Eurofins E&E UK Castleford Laboratory

Unit 5, Speedwell Road Castleford, WF10 5PY United Kingdom

+44 (0) 1977 731173 enquiryyork@eurofins.com eurofins.co.uk/york

MPE Calculation

Report No: C15848TR1 Project No: C9235 Date: 19th February 2025

Product details:

Product name	JRD-1171 BLE Module	
Company name	JR Dynamics Ltd (t/a Transmission Dynamics)	
Address	1 Innovation Way	
	Northumberland Business Park	
	Cramlington	
	NE23 7FP	
	United Kingdom	
Contact	Matt Nixon	
Email	matt@jrdltd.co.uk	

MPE Calculation for JR Dynamics Ltd

Report No: C15848TR1

FCC requirement:

This report contains calculation of maximum Possible Exposure for the JRD-1171 BLE Module.

Required distance to the user is assumed to be 20 cm

Mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and generally to be used in such a way that a separation distance of 20cm is normally maintained between radiating structures and the body of the user or nearby persons.

These devices are normally evaluated for exposure potential with relation to the MPE limit.

As the 20cm separation may not be achievable under normal operating conditions, an RF exposure calculation is used to demonstrate the minimum distance required to be less than the power density limit, as required under FCC rules.

FCC rule part:47CFR2.1091(3)

Power density (S) relates to Equivalent Isotropic Radiated power (EIRP) according to the following:

$$S = \frac{EIRP}{4\pi R^2}$$

Where,

R is the distance to the centre of radiation of the antenna (cm)

BLE Power Density

The worst case EIRP of the BLE module was = 2.4 mW (Value obtained from test report C15847TR1) value includes the worst-case antenna gain of 6dBi.

The Power density (S) is calculated as:

Frequency (MHz)	Maximum EIRP (mW)	Power density (S) (mW/cm²)	Power density limit (S) (mW/cm²) 47CFR1.1310 Table 1
2480.0	2.4	0.0005	1.0

Conclusion:

The product was shown to be compliant with the 20cm power density limit.

MPE Calculation for JR Dynamics Ltd

ISED Requirement

RSS Standard:

RSS-102 Issue 6 Posted on Industry Canada website: December 15, 2023

Clause: 6.6 Field reference level exposure exemption limits

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less then, in Watts,

$$1.31 \times 10^{-2} f^{0.6834}$$

adjusted for tune-up tolerance, where f is in MHz

BLE Evaluation

Calculation of e.i.r.p.:

The worst case EIRP was determined, see Test Report C15847TR1. (value includes the worst-case antenna gain of 6dBi.)

frequency	Measured	Limit
(MHz)	Power (W)	(W)
2480	0.0024	2.74

Conclusion

The apparatus meets the exclusion requirements for RF exposure Evaluation.

Prepared by:

J Beevers MPhys(Hons), PhD Radio Testing Team Lead

-----END OF REPORT-----