

FCC - TEST REPORT

Report Number	:	6871025006501	Date of Issue:	<u>2025-06-20</u>
Model	:	XZ-T810		
Product Type	:	Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)		
Applicant	:	ROSIWIT Technology Co., Ltd.		
Address	:	Building C17, Zidong International Creative Park, Qixia District, 210000 Nanjing, China		
Manufacturer	:	ROSIWIT Technology Co., Ltd.		
Address	:	Building C17, Zidong International Creative Park, Qixia District, 210000 Nanjing, China		
Test Result	:	<input checked="" type="checkbox"/> Positive	<input type="checkbox"/> Negative	
Total pages including Appendices	:	24		

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation chapter A-3.4.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory.....	3
3	Description of the Equipment Under Test.....	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
7.1	Radiated test setups.....	8
7.2	Conducted RF test setups	8
7.3	AC Power Line Conducted Emission test setups	9
8	Test Methodology	10
8.1	Conducted Emission.....	10
8.2	Occupied Bandwidth Measurement.....	13
8.3	Field Strength of Emissions.....	14
8.4	Frequency Tolerance.....	20
9	Test Equipment List.....	22
10	System Measurement Uncertainty	24

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China

Telephone: 86 755 8828 6998

Fax: 86 755 8828 5299

FCC Registration No.: 514049

FCC Designation Number: CN5009

3 Description of the Equipment Under Test

Product:	Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
Model no.:	XZ-T810
FCC ID:	2BNHQ-TITAN810
Options and accessories:	Titan 810 Workstation Rated input for its attached Titan 810 Workstation: 100-240VAC, 50-60Hz, 2000W Rated output for its attached Titan 810 Workstation 43.8VDC, 40A
Ratings:	Input: 38.4VDC, 40A
RF Transmission Frequency:	13.56 MHz for RFID
No. of Operated Channel:	1
Modulation:	FSK
Antenna Type:	PCB printed loop antenna
Description of the EUT:	The EUT is Floor treatment/cleaning machines with 433MHz LoRa, 13.56MHz RFID functions and contain transmitter module FCC ID: 2APJ4-SLM750VSA.
Remark:	This report is only for 13.56 MHz RFID.

4 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2024 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators

All the test methods were according to ANSI C63.10-2020.

5 Summary of Test Results

Technical Requirements				
FCC Part 15 Subpart C, RSS-210 Issue 10, RSS-Gen Issue 5				
Test Condition		Pages	Test Site	Test Result
§15.207	Conducted emission at AC power port	10	Site 1	Pass
§ 15.215(c)	Occupied Bandwidth	13	Site 1	Pass
§15.225(a)(d) & §15.209	The Field strength of Emissions	14	Site 1	Pass
§15.225(e)	Frequency Tolerance	22	Site 1	Pass
§15.203	Antenna requirement	--	See Note 1	Pass

Note 1: The EUT uses a PCB printed loop antenna. In accordance to §15.203 , it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

The conducted emissions of XZ-T810 were tested with Titan 810 Workstation, and the input voltage is 120VAC/60Hz; The RF tests of XZ-T810 were tested with a battery pack, the battery voltage is 38.4VDC.

This submittal(s) (test report) is intended for FCC ID: 2BNHQ-TITAN810, complies with Section 15.207, 15.209, 15.205, 15.225 of the FCC Part 15, Subpart C rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

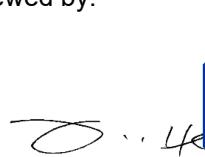
- Performed

- Not Performed

The Equipment Under Test

- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.


