

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun24

Page 5 of 13

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.5 Ω - 4.9 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	46.5 Ω - 3.0 jΩ	
Return Loss	- 26.5 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	46.3 Ω - 1.1 jΩ	
Return Loss	- 27.9 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.5 $Ω$ - 2.3 $jΩ$
Return Loss	- 32.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.0 \Omega + 1.7 j\Omega$	
Return Loss	- 29.5 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.5 Ω - 0.6 j Ω	
Return Loss	- 35,8 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.0 Ω - 2.4 jΩ	
Return Loss	- 31.9 dB	

Certificate No: D5GHzV2-1060_Jun24

Page 7 of 13

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG
-----------------------	-----------------	-------

Certificate No: D5GHzV2-1060_Jun24

Page 8 of 13

DASY5 Validation Report for Head TSL

Date: 12.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=4.55$ S/m; $\epsilon_r=36.4$; $\rho=1000$ kg/m³ Medium parameters used: f=5250 MHz; $\sigma=4.6$ S/m; $\epsilon_r=36.3$; $\rho=1000$ kg/m³ Medium parameters used: f=5300 MHz; $\sigma=4.64$ S/m; $\epsilon_r=36.2$; $\rho=1000$ kg/m³ Medium parameters used: f=5500 MHz; $\sigma=4.86$ S/m; $\epsilon_r=35.8$; $\rho=1000$ kg/m³ Medium parameters used: f=5600 MHz; $\sigma=4.97$ S/m; $\epsilon_r=35.6$; $\rho=1000$ kg/m³ Medium parameters used: f=5750 MHz; $\sigma=5.14$ S/m; $\epsilon_r=35.4$; $\rho=1000$ kg/m³

Medium parameters used: f = 5730 MHz; $\sigma = 5.14 \text{ S/m}$; $\varepsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5800 MHz; $\sigma = 5.19 \text{ S/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.63, 5.63, 5.63) @ 5200 MHz, ConvF(5.39, 5.39, 5.39) @ 5250 MHz, ConvF(5.38, 5.38, 5.38) @ 5300 MHz, ConvF(5.04, 5.04, 5.04) @ 5500 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.86, 4.86, 4.86) @ 5800 MHz; Calibrated: 07.03.2024
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.05.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.67 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.1%

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.05 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.1%

Maximum value of SAR (measured) = 18.0 W/kg

Certificate No: D5GHzV2-1060_Jun24

Page 9 of 13

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.66 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.9%

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%

Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.70 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.1%

Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.11 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.6%

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

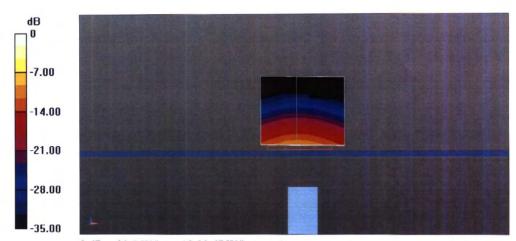
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.18 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

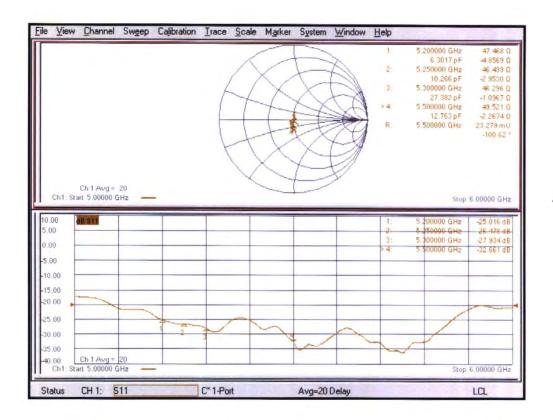

Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 19.3 W/kg

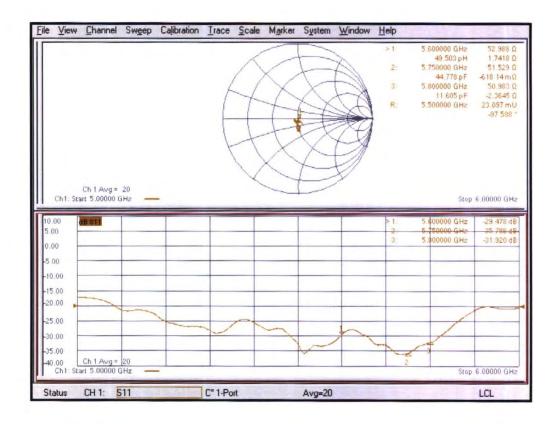
Certificate No: D5GHzV2-1060_Jun24

Page 10 of 13

0 dB = 20.0 W/kg = 13.02 dBW/kg


Certificate No: D5GHzV2-1060_Jun24

Page 11 of 13



Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jun24

Page 13 of 13

6.5GHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No. D6.5GHzV2-1059_Oct24

