

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT FCC PART 15.407

 Report Reference No......
 CTA25070500603

 FCC ID.....
 2BNXK-P-LFPO1

Compiled by

(position+printed name+signature)..:

File administrators Zoey Cao

Toey Con

Supervised by

(position+printed name+signature)..:

Project Engineer Ace Chai

Ace chem

Approved by

(position+printed name+signature)..:

RF Manager Eric Wang

Eric Wang

Date of issue...... Aug. 26, 2025

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Limpet Technology Co., Ltd.

Room 401, Building 11, Jiangganshan No.1 Garden, Buxin

Address.....: Community, Xin'an Sub-district, Bao'an, District, Shenzhen City,

Guangdong Province, China

Test specification....:

Standard...... FCC Part 15 Subpart E 15.407

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... Wali Smart Pet Feeder With Al Camera

Trade Mark..... Limpet

Manufacturer...... Shenzhen Limpet Technology Co., Ltd.

Model/Type reference.....: P-LFP01

Listed Models: N/A

Modulation Type.....: DSSS,OFDM

Operation Frequency.....: From 5180MHz to 5240MHz,5260MHz to 5320MHz,

5500MHz to 5700MHz, 5745MHz to 5825MHz

Rating...... Input: 5.0V==2.0A

Result.....: PASS

Page 2 of 37 Report No.: CTA25070500603

TEST REPORT

Equipment under Test Wali Smart Pet Feeder With Al Camera

P-LFP01 Model /Type

Applicant Shenzhen Limpet Technology Co., Ltd.

Address Room 401, Building 11, Jiangganshan No.1 Garden, Buxin

Community, Xin'an Sub-district, Bao'an, District, Shenzhen City,

Guangdong Province, China

Shenzhen Limpet Technology Co., Ltd. Manufacturer

Room 401, Building 11, Jiangganshan No.1 Garden, Buxin Address

Community, Xin'an Sub-district, Bao'an, District, Shenzhen City,

Guangdong Province, China

TESTING			
Test Result:	TATESTING	PASS	16

The test report merely corresponds to the test sample.

CTATE It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 37 Report No.: CTA25070500603

Contents

		Cont	ents
	1.1	TEST STANDARDS	No.
		CTA	
	2.	SUMMARY	
			5 5
	2.1.	General Remarks	5
	2.2.	Product Description	73 0541
	2.3.	Equipment Under Test	Test (EUT) 5
	2.4.	Short description of the Equipment under 1	25 0.04
	2.5. 2.6.	EUT operation mode	6
-TA 1.	2.6. 2.7.	Block Diagram of Test Setup	7
	2.7. 2.8.	Related Submittal(s) / Grant (s) Modifications	7
	2.8.	Modifications	-1G
		CIN	
	3.	TEST ENVIRONMENT	
			CTA
	3.1.	Address of the test laboratory	CTATES 8 8 8 8 8
	3.2.	Test Facility	8
	3.3.	Environmental conditions	8
	3.4.	Test Description	8
	3.5.	Statement of the measurement uncertainty	9
	3.6.	Equipments Used during the Test	9
		STIN	
		ATES	-0
	4.	TEST CONDITIONS AND RESUL	T S1
		TEST	20 29 30 31
	4.1.	AC Power Conducted Emission	-1NG 11
	4.2.	Radiated Emission	20
	4.3.	Duty Cycle	29
	4.4.	Maximum Average Output Power	30
	4.5.	Power Spectral Density	31
	4.6.	6dB Bandwidth	32
	4.7.	26dB Bandwidth	33
	4.8.	Antenna Requirement	34
	4.9.	Emissions at Restricted Band	35
TATE	-	.siG	
, , ,	_	TEAT ATTIN TESTING	
	5.	TEST SETUP PHOTOS OF THE E	EUT3
		C7h	
	6.	EXTERNAL AND INTERNAL PHO	TOS OF THE EUT3
			CTA .
			TESI
			CTA

Report No.: CTA25070500603 Page 4 of 37

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.407: UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB 789033 D02: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

Page 5 of 37 Report No.: CTA25070500603

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Aug. 04, 2025	
Testing commenced on		Aug. 04, 2025	ESTING
Testing concluded on		Aug. 26, 2025	CTATES
2.2 Product Description			

2.2. Product Description

Testing concluded on	: Aug. 26, 2025	
2.2. Product Descrip	otion	CTATI
Product Name:	Wali Smart Pet Feeder With Al Camera	7
Model/Typereference:	P-LFP01	7
Power supply:	Input: 5.0V2.0A	7
Adapter 1 information:	Model:HX13B-0502000-CU Input:AC 100-240V 50/60Hz 0.5A Max Output:DC 5V 2A	6
Hardware version:	RCV:03]
Software version:	Linux 4.19.164-tag-DK_VERSION armv7l	
testing sample ID:	CTA250705006-1# (Engineer sample) CTA250705006-2# (Normal sample)	
WIFI		
WLAN	Supported 802.11 a/n	7
Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)	7
C7h	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)	
Operation frequency	IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
Channel number	4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz)	TATE
	11 Channels for 20MHz bandwidth(5500-5700MHz)	Ç.,
	5 channels for 20MHz bandwidth(5745-5825MHz)	
Antenna type:	FPC Antenna	1
Antenna gain:	5.26dBi	7

CTATESTING

2.3. Equipment Under Test

Power supply system utilised

Refer to section 2.2

2.4. Short description of the Equipment under Test (EUT)

This is a Wali Smart Pet Feeder With Al Camera.

For more details, refer to the user's manual of the EUT.

LE21			
Test Software Version	Too	s software(ADB comr	mand)
Frequency	5180 MHz	5220 MHz	5240 MHz
802.11a	Default	Default	Default
802.11n20	Default	Default	Default
			TES

Test Software Version	n Tool	s software(ADB com	mand)
Frequency	5260 MHz	5300 MHz	5320 MHz
802.11a	Default	Default	Default
802.11n20	Default	Default	Default
TESTING			
CTATL			

Page 6 of 37 Report No.: CTA25070500603

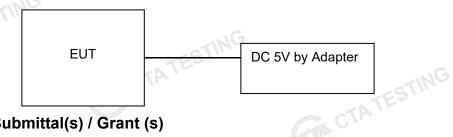
Test Software Version	Tools software(ADB command)		
Frequency	5500 MHz	5580 MHz	5700 MHz
802.11a	Default	Default	Default
802.11n20	Default	Default	Default

Test Software Version	Tools software(ADB command)		
Frequency	5745 MHz	5785 MHz	5825 MHz
802.11a	Default	Default	Default
802.11n20	Default	Default	Default

The application provider specific test software to control sample in continuous TX and RX.