Sample Received Date: 2024-10-30

Testing Start Date: 2025-05-12

Testing End Date: 2025-06-09

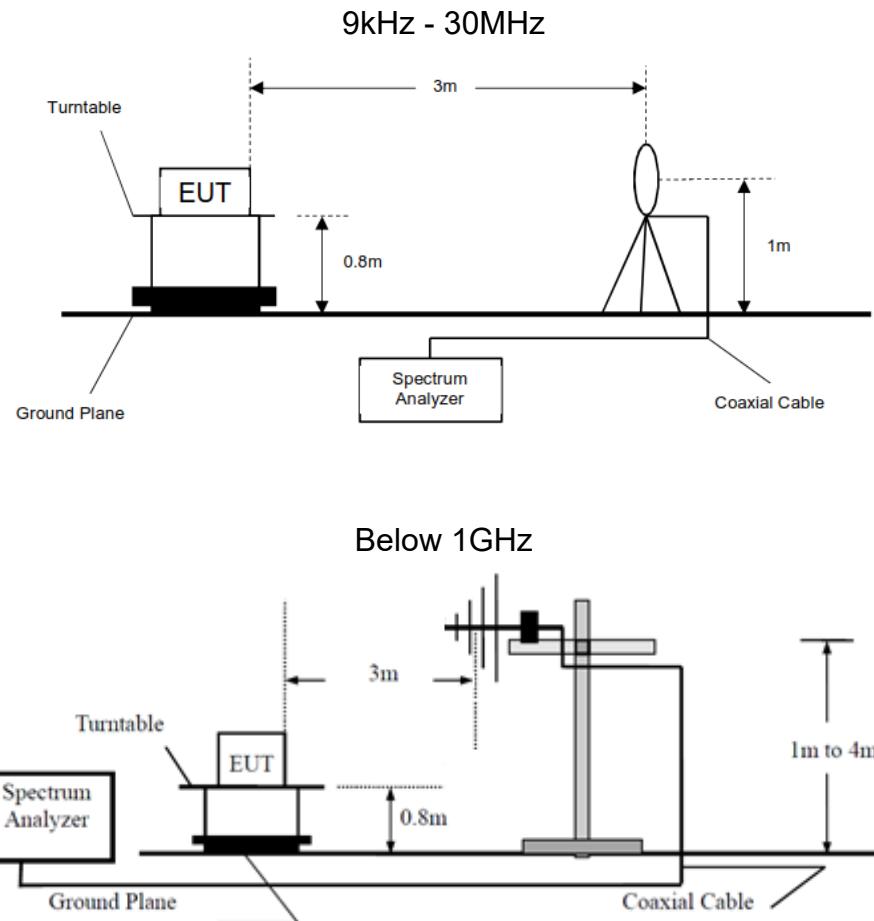
TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

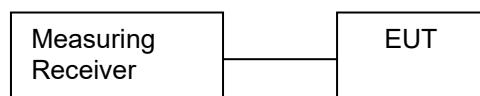
Reviewed by:

Jessie He
Project Manager

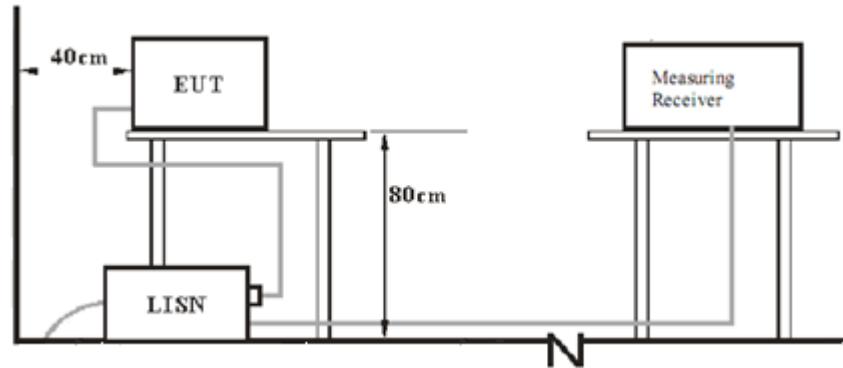
Prepared by:

Myron Yu
Project Engineer


Tested by:


Carry Cai
Test Engineer

7 Test Setups


7.1 Radiated test setups

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

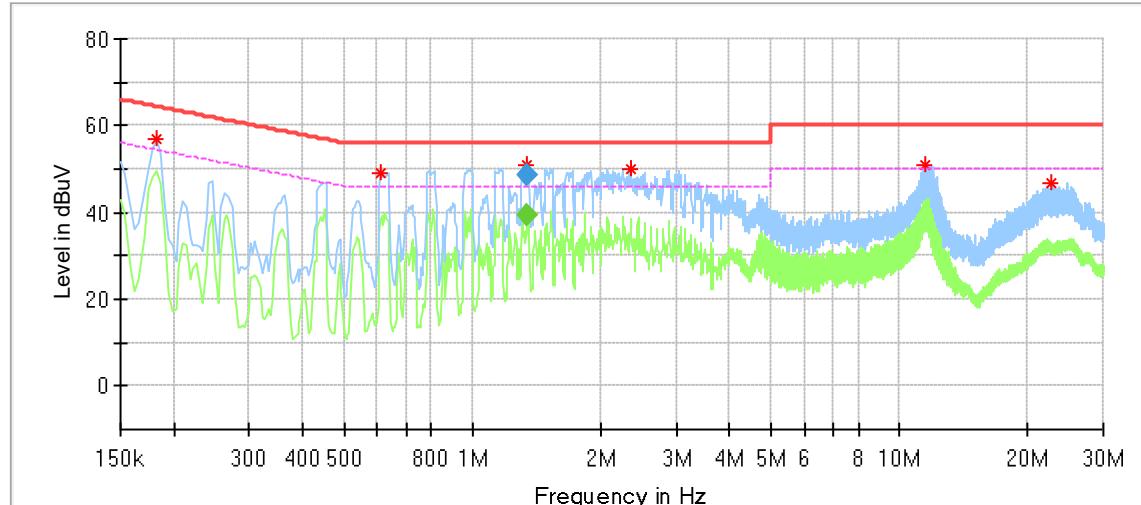
8 Test Methodology

8.1 Conducted Emission

Test Method:

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. Both sides of AC line were checked for maximum conducted interference.
6. The frequency range from 150 kHz to 30 MHz was searched.
7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limits:


According to §15.207 & RSS-Gen 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dB μ V	AV Limit dB μ V
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Continuous transmitting, 13.56MHz
 Test Specification : Line
 Comment : 120VAC, 60Hz