Object	06.5GHzV2 - SN:	1059	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	October 07, 2024		
		onal standards, which realize the physical unit obability are given on the following pages and	
All calibrations have been conducted	in the closed laboratory	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE of	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor R&S NRP33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Mismatch combination	SN: 84224 / 360D	28-Mar-24 (No. 217-04050)	Mar-25
	SN: 7405 SN: 908	01-Jul-24 (No. EX3-7405_Jul24) 27-Mar-24 (No. DAE4-908_Mar24)	Jul-25 Mar-25
	1011.000		
DAE4	ID#	Check Date (in house)	Scheduled Check
DAE4 Secondary Standards RF generator Anapico APSIN20G	ID# SN: 827	18-Dec-18 (in house check Jan-24)	In house check: Jan-25
Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23	ID # SN: 827 SN: 100169	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25
Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T	ID # SN: 827 SN: 100169 SN: 100950	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25
Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T	ID # SN: 827 SN: 100169 SN: 100950	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25
Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T Network Analyzer Keysight E5063A	ID # SN: 827 SN: 100169 SN: 100950	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25
DAE4 Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T Network Analyzer Keysight E5063A	ID # SN: 827 SN: 100169 SN: 100950 SN:MY54504221	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24) 31-Oct-19 (in house check Sep-24)	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25 In house check: Sep-26
Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T	ID # SN: 827 SN: 100169 SN: 100950 SN:MY54504221 Name	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24) 31-Oct-19 (in house check Sep-24) Function	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25 In house check: Sep-26
Secondary Standards RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T Network Analyzer Keysight E5063A Calibrated by:	ID # SN: 827 SN: 100169 SN: 100950 SN:MY54504221 Name Aidonia Georgiadou	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24) 31-Oct-19 (in house check Sep-24) Function Laboratory Technician	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25 In house check: Sep-26

Certificate No: D6.5GHzV2-1059_Oct24

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- . SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1059_Oct24	Page 2 of 6	

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	6.21 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	30.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	301 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.1 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.0 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1059_Oct24

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7 Ω - 5.0 jΩ
Return Loss	- 25.1 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	300 W/m ²
APD measured	normalized to 1W	3000 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	134 W/m²
APD measured	normalized to 1W	1340 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D6.5GHzV2-1059_Oct24

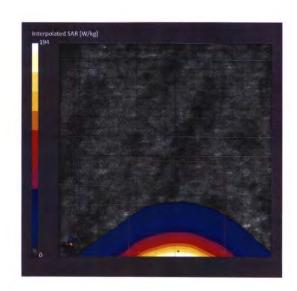
Page 4 of 6

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties					
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type		
DE SGH2	16.0 x 6.0 x 300.0	SN: 1059	-		

Exposure Conditions

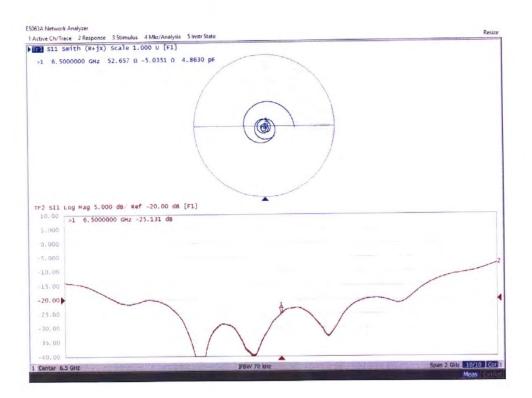

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.14	6.21	34.4

Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2024-07-01	DAE4 Sn908, 2024-03-27

Scan Setup

Scan Setup		Measurement Results	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2024-10-07, 12:00
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	30.1
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.71
Graded Grid	Yes	psSAR10g [W/Kg]	5.50
Grading Ratio	1.4	Power Drift [dB]	0.02
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	50.0
		Dist 3dB Peak [mm]	4.8



Certificate No: D6.5GHzV2-1059_Oct24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D6.5GHzV2-1059_Oct24

Page 6 of 6

5G Verification Source 10GHz Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing

Certificate No.