IEEE 802.11a/n20:

TATE	
U-	NI-1
Channel	Frequency (MHz)
36	5180
40	5200
44	5220
48	5240


U-NI-2A			
	Channel		Frequency (MHz)
CIL	52	STING	5260
CAN	56	TES	5280
No. 1912 nontroller	60	CTA	5300
	64		5320
			- TATE
		LLMILOO	

	U-NI-2C		
	Channel	Frequency (MHz)	
	100	5500	
	104	5520	
TE	108	5540	
CTATL	112	5560	
	116	5580	
,	120	5600	
	124	5620	
	128	5640	
	132	5660	
	136	5680	
	140	5700	

	U-N	II-3
Cha	nnel	Frequency (MHz)
Clia	irinei	(MHz)
-STIP 1	49	5745
1	53	5765
Statute C 1	57	5785
1	61	5805
1	65	5825
	TA VIA	TESI
		CTA
		C

Page 7 of 37 Report No.: CTA25070500603

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria. CTATES

Report No.: CTA25070500603 Page 8 of 37

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:		15-35 ° C
A STATE OF THE STA		TES
Humidity:	N Co. 160	30-60 %
Atmospheric pressure:	PAD BRUTHING	950-1050mbar

3.4. Test Description

	FCC Requirement		
	FCC Part 15.207	AC Power Conducted Emission	PASS
CTA	FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	PASS
	FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS
	FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
	FCC Part 15.407(a)	Peak Power Spectral Density	PASS
	FCC Part 15.407(g)	Frequency Stability	PASS
G	FCC Part 15.407(b)	Undesirable emission	PASS
	FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
	FCC Part 15.407(h)	Dynamic Frequency Selection	PASS
	FCC Part 15.203/15.247(b)	Antenna Requirement	PASS
	TAY 2		

Remark:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Page 9 of 37 Report No.: CTA25070500603

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

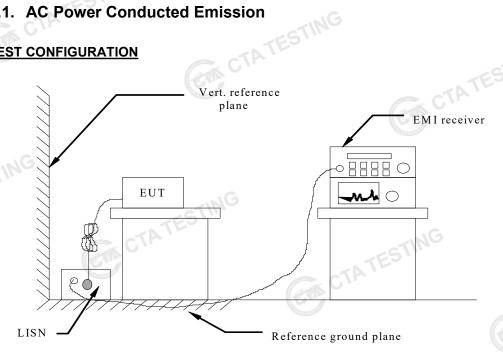
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density		0.57 dB	(1)
Spectrum bandwidth		1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)
Time	1	±2%	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

1	• •	Used during the			TESTING	
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibr Due I
	LISN	R&S	ENV216	CTA-308	2025/08/04	2026/
	LISN	R&S	ENV216	CTA-314	2025/07/30	2026/
TE	EMI Test Receiver	R&S	ESPI	CTA-307	2025/07/30	2026/
. "	EMI Test Receiver	R&S	ESCI	CTA-306	2025/07/30	2026/
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2025/07/30	2026/
	Vector Signal generator	Agilent	N5182A	CTA-305	2025/07/30	2026/
	Analog Signal Generator	R&S	E4421B	CTA-304	2025/07/30	2026/
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2025/07/30	2026/
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2025/07/31	2026/
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/
/	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/
(a)	Horn Antenna	Schwarzbeck	BBHA 9170	CTA-346	2025/05/18	2028/
	Amplifier	Schwarzbeck	BBV9745	CTA-312	2025/07/30	2026/
	Amplifier	Tonscend	TAP-011840	CTA-313	2025/07/30	2026/
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2025/07/30	2026/
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2025/07/30	2026/
	Automatic control	Tonscend	JS0806-2	CTA-404	2025/07/30	2026/


			GIA			ATESI"
	Report No.: CTA25	070500603			Page 10 of	37
1G	unit		T I		Towns and the same of the same	
	Power Sensor	Agilent	U2021XA	CTA-405	2025/07/30	2026/07/29
	Amplifier	SKET	LNPA 1840G-50	CTA-345	2025/05/17	2026/05/16
	Spectrum analyzer	R&S	FSV40-N	CTA-344	2025/05/17	2026/05/16
	Power Meter	R&S	NRVS	CTA-354	2025/07/30	2026/07/29
	Attenuator	XINQY	10dB	N/A	N/A	N/A
	Programmable Constant Temperature And Humidity Test Chamber	DONGGUAN JINGYU	HT-H-408	CTA-053	2025/07/30	2026/07/29
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
TE	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
CTA		CTATESTING	C.T.P	TESTING		TING

Page 11 of 37 Report No.: CTA25070500603

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

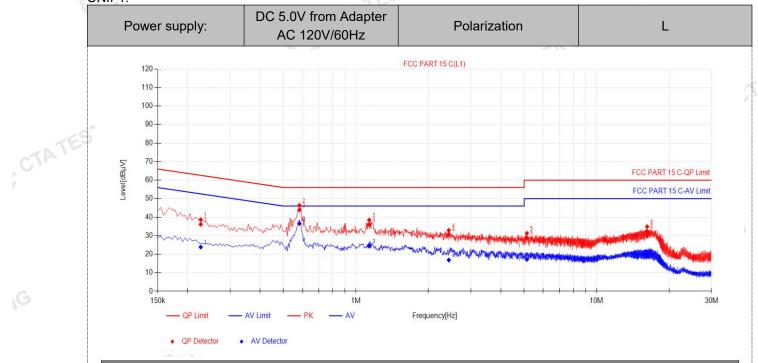
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (c	lBuV)
1 requericy range (wiriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	
TEST RESULTS	ATESTI	TING
Remark:		ATES

TEST RESULTS



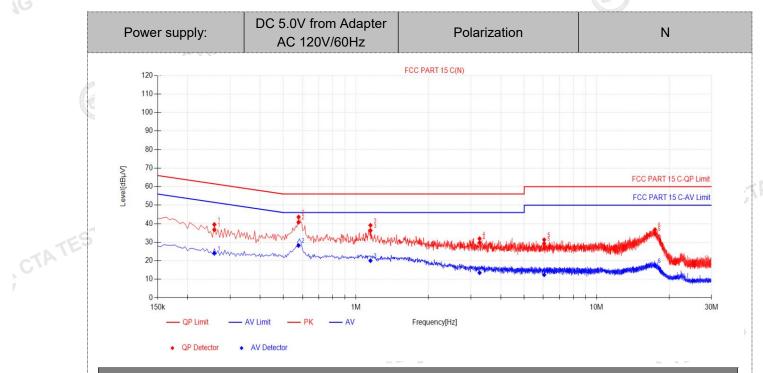
Page 12 of 37 Report No.: CTA25070500603

