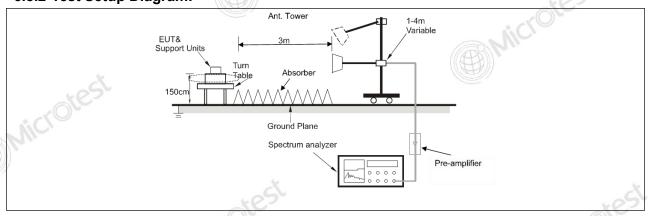
Mobile: 131-4343-1439 (Wechat same number) Tel: 0755-88850135-1439 Web: http://www.mtitest.cn Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Ver./Rev.: A1

Microtest

E-mail: mti@51mti.com Page 27 of 72

Report No.: MTi250219007-0903E1

6.8 Band edge emissions (Radiated)


'	J ,		
Test Requirement:	restricted bands, as define	l), In addition, radiated emed in § 15.205(a), must als n § 15.209(a)(see § 15.205	o comply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	radiators operating under bands 54-72 MHz, 76-88 loperation within these free part, e.g., §§ 15.231 and In the emission table about The emission limits shown employing a CISPR quasi	ve, the tighter limit applies on in the above table are ba -peak detector except for to ove 1000 MHz. Radiated o	cated in the frequency -806 MHz. However, under other sections of th at the band edges. sed on measurements he frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247		"est
Procedure:	ANSI C63.10-2013 section	n 6.10.5.2	

6.8.1 E.U.T. Operation:

Operating Envi	ronmer	nt:				
Temperature:	19.6°	С	Humidity:	48.2 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mod	e1, Mode2			
Final test mode):		f the listed pre e (Mode2) is		were tested, only the data the report	of the worst
Note:				ates		

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

Microfest

TEST REPORT

Report No.: MTi250219007-0903E1

6.8.3 Test Data:

: (No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
1110			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	48.89	-4.83	44.06	74.00	-29.94	peak
3	2		2310.000	38.07	-4.83	33.24	54.00	-20.76	AVG
	3		2390.000	54.77	-4.31	50.46	74.00	-23.54	peak
	4	*	2390.000	38.72	-4.31	34.41	54.00	-19.59	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.14	-4.83	43.31	74.00	-30.69	peak
2		2310.000	38.06	-4.83	33.23	54.00	-20.77	AVG
3		2390.000	51.97	-4.31	47.66	74.00	-26.34	peak
4	*	2390.000	38.14	-4.31	33.83	54.00	-20.17	AVG

Microfest

TEST REPORT

Report No.: MTi250219007-0903E1

Mhicrote:

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
i C			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
Mir.	1		2483.500	47.20	-4.21	42.99	74.00	-31.01	peak
	2		2483.500	37.98	-4.21	33.77	54.00	-20.23	AVG
	3		2500.000	48.48	-4.10	44.38	74.00	-29.62	peak
	4	*	2500.000	38.89	-4.10	34.79	54.00	-19.21	AVG

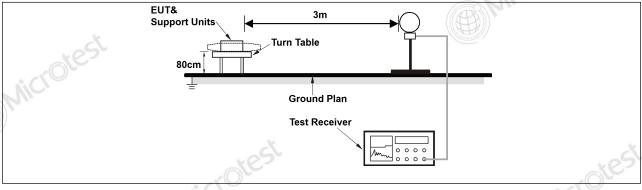
No.	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	49.26	-4.21	45.05	74.00	-28.95	peak
2		2483.500	38.25	-4.21	34.04	54.00	-19.96	AVG
3		2500.000	49.59	-4.10	45.49	74.00	-28.51	peak
4	*	2500.000	38.99	-4.10	34.89	54.00	-19.11	AVG