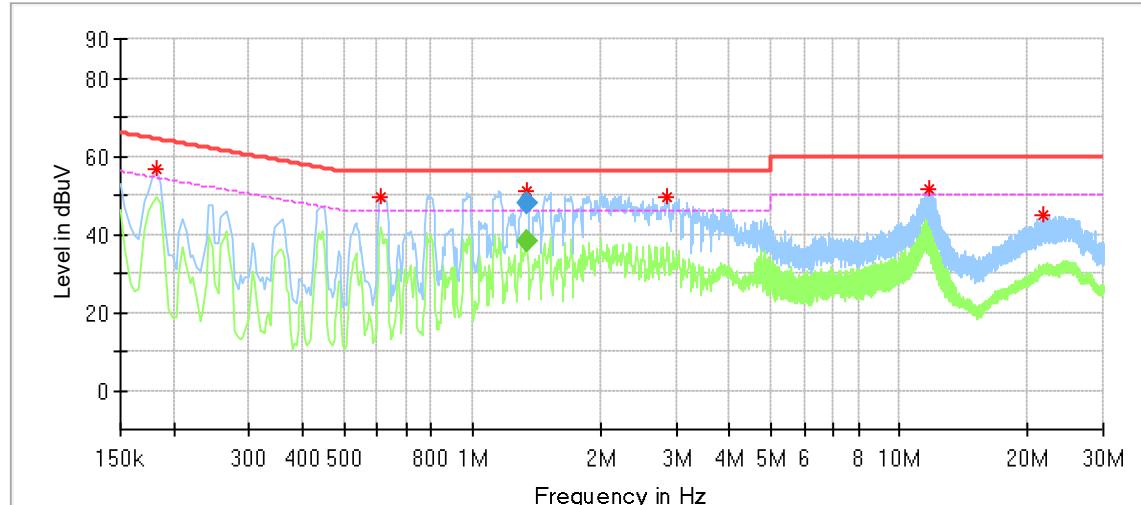
Critical_Freqs

Frequency (MHz)	MaxPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr. (dB)
0.182000	57.09	---	64.39	7.30	L1	10.30
0.610000	49.24	---	56.00	6.76	L1	10.31
1.345500	51.10	---	56.00	4.90	L1	10.33
2.338000	50.05	---	56.00	5.95	L1	10.37
11.538000	51.11	---	60.00	8.89	L1	10.72
22.618000	46.73	---	60.00	13.27	L1	12.13

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr. (dB)
1.345500	48.76	---	56.00	7.24	L1	10.33
1.345500	---	39.24	46.00	6.76	L1	10.33

Remark:


Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Charging + Continuous transmitting, 13.56MHz
 Test Specification : Neutral
 Comment : 120VAC, 60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr. (dB)
0.182000	56.80	---	64.39	7.59	N	10.29
0.610000	49.34	---	56.00	6.66	N	10.31
1.341500	51.24	---	56.00	4.76	N	10.32
2.866000	49.38	---	56.00	6.62	N	10.38
11.706000	51.33	---	60.00	8.67	N	10.73
21.762000	45.12	---	60.00	14.88	N	11.07

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr. (dB)
1.341500	48.15	---	56.00	7.85	N	10.32
1.341500	---	38.02	46.00	7.98	N	10.32

Remark:

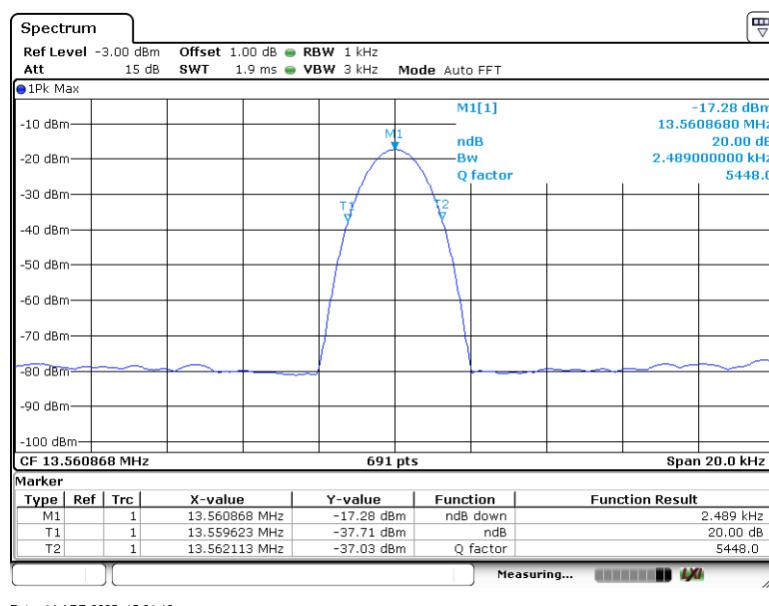
Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

8.2 Occupied Bandwidth Measurement

Test Method:


1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously.
3. Use the following test receiver settings:
Span = approximately 2 to 3 times the 99% OBW, centered on a hopping channel
RBW \geq 1% to 5% of the 99% OBW, VBW \geq 3RBW, Sweep = auto,
Detector function = peak, Trace = max hold
4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.

Limits:

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Results:

Frequency MHz	99% bandwidth kHz	Result		Limit		Result
		F _L (MHz)	F _H (MHz)	F _L (MHz)	F _H (MHz)	
13.56	2.489	13.560	13.562	>13.11	<14.01	Pass

8.3 Field Strength of Emissions

Test Method:

1. The EUT was place on a turn table which is 0.8m above ground plane. The table was rotated 360 degrees to determine the position of the highest radiation.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Use the following test receiver settings According to C63.10:

9kHz -150kHz

RBW = 200Hz, VBW = 1kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

150kHz - 30MHz

RBW = 10 kHz, VBW = 30 kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

30MHz - 1GHz

RBW = 100 kHz, VBW = 300 kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious

RBW = 1MHz, VBW \geq 3RBW for peak measurement, Sweep = auto, Detector function = peak,
Trace = max hold.