1. All modes of 802.11a/n were test at Low, Middle, and High channel; only the worst result of 802.11a Middle Channel was reported as below:

Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

UNII-1:

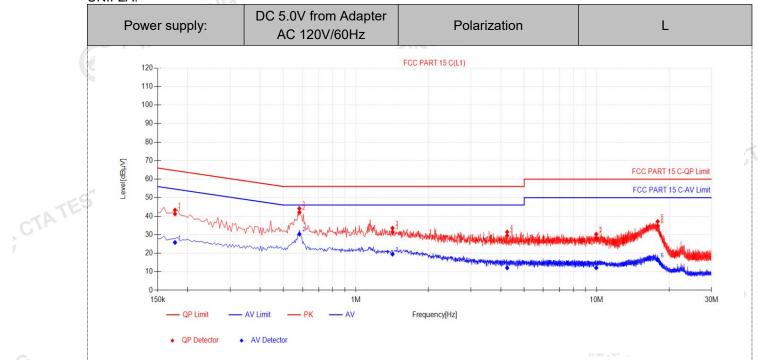
Final	Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.2265	10.01	26.13	36.14	62.58	26.44	13.84	23.85	52.58	28.73	PASS
2	0.582	10.04	33.84	43.88	56.00	12.12	26.55	36.59	46.00	9.41	PASS
3	1.1355	9.90	26.03	35.93	56.00	20.07	14.48	24.38	46.00	21.62	PASS
4	2.4315	10.08	20.73	30.81	56.00	25.19	6.76	16.84	46.00	29.16	PASS
5	5.1315	10.01	18.88	28.89	60.00	31.11	7.18	17.19	50.00	32.81	PASS
6	16.2195	10.33	21.98	32.31	60.00	27.69	8.60	18.93	50.00	31.07	PASS


Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- CTATESTING 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

CTATESTING

Page 13 of 37 Report No.: CTA25070500603

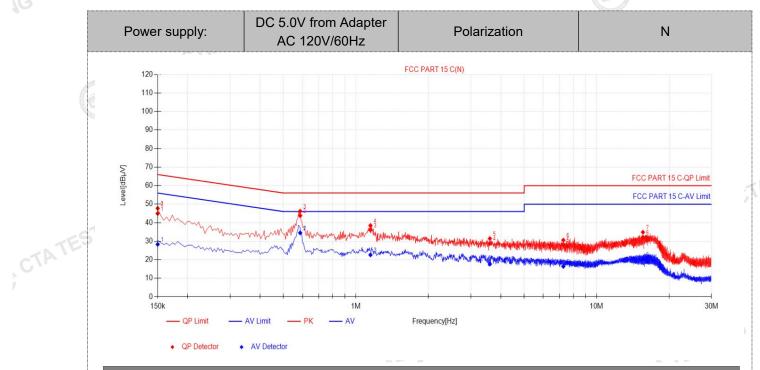

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.258	10.00	26.76	36.76	61.50	24.74	14.02	24.02	51.50	27.48	PASS
2	0.5775	10.12	30.66	40.78	56.00	15.22	18.12	28.24	46.00	17.76	PASS
3	1.149	10.17	26.16	36.33	56.00	19.67	9.86	20.03	46.00	25.97	PASS
4	3.264	10.21	19.58	29.79	56.00	26.21	3.28	13.49	46.00	32.51	PASS
5	6.054	10.26	19.01	29.27	60.00	30.73	2.15	12.41	50.00	37.59	PASS
6	17.475	10.49	24.16	34.65	60.00	25.35	6.84	17.33	50.00	32.67	PASS
ote:1)). Fac	.QP Value tor (dB)=ir Margin(dB	e (dBµV) nsertion	= QP Realoss of LIS	ading (dl SN (dB)	BμV)+ Fa + Cable	actor (dE loss (dB		17.33		32.67	

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- .J. AV 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

CATE

Page 14 of 37 Report No.: CTA25070500603

UNII-2A:

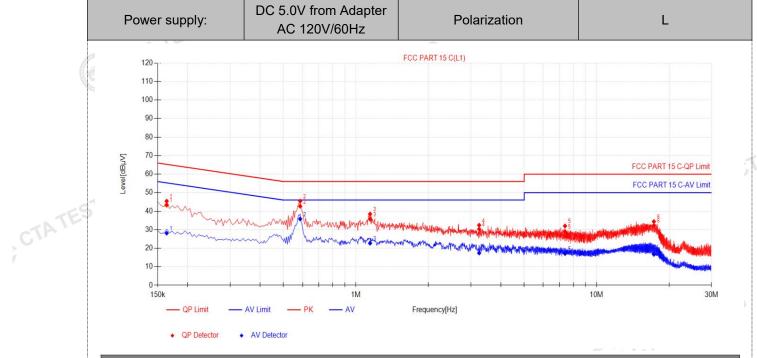


NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP Value [dBµV]	QP Limit [dBµ√]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμ∨]	AV Margin [dB]	Verdict
1	0.177	9.99	31.23	41.22	64.63	23.41	15.81	25.80	54.63	28.83	PASS
2	0.582	10.04	32.02	42.06	56.00	13.94	20.23	30.27	46.00	15.73	PASS
3	1.419	9.90	21.57	31.47	56.00	24.53	9.57	19.47	46.00	26.53	PASS
4	4.2495	9.94	19.51	29.45	56.00	26.55	2.12	12.06	46.00	33.94	PASS
5	9.969	10.25	17.81	28.06	60.00	31.94	1.86	12.11	50.00	37.89	PASS
6	17.9385	10.37	24.42	34.79	60.00	25.21	6.05	16.42	50.00	33.58	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING

Report No.: CTA25070500603 Page 15 of 37

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP Value [dBµV]	QP Limit [dBµ∨]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	A∨ Limit [dBµ∨]	AV Margin [dB]	Verdict
1	0.15	9.98	34.97	44.95	66.00	21.05	18.35	28.33	56.00	27.67	PASS
2	0.5865	10.13	33.66	43.79	56.00	12.21	24.36	34.49	46.00	11.51	PASS
3	1.149	10.17	25.89	36.06	56.00	19.94	12.44	22.61	46.00	23.39	PASS
4	3.6015	10.17	18.57	28.74	56.00	27.26	7.48	17.65	46.00	28.35	PASS
5	7.2735	10.42	17.53	27.95	60.00	32.05	5.98	16.40	50.00	33.60	PASS
6	15.576	10.44	21.70	32.14	60.00	27.86	9.74	20.18	50.00	29.82	PASS
Facto	QP Value or (dB)=in largin(dB)	sertion I	oss of LIS	SN (dB) -	+ Cable I	oss (dB))	CTA	1		


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- .J. AV 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

GACTATE

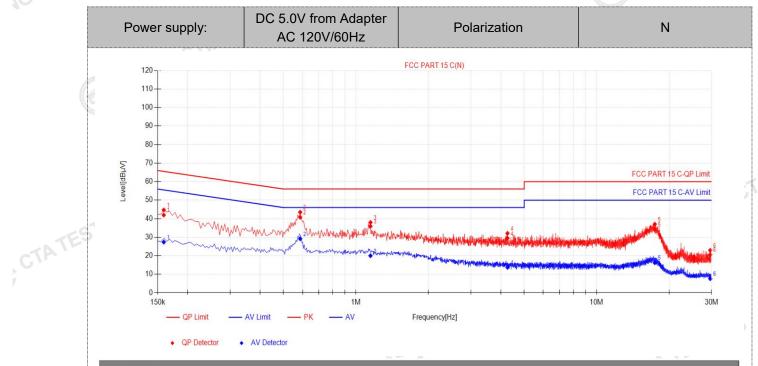
Report No.: CTA25070500603 Page 16 of 37

UNII-2C:

CTATES

Fina	l Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	A∀ Reading [dBμ∀]	AV Value [dBµV]	AV Limit [dBµ√]	AV Margin [dB]	Verdict
1	0.1635	9.93	33.31	43.24	65.28	22.04	18.20	28.13	55.28	27.15	PASS
2	0.5865	10.04	32.63	42.67	56.00	13.33	25.76	35.80	46.00	10.20	PASS
3	1.1445	9.90	25.78	35.68	56.00	20.32	12.82	22.72	46.00	23.28	PASS
4	3.2505	9.99	20.33	30.32	56.00	25.68	7.43	17.42	46.00	28.58	PASS
5	7.3905	10.29	18.73	29.02	60.00	30.98	6.83	17.12	50.00	32.88	PASS
6	17.304	10.36	21.93	32.29	60.00	27.71	6.33	16.69	50.00	33.31	PASS

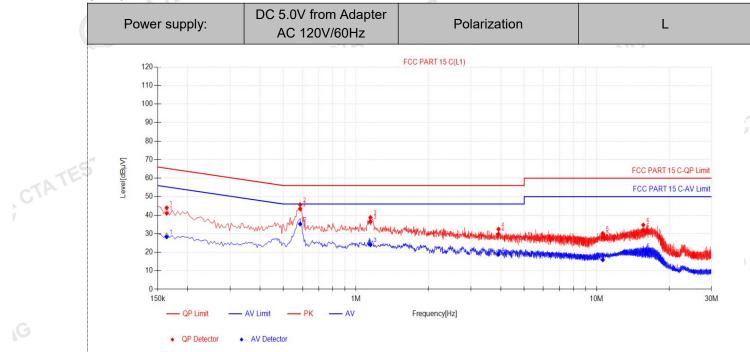
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

CTA TESTING

CTATESTING

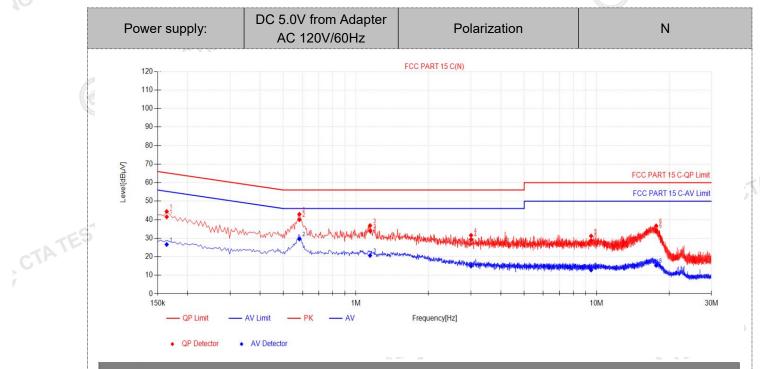
CTATE


Page 17 of 37 Report No.: CTA25070500603

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP Value [dBµV]	QP Limit [dBµ∨]	QP Margin [dB]	A∀ Reading [dBμ∀]	AV Value [dBµV]	AV Limit [dΒμ√]	AV Margin [dB]	Verdict
1	0.159	10.03	31.92	41.95	65.52	23.57	17.33	27.36	55.52	28.16	PASS
2	0.5865	10.13	30.61	40.74	56.00	15.26	19.03	29.16	46.00	16.84	PASS
3	1.149	10.17	25.75	35.92	56.00	20.08	9.82	19.99	46.00	26.01	PASS
4	4.263	10.11	19.34	29.45	56.00	26.55	3.64	13.75	46.00	32.25	PASS
5	17.4525	10.49	23.77	34.26	60.00	25.74	5.72	16.21	50.00	33.79	PASS
6	29.6655	10.83	9.71	20.54	60.00	39.46	-3.24	7.59	50.00	42.41	PASS
. Fac	.QP Value tor (dB)=ir Margin(dB	nsertion [°]	loss of LIS	SN (dB)	+ Cable	loss (dB	s))	CTA	1		

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- ,. AV 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

UNII-3:



NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP ∀alue [dBµ∀]	QP Limit [dBµ∨]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBμV]	AV Limit [dBµ∀]	AV Margin [dB]	Verdict
1	0.1635	9.93	31.06	40.99	65.28	24.29	18.34	28.27	55.28	27.01	PASS
2	0.5865	10.04	33.40	43.44	56.00	12.56	25.22	35.26	46.00	10.74	PASS
3	1.149	9.90	26.61	36.51	56.00	19.49	14.10	24.00	46.00	22.00	PASS
4	3.912	9.93	19.96	29.89	56.00	26.11	8.93	18.86	46.00	27.14	PASS
5	10.608	10.26	17.83	28.09	60.00	31.91	5.63	15.89	50.00	34.11	PASS
6	15.6255	10.32	21.53	31.85	60.00	28.15	10.60	20.92	50.00	29.08	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