5G-Veri10-1005_Jan25

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 1005

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air > 6 GHz

Calibration date

January 14, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Reference Probe SPEAG EUmmWV3	SN: 9374	28-Aug-24 (No. Eumm_9374_Aug24)	Aug-25
DAE4ip	SN: 1602	06-Nov-24 (No. DAE4ip-1602_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Signal Generator R&S SMF100A	SN: 100184	26-Nov-24 (No. 5G-Source-Cal-IHC-202411)	Nov-25
Power Sensor R&S NRP18S-10	SN: 101258	26-Nov-24 (No. 5G-Source-Cal-IHC-202411)	Nov-25
Network Analyzer Keysight E5063A	SN: MY54504221	30-Sept-24 (No. 675-CAL18-S4489-Sep24)	Sep-26

Name

Function

Signature

Calibrated by

Leif Klysner

Laboratory Technician

del My

Approved by

Sven Kühn

Technical Manager

Issued: January 19, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1005_Jan25

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IIac MRA

Schweizerlscher Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- · Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the
 others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and
 mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the
 measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by
 far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes.
 Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical
 positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified
 using mechanical gauges positioned on the flare of the horn.
- E-field distribution: The E-field is measured in two x-y-planes (10mm, 10mm + λ/4) with a vectorial E-field probe. The
 E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density
 values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1005_Jan25

Page 2 of 8

January 14, 2025

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10.0 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)		Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²)		Uncertainty (k = 2)
			7 - 3 - 5	1cm ²	4cm ²	1.04
10 mm	93.3	153	1.27 dB	58.4	54.7	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	153	1.27 dB	57.9, 58.6, 58.8	54.2, 54.8, 55.0	1.28 dB

Square Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Powe Avg (psPDn+, psP (W/		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	153	1.27 dB	58.4	54.5	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	153	1.27 dB	57.9, 58.6, 58.8	54.0, 54.7, 54.9	1.28 dB

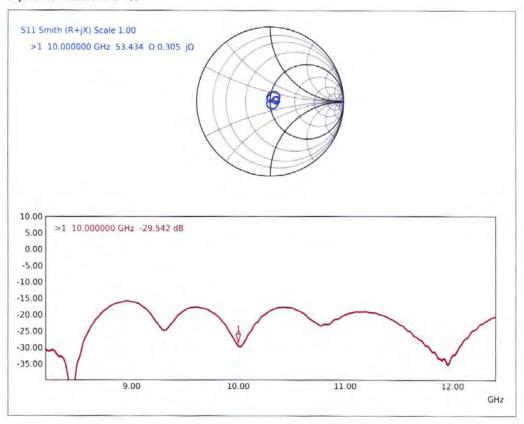
Max Power Density

Distance Horn Aperture to Measurement Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m ²)	Uncertainty (k = 2)
10 mm	93.3	153	1.27 dB	59.4, 60.1, 60.3	1.28 dB

Certificate No: 5G-Veri10-1005_Jan25

Page 3 of 8

¹Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB


January 14, 2025

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	53.4 Ω + 0.3 jΩ	
Return Loss	-29.5 dB	

Impedance Measurement Plot

Certificate No: 5G-Veri10-1005_Jan25

Page 4 of 8

January 14, 2025

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

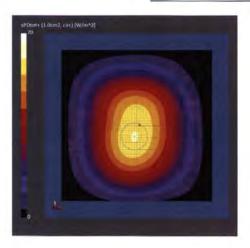
Device	unaer	rest	Properties	
Madel	Manufact			

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
SG Verification Source 10 GHz	100.0 × 100.0 × 172.0	SN: 1005	н

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup


MAIA

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date	
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06	

MAIA not used

Scans Setup Sensor Surface [mm]

Measurement Results	
Scan Type	SG Scan
Date	2025-01-14
Avg. Area [cm²]	1.00
Avg. Type	Circular Averaging
psPDn+ [W/m²]	57.9
psPDtot+ [W/m²]	58.6
psPDmod+ [W/m²]	58.8
Max(Sn) [W/m²]	59.4
Max(Stot) [W/m ²]	60.1
Max(Stot) [W/m ²]	60.3
E _{max} [V/m]	153
Power Drift [dB]	0.01

Certificate No: 5G-Veri10-1005_Jan25

Page 5 of 8

January 14, 2025

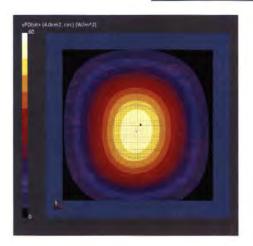
DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