Limits:

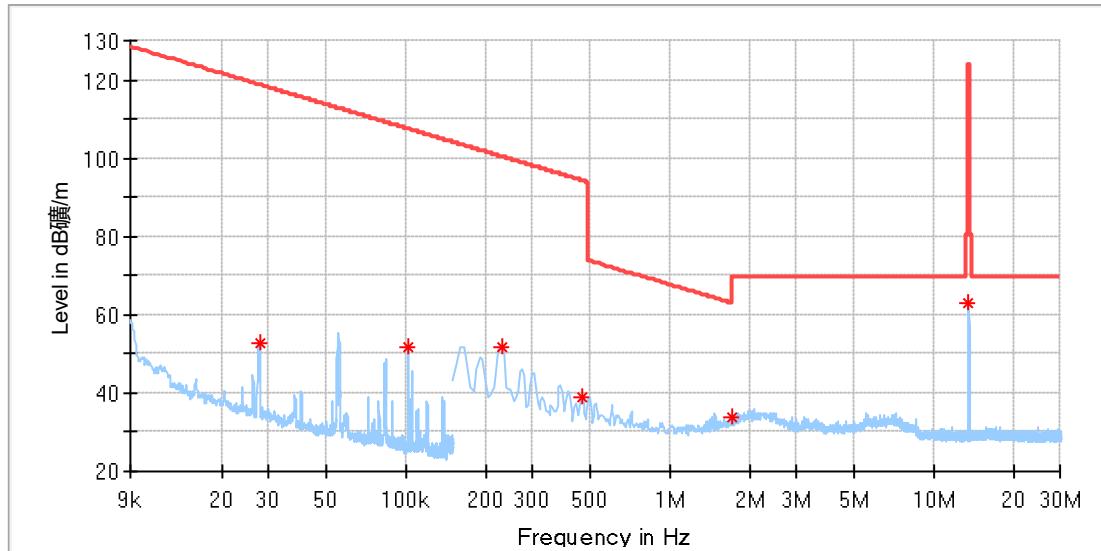
The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15.848 mV/m (84 dB μ V/m) at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in FCC § 15.209.

According to § 15.209 field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Frequency MHz	Field Strength μ V/m	Field Strength dB μ V/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	QP	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Linear interpolations with frequency. The tighter limits apply at the band edges.