Report No.: MTi250219007-0903E1

6.9 Radiated emissions (below 1GHz)

	•		[[[N]-[]]]]	
Test Requirement:	restricted bands, as defi	(d), In addition, radiated en ined in § 15.205(a), must al I in § 15.209(a)(see § 15.20	so comply with the ra	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
Microtest	radiators operating under bands 54-72 MHz, 76-8 operation within these from part, e.g., §§ 15.231 and In the emission table ab The emission limits shown employing a CISPR quarkHz, 110–490 kHz and a shown in the emission limits shown employing a CISPR quarkHz, 110–490 kHz and a shown in the emission limits shown employing a CISPR quarkHz, 110–490 kHz and a shown in the emission limits shown	paragraph (g), fundamentally this section shall not be to 8 MHz, 174-216 MHz or 47 requency bands is permitted 15.241. ove, the tighter limit applies when in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employing	ocated in the frequence 0-806 MHz. However, d under other sections at the band edges. ased on measurementhe frequency bands emission limits in the	s of this ats 9–90 se
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.6.4 7 Meas Guidance v05r02	40	St.
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4	- 10 C	

6.9.1 E.U.T. Operation:

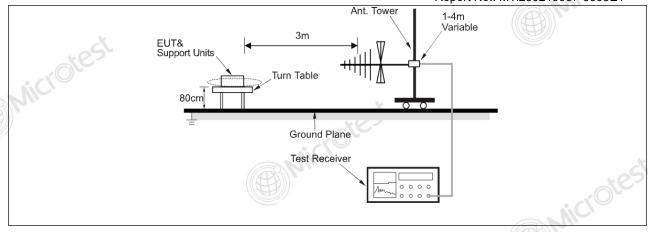

Operating Envir	ronmer	nt:				
Temperature:	19.6°	С	Humidity:	48.2 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mod	e1, Mode2			
Final test mode):		f the listed pr e (Mode2) is		were tested, only the data the report	of the worst

Note

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.9.2 Test Setup Diagram:

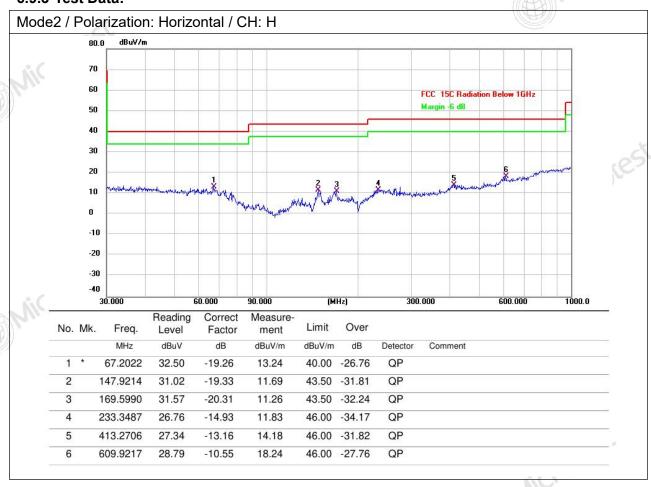

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Microtest

TEST REPORT

Report No.: MTi250219007-0903E1

Microtest

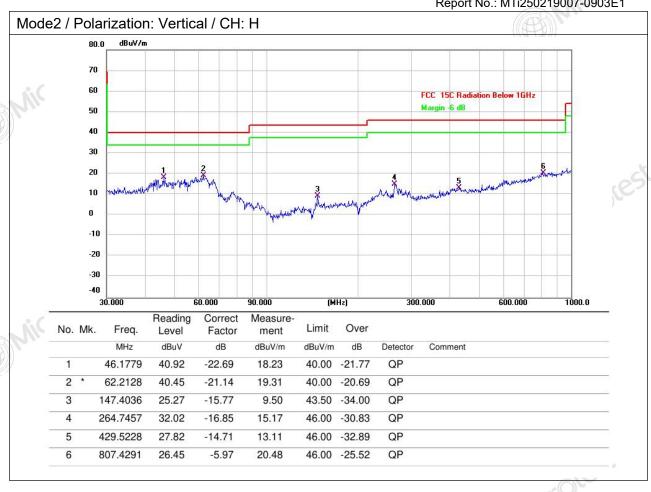


Report No.: MTi250219007-0903E1

Microtest

6.9.3 Test Data:

Microfest



Microtest

TEST REPORT

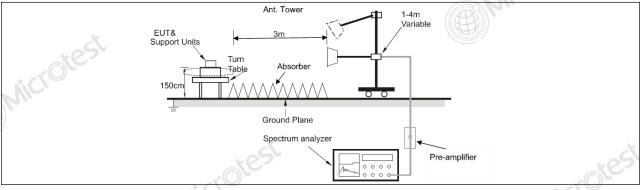
Report No.: MTi250219007-0903E1

Microtest

Report No.: MTi250219007-0903E1

6.10 Radiated emissions (above 1GHz)

	,			
Test Requirement:	restricted bands, as define	l), in addition, radiated emissioned in § 15.205(a), must also con § 15.209(a)(see § 15.205(c)	omply with the radi	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	ate,
	1.705-30.0	30 100 **	30	
	30-88		3	
	88-216	150 ** 200 **	3	
	216-960 Above 960	500	3	
Microtest	radiators operating under bands 54-72 MHz, 76-88 I operation within these fred part, e.g., §§ 15.231 and 7 In the emission table above The emission limits shown employing a CISPR quasi kHz, 110–490 kHz and ab	aragraph (g), fundamental em this section shall not be located MHz, 174-216 MHz or 470-80 quency bands is permitted und 15.241. We, the tighter limit applies at the in the above table are based peak detector except for the ove 1000 MHz. Radiated emis- measurements employing an	ed in the frequency 6 MHz. However, der other sections he band edges. I on measurements frequency bands 9 ssion limits in these	of this s 9–90 e
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247		tes	3
Procedure:	ANSI C63.10-2013 section	n 6.6.4	NICI	


6.10.1 E.U.T. Operation:

Operating Envi	ronmen	t:				
Temperature:	19.6 °	С	Humidity:	48.2 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mode	1, Mode2			
Final test mode) :			re-test mode recorded in	were tested, only the data the report	of the worst

Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Microtest

TEST REPORT

Report No.: MTi250219007-0903E1

6.10.3 Test Data:

Nic	No. Mk.	No.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	50.47	0.53	51.00	74.00	-23.00	peak
13	2		4804.000	44.74	0.53	45.27	54.00	-8.73	AVG
	3		7206.000	43.14	7.90	51.04	74.00	-22.96	peak
	4		7206.000	38.49	7.90	46.39	54.00	-7.61	AVG
	5		9608.000	45.56	8.85	54.41	74.00	-19.59	peak
	6	*	9608.000	39.27	8.85	48.12	54.00	-5.88	AVG

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	43.80	0.53	44.33	74.00	-29.67	peak
-	2		4804.000	39.70	0.53	40.23	54.00	-13.77	AVG
	3		7206.000	43.99	7.90	51.89	74.00	-22.11	peak
	4		7206.000	37.26	7.90	45.16	54.00	-8.84	AVG
	5		9608.000	45.04	8.85	53.89	74.00	-20.11	peak
	6	*	9608.000	38.27	8.85	47.12	54.00	-6.88	AVG

TEST REPORT

Report No.: MTi250219007-0903E1

Mhici otes

Mode	2 / Po	larız	ation: Horizo	ontal / CH: I	VI			((4	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
Ni C			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1111	1		4882.000	51.35	0.57	51.92	74.00	-22.08	peak
	2		4882.000	44.66	0.57	45.23	54.00	-8.77	AVG
	3		7323.000	43.31	7.57	50.88	74.00	-23.12	peak
	4		7323.000	37.62	7.57	45.19	54.00	-8.81	AVG
	5		9764.000	44.89	9.33	54.22	74.00	-19.78	peak
	6	*	9764.000	40.04	9.33	49.37	54.00	-4.63	AVG

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4882.000	46.65	0.57	47.22	74.00	-26.78	peak
-	2		4882.000	41.82	0.57	42.39	54.00	-11.61	AVG
	3		7323.000	43.11	7.57	50.68	74.00	-23.32	peak
	4		7323.000	37.67	7.57	45.24	54.00	-8.76	AVG
(5		9764.000	45.50	9.33	54.83	74.00	-19.17	peak
	6	*	9764.000	38.90	9.33	48.23	54.00	-5.77	AVG