CTA TESTING

Page 19 of 37 Report No.: CTA25070500603

Fina	I Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μ√]	QP Value [dBµV]	QP Limit [dBµ√]	QP Margin [dB]	A∀ Reading [dBμ∀]	AV Value [dBµV]	AV Limit [dBµ∀]	AV Margin [dB]	Verdict
1	0.1635	10.05	31.46	41.51	65.28	23.77	16.56	26.61	55.28	28.67	PASS
2	0.582	10.13	29.87	40.00	56.00	16.00	19.46	29.59	46.00	16.41	PASS
3	1.1445	10.16	23.76	33.92	56.00	22.08	10.49	20.65	46.00	25.35	PASS
4	3.0075	10.24	19.11	29.35	56.00	26.65	4.72	14.96	46.00	31.04	PASS
5	9.4875	10.40	18.35	28.75	60.00	31.25	2.44	12.84	50.00	37.16	PASS
6	17.682	10.50	23.63	34.13	60.00	25.87	4.81	15.31	50.00	34.69	PASS
2). Fac).QP Value tor (dB)=ir Margin(dB	nsertion	loss of LIS	SN (dB)	+ Cable	loss (dB	3)	CTA	1		

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- ,. AV 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

CTATE

Report No.: CTA25070500603 Page 20 of 37

4.2. Radiated Emission

Limit

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

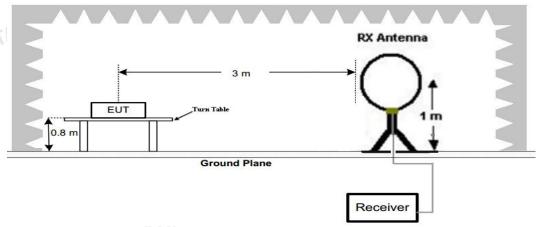
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)	(-SVA)	TES
15.407(b)(2)	PK:-27(dBm/MHz)	PK:68.2(dBµV/m)
15.407(b)(3)	PK27 (UDIII/IVITIZ)	PK.00.2(αΒμν/III)
15.407(b)(4)		

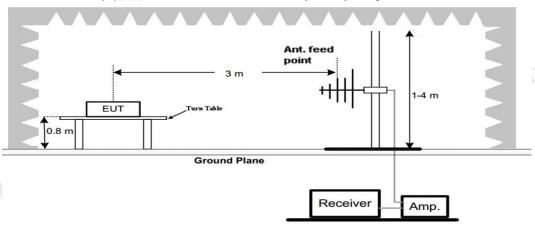
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m}$$
, where P is the eirp (Watts)

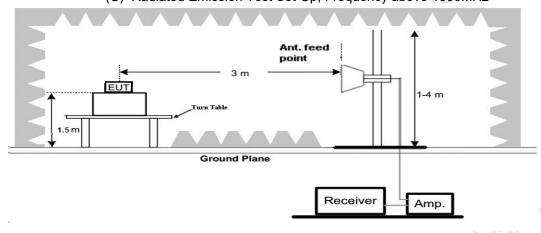
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

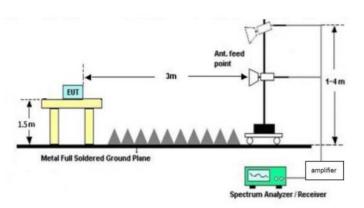

Radiated emission limits

	1100	nated chilecteri in the	
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3,16	40.0	100
88-216	7ES3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500
		CIA CIA	CTATESTING
	0.009-0.49 0.49-1.705 1.705-30 30-88 88-216 216-960	Frequency (MHz) Distance (Meters) 0.009-0.49 3 0.49-1.705 3 1.705-30 3 30-88 3 88-216 3 216-960 3	0.009-0.49 3 20log(2400/F(KHz))+40log(300/3) 0.49-1.705 3 20log(24000/F(KHz))+40log(30/3) 1.705-30 3 20log(30)+40log(30/3) 30-88 3 40.0 88-216 3 43.5 216-960 3 46.0 Above 960 3 54.0


Report No.: CTA25070500603 Page 21 of 37

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

TESTING

Page 22 of 37 Report No.: CTA25070500603

Test Procedure

Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.

- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 40GHz.
- The distance between test antenna and EUT as following table states:

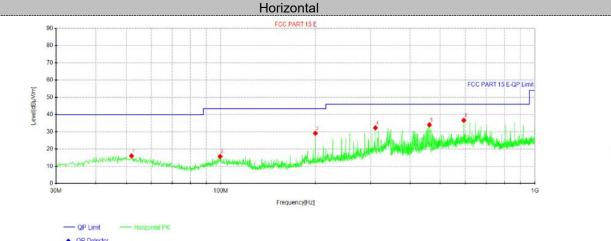
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

	10GHZ-23GHZ	nom Antenna			
t	ting test receiver/spectru	m as following table states:			
	Test Frequency range	Test Receiver/Spectrum Setting	D	etector	CTING
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto		QP	.5
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	0.10	QP	
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto		QP	
		Peak Value: RBW=1MHz/VBW=3MHz,	Donardin		
	1GHz-40GHz	Sweep time=Auto		Peak	
	10112-400112	Average Value: RBW=1MHz/VBW=10Hz,		reak	
	STILL	Sweep time=Auto			
	CATE				
?	<u>ESULTS</u>				
C:		TATES			

TEST RESULTS

Remark:

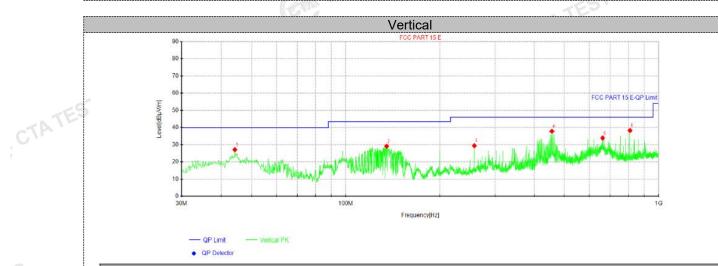

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- All 802.11a / 802.11n/ (HT20)modes have been tested for above 1GHz test, for below 1GHz test, only the worst case 802.11a low channel was recorded.
- All 802.11a / 802.11n (HT20) modes have been tested for above 1GHz test, for above 1GHz test, only the worst case 802.11a was recorded.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. GTA TESTING