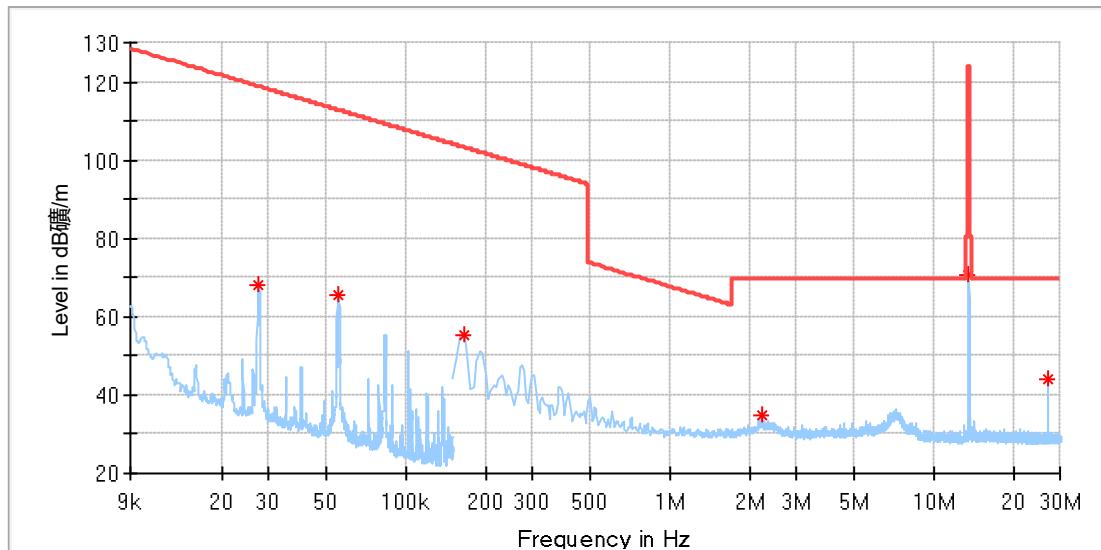

Note 2: Limit $3m(dB\mu V/m) = Limit\ 300m(dB\mu V/m) + 40\log(300m/3m)$ (Below 30MHz)

Note 3: Limit $3m(dB\mu V/m) = Limit\ 30m(dB\mu V/m) + 40\log(30m/3m)$ (Below 30MHz)

Note 4: $dB\mu V/m = 20\log(\mu V/m)$, $dB\mu A/m = 20\log(\mu A/m)$

Field Strength (9kHz-30MHz)

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Continuous transmitting, 13.56MHz
 Test Specification : Horizontal
 Comment : 120VAC, 60Hz

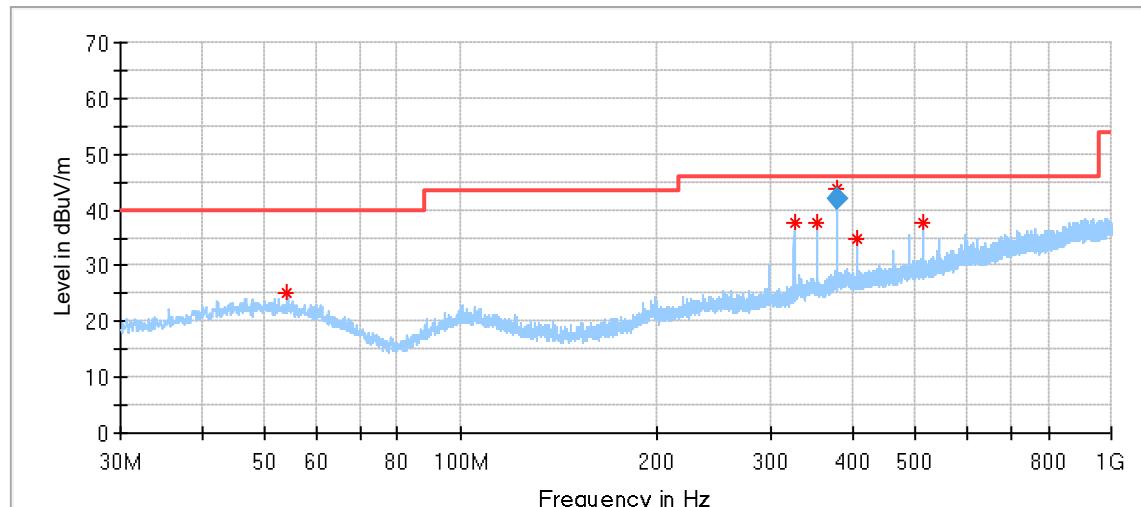


Critical Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027800	52.91	118.71	65.80	H	179.0	19.23
0.102060	51.90	107.42	55.52	H	307.0	19.25
0.229600	51.49	100.38	48.89	H	253.0	19.22
0.463425	39.12	94.28	55.17	H	1.0	19.26
1.702200	33.95	63.01	29.06	H	6.0	19.28
13.562600	62.98	123.90	60.92	H	219.0	19.33

Field Strength (9kHz-30MHz)

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Continuous transmitting, 13.56MHz
 Test Specification : Vertical
 Comment : 120VAC, 60Hz