	Properties

Dimensions [mm]	IMEI	DUT Type	
100.0 × 100.0 × 172.0	SN: 1005		
	The state of the s		

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date	
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06	

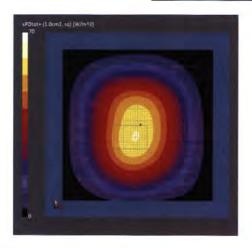
Scans Setup		
Sensor Surface [mm]	10.0	
MAIA	MAIA not used	

Scan Type	5G Scan
Date	2025-01-14
Avg. Area (cm²)	4.00
Avg. Type	Circular Averaging
psPDn+ [W/m²]	54.2
psPDtot+ [W/m²]	54.8
psPDmod+ [W/m²]	55.0
Max(Sn) [W/m ²]	59.4
Max(Stot) [W/m ²]	60.1
Max(Stot) [W/m ²]	60.3
E _{max} [V/m]	153
Power Drift [dB]	0.01

Certificate No: 5G-Veri10-1005_Jan25

Page 6 of 8

January 14, 2025


DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Model, Manufacturer SG Verification Source 10 GHz			Dimensions [mm]		IMEI SN: 1005	DUT Type
Exposure Conditi	ons					
Phantom Section	Position, Test Distance	[mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm		Validation band	CW. 0	10000.0,10000	1.0
Hardware Setup						
Phantom	Medium	Probe, Ca	ibration Date		DAE, Calibration Da	ate
manufacture Discussion	in the			****		1154 16-52

Scans Setup	
Sensor Surface (mm)	10.0
MAIA	MAIA not used

Measurement Results	
Scan Type	SC Scan
Date	2025-01-14
Avg. Area [cm²]	1.00
Avg. Type	Square Averaging
psPOn+ [W/m²]	57.9
psPDtot+ [W/m²]	58.6
psPDmod+ [W/m²]	58.8
Max(Sn) [W/m ²]	59.4
Max(Stot) [W/m ²]	60.1
Max(Stot) [W/m ²]	60.3
E _{max} [V/m]	153
Power Drift (dB)	0.01

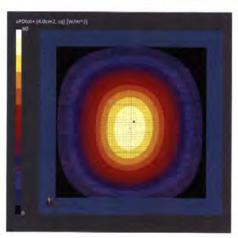
Certificate No: 5G-Veri10-1005_Jan25

Page 7 of 8

January 14, 2025

DASY Report

Measurement Report for SG Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

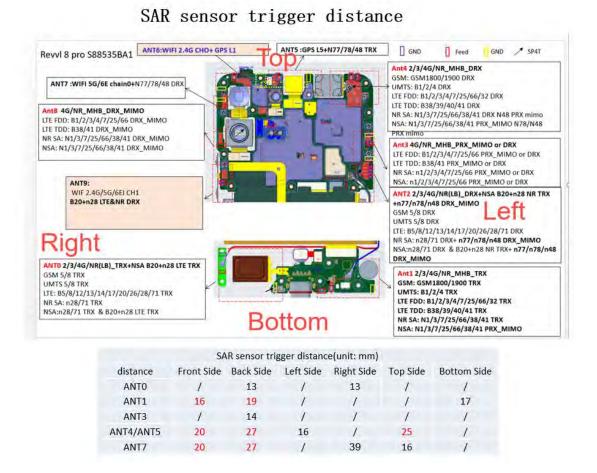

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	
Exposure Conditions			

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0	

Medium	Probe, Calibration Date	DAE, Calibration Date
Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup	
Sensor Surface [mm]	10.0
MAIA	MAIA not used

Measurement Results	
Scan Type	SG Scan
Date	2025-01-14
Avg. Area [cm²]	4.00
Avg. Type	Square Averaging
psPDn+ [W/m²]	54.0
psPDtot+ [W/m²]	54.7
psPDmod+ [W/m²]	54.9
Max(Sn) [W/m ²]	59.4
Max(Stot) [W/m ²]	60.1
Max(Stot) [W/m ²]	60.3
E _{max} [V/m]	153
Power Drift [dB]	0.01


Certificate No: 5G-Veri10-1005_Jan25

Page 8 of 8

ANNEX I SAR Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for some positions. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for front, rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

ANT0:

Rear

Moving device toward the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	Distance [mm] 18 17 16 15 14 13 12 11 10 9 8												
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm] 8 9 10 11 12 13 14 15 16 17 18											
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Right