TEST REPORT

Report No.: MTi250219007-0903E1

Mhici ote:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
sic C			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
111.	1		4960.000	51.41	0.66	52.07	74.00	-21.93	peak
	2		4960.000	46.57	0.66	47.23	54.00	-6.77	AVG
	3		7440.000	44.43	7.94	52.37	74.00	-21.63	peak
	4		7440.000	38.45	7.94	46.39	54.00	-7.61	AVG
-	5		9920.000	45.06	9.69	54.75	74.00	-19.25	peak
1.0	6	*	9920.000	38.43	9.69	48.12	54.00	-5.88	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	47.03	0.66	47.69	74.00	-26.31	peak
2		4960.000	41.73	0.66	42.39	54.00	-11.61	AVG
3		7440.000	44.28	7.94	52.22	74.00	-21.78	peak
4		7440.000	38.33	7.94	46.27	54.00	-7.73	AVG
5		9920.000	45.21	9.69	54.90	74.00	-19.10	peak
6	*	9920.000	38.58	9.69	48.27	54.00	-5.73	AVG

TEST REPORT

Microtest

Report No.: MTi250219007-0903E1

Microfest

Microtest

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Mhicrotest atest

Report No.: MTi250219007-0903E1

Photographs of the EUT

Refer to Appendix - EUT Photos

MNicrotest

Microfest

Microtest

Microtest

Microtest

TEST REPORT

Microtest

Report No.: MTi250219007-0903E1

Microfest

Microtest

Microtest

Appendix

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Report No.: MTi250219007-0903E1

Appendix A: 20dB Emission Bandwidth

Test Result

Microtest

Microlest

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	0.948
DH5	Ant1	2441	0.990
		2480	0.957
		2402	1.323
2DH5	Ant1	2441	1.335
	((A	2480	1.290
			Microle

Report No.: MTi250219007-0903E1

Test Graphs

TEST REPORT

Report No.: MTi250219007-0903E1

Microtest

Microtest

Report No.: MTi250219007-0903E1

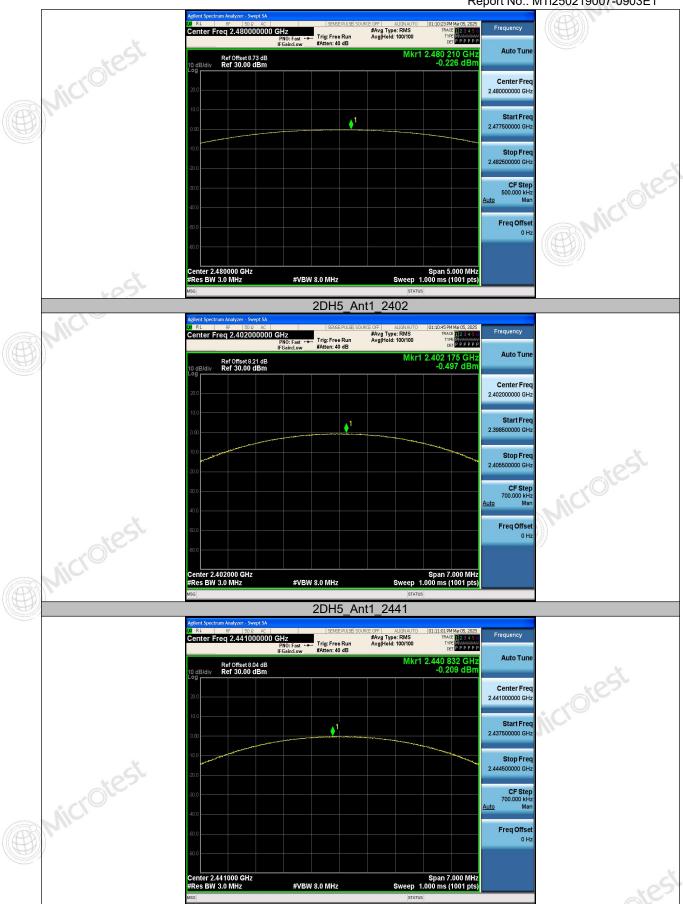
Appendix B: Maximum conducted output power