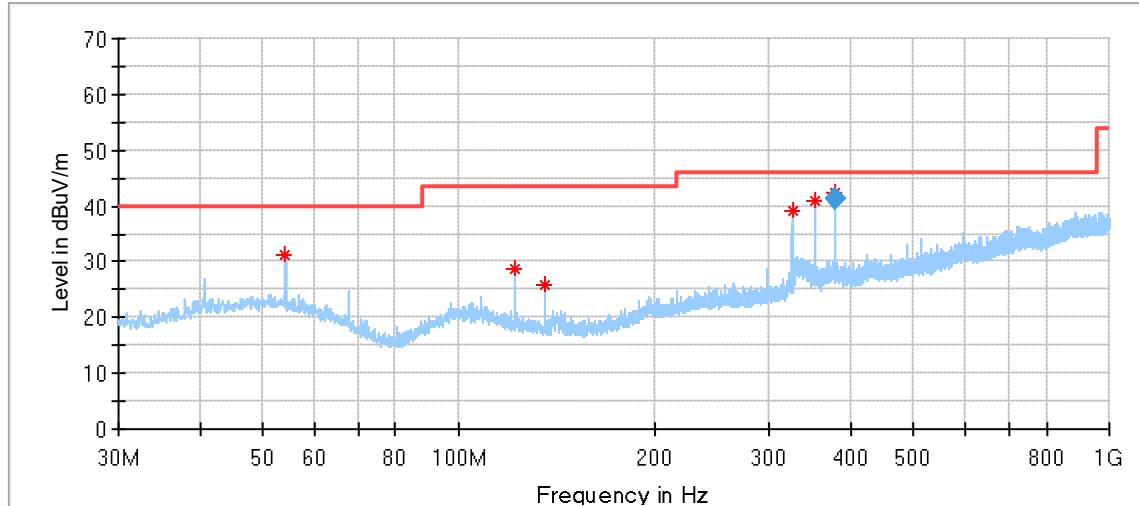
Critical Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027471	67.93	118.81	50.88	V	297.0	19.23
0.054872	65.39	112.81	47.41	V	273.0	19.26
0.164925	55.40	103.25	47.85	V	192.0	19.22
2.214625	34.78	69.50	34.72	V	87.0	19.29
13.562600	70.53	123.90	53.37	V	104.0	19.33
27.124450	43.86	69.50	25.64	V	267.0	19.75

Field Strength (30MHz-1000MHz)

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Continuous transmitting, 13.56MHz
 Test Specification : Horizontal
 Comment : 120VAC, 60Hz

Critical_Freqs


Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.196111	25.06	40.00	14.94	200.0	H	92.0	17.94
325.418889	37.56	46.00	8.44	100.0	H	100.0	19.25
352.578889	37.75	46.00	8.25	100.0	H	111.0	20.10
379.685000	43.76	46.00	2.24	100.0	H	90.0	20.66
406.845000	34.86	46.00	11.14	100.0	H	268.0	21.18
515.323333	37.53	46.00	8.47	200.0	H	260.0	23.12

Final_Result

Frequency (MHz)	QuasiPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
379.685000	42.10	46.00	3.90	100.0	H	90.0	20.66

Field Strength (30MHz-1000MHz)

Product Type : Floor treatment/cleaning machines (Titan 810 Robotic Scrubber)
 M/N : XZ-T810
 Operating Condition : Continuous transmitting, 13.56MHz
 Test Specification : Vertical
 Comment : 120VAC, 60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.196111	31.24	40.00	8.76	100.0	V	3.0	17.94
122.042222	28.76	40.00	11.24	100.0	V	0.0	14.02
135.568333	25.86	40.00	14.14	100.0	V	328.0	12.80
325.418889	39.20	46.00	6.80	100.0	V	46.0	19.25
352.578889	41.00	46.00	5.00	100.0	V	25.0	20.10
379.685000	42.28	46.00	3.72	100.0	V	328.0	20.66

Final_Result

Frequency (MHz)	QuasiPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
379.685000	41.40	46.00	4.60	100.0	V	328.0	20.66