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm] 18 17 16 15 14 13 12 11 10 9 8											8
Main antenna	Main antenna Far Far Far Far Near Near Near Near Near Near Near										

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	Distance [mm] 8 9 10 11 12 13 14 15 16 17 18										
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

ANT1:

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	Distance [mm] 21 20 19 18 17 16 15 14 13 12 11										
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	Distance [mm] 11 12 13 14 15 16 17 18 19 20 21										
Main antenna Near Near Near Near Near Far Far Far Far Far											

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	Distance [mm] 24 23 22 21 20 19 18 17 16 15 14										
Main antenna	Main antenna Far Far Far Far Near Near Near Near Near Near Near										

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm] 14 15 16 17 18 19 20 21 22 23 24											24
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Bottom Edge

Moving device toward the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 22 21 20 19 18 17 16 15 14 13 12													
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

			senso	r near or	far(KDB 6	616217 6.	2.6)				
Distance [mm] 12 13 14 15 16 17 18 19 20 21 22											
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

ANT3:

Rear

Moving device toward the phantom:

			senso	r near or	far(KDB 6	516217 6.	2.6)				
Distance [mm] 19 18 17 16 15 14 13 12 11 10 9											
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 9 10 11 12 13 14 15 16 17 18 19													
Main antenna													

ANT4/5:

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 25 24 23 22 21 20 19 18 17 16 15												
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 15 16 17 18 19 20 21 22 23 24 25													
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far		

Rear

Moving device toward the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 32 31 30 29 28 27 26 25 24 23 22													
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 22 23 24 25 26 27 28 29 30 31 32													
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far		

Top Edge

Moving device toward the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 30 29 28 27 26 25 24 23 22 21 20													
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 20 21 22 23 24 25 26 27 28 29 30													
Main antenna													

Left Edge

Moving device toward the phantom:

	sensor near or far(KDB 616217 6.2.6)													
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11														
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near			

			senso	r near or	far(KDB 6	616217 6	.2.6)				
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21											
Main antenna											

ANT7:

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 25 24 23 22 21 20 19 18 17 16 15										15		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 15 16 17 18 19 20 21 22 23 24 25											25	
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 32 31 30 29 28 27 26 25 24 23 22										22		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 22 23 24 25 26 27 28 29 30 31 32										32		
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Top Edge

Moving device toward the phantom:

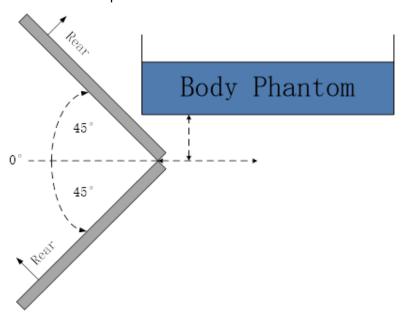
sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11										11		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	

Moving device away from the phantom:

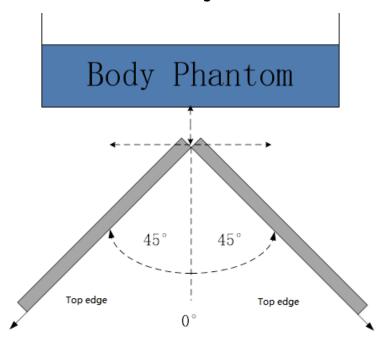
sensor near or far(KDB 616217 6.2.6)												
Distance [mm]											21	
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Right Edge

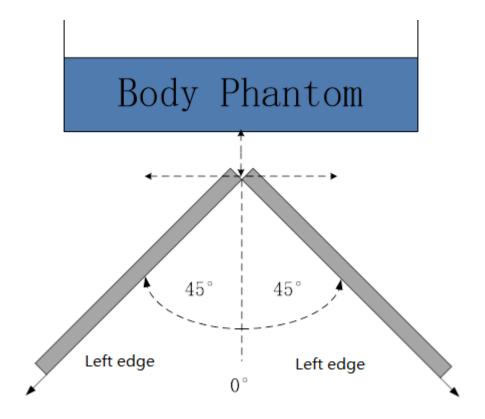
Moving device toward the phantom:


sensor near or far(KDB 616217 6.2.6)													
Distance [mm]											34		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 34 35 36 37 38 39 40 41 42 43 44										44			
Main antenna Near Near Near Near Near Far Far Far Far Far											Far		



Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .



The front/rear edge evaluation

The bottom/top edge evaluation

The left/right edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the ±45° range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049,01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.