Page 23 of 37 Report No.: CTA25070500603

UNII-1:

CTATES

For 30MHz-1GHz



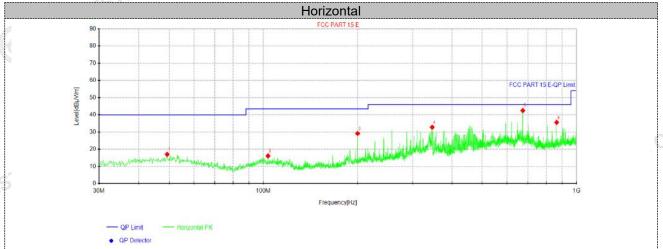
QP Detector

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµ∀]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	51.9462	27.34	16.04	-11.30	40.00	23.96	100	341	Horizontal
2	99.4762	28.75	15.72	-13.03	43.50	27.78	100	306	Horizontal
3	199.992	41.96	29.16	-12.80	43.50	14.34	100	3	Horizontal
4	310.572	43.20	32.31	-10.89	46.00	13.69	100	218	Horizontal
5	461.65	43.67	34.05	-9.62	46.00	11.95	100	140	Horizontal
6	594.055	42.86	36.68	-6.18	46.00	9.32	100	45	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

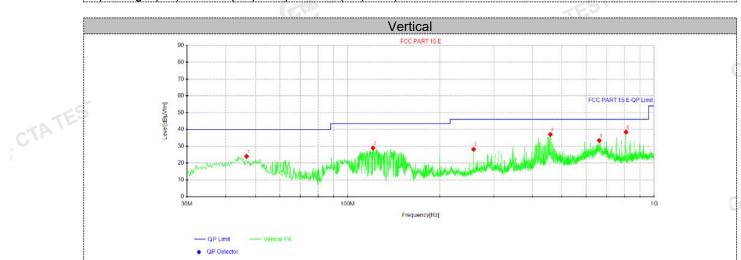
Susp	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalavita
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	44.1862	38.66	27.13	-11.53	40.00	12.87	100	244	Vertical
2	135.002	45.23	29.14	-16.09	43.50	14.36	100	298	Vertical
3	257.586	41.43	29.43	-12.00	46.00	16.57	100	262	Vertical
4	455.951	47.56	37.84	-9.72	46.00	8.16	100	210	Vertical
5	662.318	39.38	33.91	-5.47	46.00	12.09	100	123	Vertical
6	810.001	42.63	38.29	-4.34	46.00	7.71	100	253	Vertical


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25070500603 Page 24 of 37

UNII-2A:

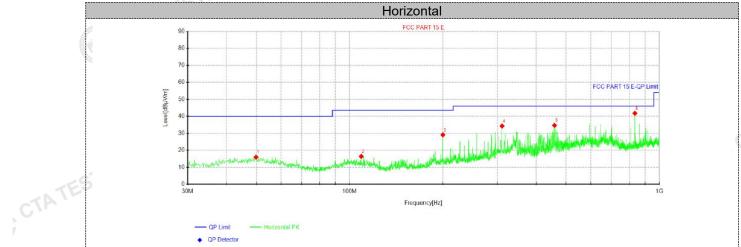

For 30MHz-1GHz

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	49.2788	28.22	17.04	-11.18	40.00	22.96	100	8	Horizontal
2	103.477	29.11	16.10	-13.01	43.50	27.40	100	281	Horizonta
3	199.992	41.96	29.16	-12.80	43.50	14.34	100	29	Horizontal
4	346.098	43.54	32.81	-10.73	46.00	13.19	100	256	Horizontal
5	673.837	47.91	42.53	-5.38	46.00	3.47	100	90	Horizonta
6	864.078	39.16	35.62	-3.54	46.00	10.38	100	151	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

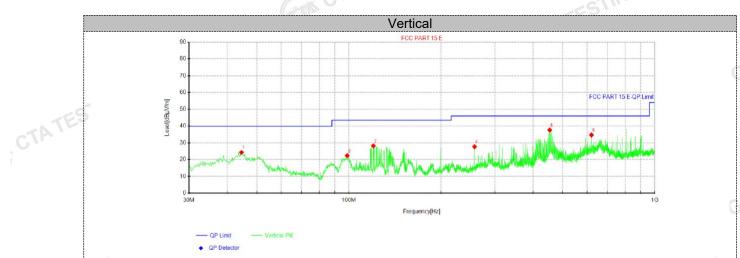
Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	46.7325	35.29	23.94	-11.35	40.00	16.06	100	167	Vertical
2	120.937	43.15	28.91	-14.24	43.50	14.59	100	332	Vertical
3	257.586	40.14	28.14	-12.00	46.00	17.86	100	10	Vertical
4	458.618	46.63	36.94	-9.69	46.00	9.06	100	158	Vertical
5	662.197	38.83	33.36	-5.47	46.00	12.64	100	106	Vertical
6	810.001	42.71	38.37	-4.34	46.00	7.63	100	281	Vertical


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25070500603 Page 25 of 37

UNII-2C:


For 30MHz-1GHz

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	49.885	27.07	15.93	-11.14	40.00	24.07	100	3	Horizontal
2	109.055	29.68	16.40	-13.28	43.50	27.10	100	299	Horizontal
3	199.992	41.88	29.08	-12.80	43.50	14.42	100	20	Horizontal
4	310.572	45.19	34.30	-10.89	46.00	11.70	100	282	Horizontal
5	458.74	44.34	34.65	-9.69	46.00	11.35	100	151	Horizontal
6	833.766	45.94	41.78	-4.16	46.00	4.22	100	8	Horizontal

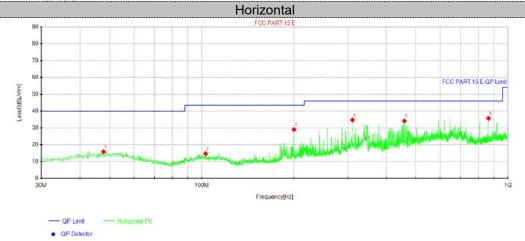
Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	1 Clarity
1	44.55	35.76	24.26	-11.50	40.00	15.74	100	105	Vertical
2	98.7488	35.46	22.28	-13.18	43.50	21.22	100	280	Vertical
3	120.21	42.19	28.24	-13.95	43.50	15.26	100	360	Vertical
4	257.586	39.74	27.74	-12.00	46.00	18.26	100	262	Vertical
5	453.405	47.28	37.53	-9.75	46.00	8.47	100	96	Vertical
6	620.972	40.33	34.62	-5.71	46.00	11.38	100	183	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