Remark:

- 1: AV Emission Level= PK Emission Level+20log(duty cycle)
- 2: Data of measurement within this frequency range shown "/" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- 3: Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)

8.4 Frequency Tolerance

Test Method:

Frequency stability with respect to ambient temperature:

1. Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and tune it to the frequencies need to test.
2. Couple the EUT output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.
3. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level
4. Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
5. Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
6. While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.
7. Measure the frequency at each of frequencies need to test.
8. Switch OFF the EUT but do not switch OFF the oscillator heater.
9. Lower the chamber temperature by not more than 10 °C, and allow the temperature inside the chamber to stabilize.
10. Repeat step 5) through step 7) down to the lowest specified temperature.

Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature.

1. Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.
2. Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level.
3. Measure the frequency at each of the frequencies need to test.
4. Repeat the above procedure at 85% and 115% of the nominal supply voltage

Limits:

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

The transmit frequency of the EUT is 13.56MHz, so limit is $\leq \pm 1.356\text{KHz}$.

Test Results:

For license-exempt devices, the following conditions apply:

- (a) at the temperatures of -20°C (-4°F), +20°C (+68°F) and +50°C (+122°F), and at the manufacturer's rated supply voltage
- (b) at the temperature of +20°C (+68°F) and at $\pm 15\%$ of the manufacturer's rated supply voltage

Frequency stability vs. temperature		
Temperature (°C)	Measured Frequency (MHz)	Frequency Drift (kHz)
50	13.56015	0.15
40	13.56014	0.14
30	13.56014	0.14
20	13.56014	0.14
10	13.56014	0.14
0	13.56013	0.13
-20	13.56014	0.14

Frequency stability vs. voltage		
Voltage (VDC)	Measured Frequency (MHz)	Frequency Drift (kHz)
20.4	13.56014	0.14
24	13.56014	0.14
27.6	13.56014	0.14

Result: PASS

9 Test Equipment List

Conducted Emission Test (AMN)(CSR #2)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	1	2026-4-25
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	1	2026-4-25
LISN	Rohde & Schwarz	ENV4200	68-4-87-14-001	100249	1	2026-4-25
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2026-4-19
Cable	OUQIAO	RG142	68-4-90-19-005-A20	----	----	----
Test software	Rohde & Schwarz	EMC32	68-4-90-19-005-A01	Version10.35.02	N/A	N/A
Shielding Room	TDK	CSR #2	68-4-90-19-005	----	3	2025-10-15

Radiated Emission Test (9kHz-30MHz) (SAC-3 #1)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19-001	102176	1	2026-4-25
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2025-7-24
Cable	HUBER-SUHNER	RG214	68-4-90-14-001-A21	----	----	----
CC	TDK	9X6X6	68-4-90-14-001	----	3	2026-10-25
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001-A10	Version10.35.02	N/A	N/A

Radiated Emission Test (30MHz-1GHz) (SAC-3 #2)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2026-4-25
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	1	2026-2-11
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	1	2026-4-19
Cable	OUQIAO	18DLB5-NMNM-7000	68-4-90-19-006-A22	----	----	----
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006	----	3	2026-10-25
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006-A01	Version10.35.02	N/A	N/A

Radiated Emission Test (1GHz-18GHz) (SAC-3 #2)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2026-4-25
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	1	2026-3-10
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	1	2026-4-19
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-003	100747	1	2026-4-19
Cable	OUQIAO	18DLB5-NMNM-7000	68-4-90-19-006-A22	----	----	----

3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006	----	3	2026-10-25
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006-A01	Version10.35.02	N/A	N/A

RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2026-4-18
Shielding Room	TDK	TS8997	68-4-90-19-003	----	3	2025-10-15

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission (0.15MHz-30MHz)	3.15dB
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 9kHz-30MHz	4.70dB
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 30MHz-1000MHz	Horizontal: 4.59dB; Vertical: 4.75dB
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10^{-8} or 1%

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3 and 4.3.4.

---THE END OF REPORT---