Test Result Peak

Microtest

Mhici otest

	Test Mode	Antenna	ra Frequency Conducted Peak Power [MHz] [dBm]		Limit [dBm]	Verdict
			2402	-1.35	≤20.97	PASS
	DH5	Ant1	2441	-0.95	≤20.97	PASS
			2480	-0.23	≤20.97	PASS
			2402	-0.50	≤20.97	PASS
	2DH5	Ant1	2441	-0.21	≤20.97	PASS
			2480	0.48	≤20.97	PASS



Report No.: MTi250219007-0903E1

Test Graphs

TEST REPORT

Report No.: MTi250219007-0903E1

Microtest

Microfest

Report No.: MTi250219007-0903E1

Appendix C: Carrier frequency separation

Test Result

Microtest

Microlest

	Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
1	DH5	Ant1	Нор	1.014	≥0.660	PASS
	2DH5	Ant1	Нор	1.006	≥0.890	PASS

Report No.: MTi250219007-0903E1

Test Graphs

Report No.: MTi250219007-0903E1

Microtest

Microtest

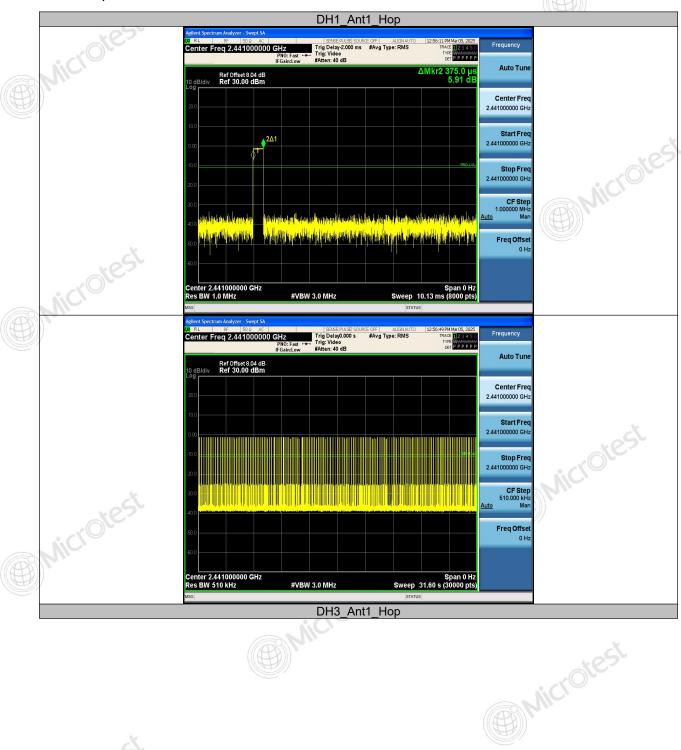
Appendix D: Time of occupancy

Test Result

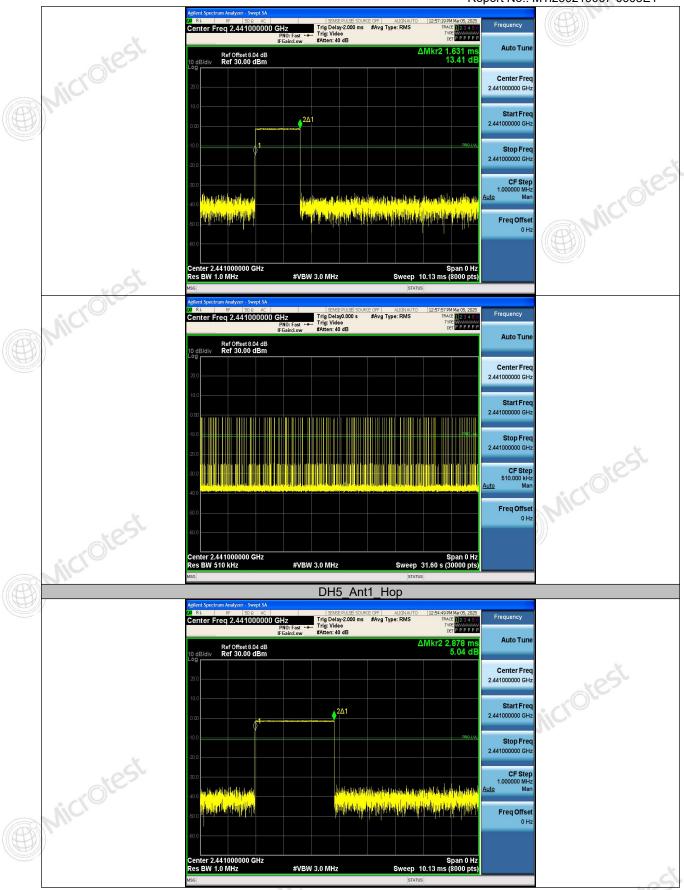
	Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
18	DH1	Ant1	Нор	0.375	315	0.118	≤0.4	PASS
	DH3	Ant1	Нор	1.631	156	0.254	≤0.4	PASS
//	DH5	Ant1	Нор	2.878	96	0.276	≤0.4	PASS
	2DH1	Ant1	Нор	0.385	319	0.123	≤0.4	PASS
	2DH3	Ant1	Нор	1.637	165	0.27	≤0.4	PASS
	2DH5	Ant1	Нор	2.884	111	0.32	≤0.4	PASS
1		ne = 0.4s * 7 me of occup			KOL			

Notes:

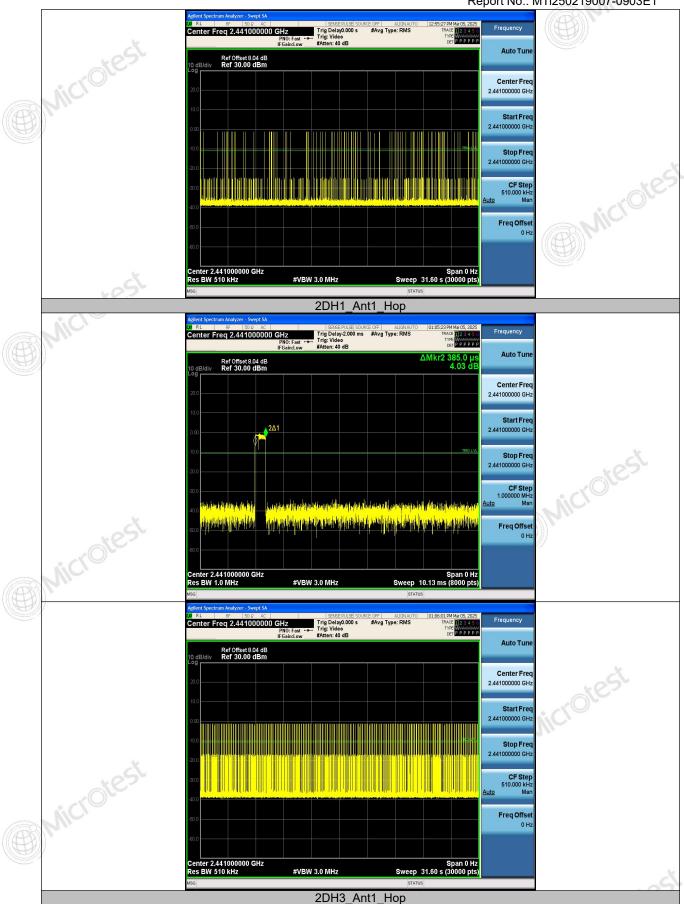
Microlest


- 1. Period time = 0.4s * 79 = 31.6s
- 2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Page 52 of 72 Ver./Rev.: A1



Report No.: MTi250219007-0903E1


Test Graphs