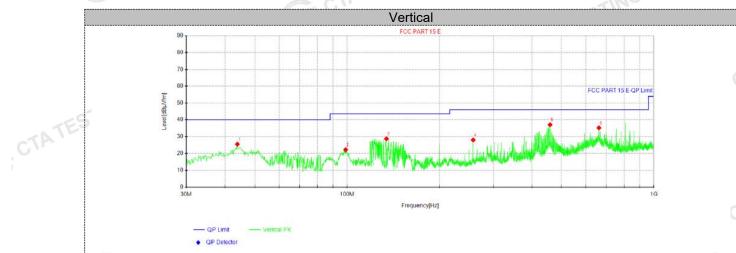
- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)


TATESTING

Report No.: CTA25070500603 Page 26 of 37

UNII-3:

CTATES


For 30MHz-1GHz

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	47.7025	27.11	15.83	-11.28	40.00	24.17	100	167	Horizonta
2	102.871	27.74	14.74	-13.00	43.50	28.76	100	122	Horizonta
3	199.992	41.86	29.06	-12.80	43.50	14.44	100	0	Horizonta
4	310.572	45.64	34.75	-10.89	46.00	11.25	100	256	Horizonta
5	458.861	43.85	34.16	-9.69	46.00	11.84	100	149	Horizonta
6	864.078	39.24	35.70	-3.54	46.00	10.30	100	140	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	43.8225	37.03	25.46	-11.57	40.00	14.54	100	186	Vertica
2	98.87	35.36	22.21	-13.15	43.50	21.29	100	360	Vertica
3	134.275	44.83	28.69	-16.14	43.50	14.81	100	350	Vertica
4	257.586	39.98	27.98	-12.00	46.00	18.02	100	291	Vertical
5	458.861	46.71	37.02	-9.69	46.00	8.98	100	159	Vertica
6	662.44	40.64	35.17	-5.47	46.00	10.83	100	125	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25070500603 Page 27 of 37

For 1GHz to 40GHz

Note: All 802.11a / 802.11n (HT20) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

5150-5250MHz:

U-NII 1 & 802.11a Mode (above 1GHz)

	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	36.00	10360.00	53.69	PK	Н	68.30	14.61	50.02	38.83	10.12	45.28	3.67
	(5180MHz)			AV	Н							- C
	44.00	10440.00	52.79	PK	Н	68.30	15.51	49.11	38.85	10.13	45.3	3.68
	(5220MHz)			AV	Н							pap asstan
TATE	48.00	10480.00	52.82	PK	Н	68.30	15.48	49.08	38.89	10.19	45.34	3.74
CTATE	(5240MHz)			AV	Н							
				Es.								
	Channel	(MHz)	Lovel	Mode	Pol	(dRu\//m)	(dB)	Value	Factor	Factor	amplifier	Factor

Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
36.00	10360.00	52.88	PK	V	68.30	15.42	49.21	38.83	10.12	45.28	3.67
(5180MHz)			==	V	4.11						51.
44.00	10440.00	51.77	PK	V	68.30	16.53	48.09	38.85	10.13	45.3	3.68
(5220MHz)				V							
48.00	10480.00	51.92	PK	V	68.30	16.38	48.18	38.89	10.19	45.34	3.74
(5240MHz)			AV	V							

5260-5320MHz:

U-NII 1 & 802.11a Mode (above 1GHz)

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
52.0	10520	49.78	PK	Н	68.30	18.52	46.02	38.91	10.2	45.35	3.76
(5260MHz)		-	AV	Н			STEETING .	C/L.			
60.0	10600	52.81	PK	Н	68.30	15.49	49.06	38.92	10.21	45.38	3.75
(5300MHz)			AV	Н			NO nontrue				Storus C
64.0	10640	51.99	PK	Н	68.30	16.31	48.23	38.94	10.23	45.41	3.76
(5320MHz)			AV	Н							<u> </u>

	64.0	10640	51.99	l PK	Н	68.30	16.31	48.23	38.94	10.23	45.41	3.76
	(5320MHz)			AV	Н							73 030 11 11
	3				C							
TATE	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	52.0	10520	48.99	PK	V	68.30	19.31	45.23	38.91	10.2	45.35	3.76
	(5260MHz)	- V M D 00 112		AV	V	ALC: NO	CAL					THIC
	60.0	10600	52.76	PK	V	68.30	15.54	49.01	38.92	10.21	45.38	3.75
	(5300MHz)			AV	V	20 uaniumin				ica ==	CTA.	
	64.0	10640	51.75	PK	V	68.30	16.55	47.99	38.94	10.23	45.41	3.76
	(5320MHz)			AV	V							
	(6025M12)	ATESTI				(ESTIN				STIN	C.	

Report No.: CTA25070500603

5500-5700MHz:

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
100.0	11000	50.43	PK	H	68.30	17.87	46.00	39.12	10.85	45.54	4.43
5500MHz	-		Sal to Hd	CALL		-		-	1	-	
120.0	11160	52.71	PK	Н	68.30	15.59	48.25	39.07	10.87	45.48	4.46
5580MHz			AV	Н			- UI	CIL			
140.0	11400	52.74	PK	Н	68.30	15.56	48.26	39.05	10.9	45.47	4.48
5700MHz			AV	Н			Vo usutumi				o Cont

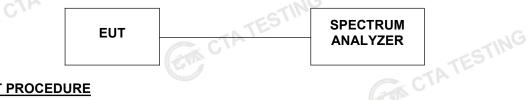
	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
TE	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
CTA			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	100.0	11000	49.42	PK	V	68.30	18.88	44.99	39.12	10.85	45.54	4.43
, and the second second	5500MHz	Starte	CIP						9			
	120.0	11160	53.54	PK	V	68.30	14.76	49.08	39.07	10.87	45.48	4.46
	5580MHz		WIII THE STATE OF	AV	V	Lo. Ltd	CIA					TING
	140.0	11400	52.64	PK	V	68.30	15.66	48.16	39.05	10.9	45.47	4.48
	5700MHz			PK	V	- Viousum				kon Lia	CTA'	

5725-5850MHz:

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
149.00	11490.00	52.69	PK	Н	68.30	15.61	48.21	39.02	10.91	45.45	4.48
(5745MHz)			AV	H					= N	G	
157.00	11570.00	53.43	PK	Н	68.30	14.87	48.98	38.93	10.95	45.43	4.45
(5785MHz)			AV	Н			, CG., Lid	CTA,			
165.00	11650.00	52.61	PK	Н	68.30	15.69	48.03	38.83	11.16	45.41	4.58
(5825MHz)			AV	Н			Me nantuning				Contract Con

	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
TE	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
CTA			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	149.00	11490.00	53.45	PK	V	68.30	14.85	48.97	39.02	10.91	45.45	4.48
	(5745MHz)	N.Co., 11d	CAP	AV	V			TIN	- 0			
	157.00	11570.00	53.53	PK	V	68.30	14.77	49.08	38.93	10.95	45.43	4.45
	(5785MHz)	NO many		AV	V	317-110	CAR.					THIS
	165.00	11650.00	52.67	PK	V	68.30	15.63	48.09	38.83	11.16	45.41	4.58
	(5825MHz)			AV	V	to non-mile				ALC: NO.	CLIP.	

REMARKS:


- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20

CT CT

Page 29 of 37 Report No.: CTA25070500603

4.3. Duty Cycle

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 B Duty Cycle (x), Transmission Duration (T):

- a. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on and off times of the transmitted signal
- The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zerospan measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

TEST RESULTS

For reporting purpose only.

Please refer to.

FCC Appendix RF Test Data for 5.2GWIFI

CTATESTING FCC Appendix RF Test Data for 5.3GWIFI

FCC Appendix RF Test Data for 5.5GWIFI

Page 30 of 37 Report No.: CTA25070500603

4.4. Maximum Average Output Power

TEST CONFIGURATION

ım Average C	Output Power		
URATION	CTATES!	Power Sensor	
EUT		- I owel delisor	

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 Section E3 Measurement using a Power Meter (PM):

- a. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
 - 1. The EUT is configured to transmit continuously or to transmit with a constant duty cycle
 - 2. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B
- Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

Adjust the measurement in dBm by adding $10 \log(1/x)$ where x is the duty cycle (e.g., $10 \log(1/0.25)$ if the duty cycle is 25 percent).

LIMIT

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit
5150-5250	Fixed:1 Watt (30dBm) Mobile and portable: 250mW (24dBm)
5250-5350	250mW (24dBm)
5470-5725	250mW (24dBm)
5725-5850	1 Watt (30dBm)

Note: The maximum e.i.r.p at anyelevation angle above 30 degrees as measured from the horizon must not exceed 125mW(21dBm)

TEST RESULTS

Please refer to.

FCC Appendix RF Test Data for 5.2GWIFI

FCC Appendix RF Test Data for 5.3GWIFI

FCC Appendix RF Test Data for 5.5GWIFI

Page 31 of 37 Report No.: CTA25070500603

4.5. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 789033 D02 General UNII Test Procedures New Rules v01 F: The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission

- a. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- b. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- Make the following adjustments to the peak value of the spectrum, if applicable:
 - 1. If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
 - 2.) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- The result is the Maximum PSD over 1 MHz reference bandwidth.
- For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:
 - Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).
 - Set VBW ≥ 3 RBW.
 - If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHz is available on nearly all spectrum analyzers.

Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit		
5150-5250	Other then Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz		
5250-5350	11dBm/MHz		
5470-5725	11dBm/MHz		
5725-5850	30dBm/500kHz		
TEST RESULTS Please refer to. FCC Appendix RF Test Data for 5.2GWIFI FCC Appendix RF Test Data for 5.3GWIFI FCC Appendix RF Test Data for 5.5GWIFI FCC Appendix RF Test Data for 5.8GWIFI	CTATESTING CTATESTING		

TEST RESULTS

Report No.: CTA25070500603 Page 32 of 37

4.6. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a. Set RBW = 100 kHz.
- b. Set the video bandwidth (VBW) ≥ 3 × RBW
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

LIMIT

For Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz

TEST RESULTS

Please refer to.

Page 33 of 37 Report No.: CTA25070500603

4.7. 26dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for Emission Bandwidth (EBW) measurement:

- a. Set RBW = 300 kHz (approximately 1% of the emission bandwidth).
- Set the video bandwidth (VBW) = 1000 KHz (VBW > RBW)
- Detector = Peak.
- Trace mode = max hold. d.
- Sweep = auto couple. e.
- Allow the trace to stabilize f.
- Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

LIMIT

No Limits for 26dBc Bandwith

TEST RESULTS

Please refer to.

CTATESTING FCC Appendix RF Test Data for 5.2GWIFI

FCC Appendix RF Test Data for 5.3GWIFI

Page 34 of 37 Report No.: CTA25070500603

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

Test Result:

The FPC Antenna maximum gain of antenna was 5.26dBi.

CTA TESTING Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA25070500603 Page 35 of 37

4.9. Emissions at Restricted Band

Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

Test Procedures

According to ANSI C63.10 Field Strength Approach (linear terms):

eirp = $p_t x g_t = (E x d)^2/30$

Where:

 p_t = transmitter output power in watts,

 g_t = numeric gain of the transmitting antenna (unit less),

E = electric field strength in V/m,

d = measurement distance in meters (m).

erp = eirp/1.64 = $(E \times d)^2/(30 \times 1.64)$

Where all terms are as previously defined.

- 1). Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2). Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3). Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/T for Peak detector.
- 4). Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5). Repeat above procedures until all measured frequencies were complete.
- 6). Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7). Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8). Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9). For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10). Compare the resultant electric field strength level to the applicable regulatory limit.
- 11). Perform radiated spurious emission test duress until all measured frequencies were complete.

Report No.: CTA25070500603 Page 36 of 37

Test Results

Please refer to.

FCC Appendix RF Test Data for 5.2GWIFI

The state of the s

Remark:

- 1). Test results including cable loss;
- 2). Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 3). "---"means that the fundamental frequency not for 15.209 limits requirement.
- 4). Measured at Hopping and Non-Hopping mode, recorded worst at Non-Hopping mode.
- 5). The other emission levels were very low against the limit.
- 6). The average measurement was not performed when the peak measured data under the limit of average detection.
- 7). Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=1/T/Sweep time=Auto/Detector=Peak.
- 8). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

Report No.: CTA25070500603 Page 37 of 37

5. Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6. E	External	a n d	Internal	Photos	of the	EUT
O. E	Externai	a II U	internat	PHOLOS	or the	EUI

Please refer to separated files for External Photos & Internal Photos of the EUT.

End of Report.....