

TEST REPORT

Report No. CISRR25081210202

Project No. CISR250812102

FCC ID 2BNE8-X10-PRO

Applicant SHENZHEN BABERLIN TECHNOLOGY CO.. LTD

Address Room 540W,Decoration West Building,No.10,Bagualing Industrial

Zone, Futian District, Shenzhen, Guangdong, China

Manufacturer SHENZHEN BABERLIN TECHNOLOGY CO.. LTD

Address Room 540W, Decoration West Building, No. 10, Bagualing Industrial

Zone, Futian District, Shenzhen, Guangdong, China

Product Name HELMET WIRELESS EARPHONE

Trademark N/A

Model/Type reference X10 Pro

Listed Model(s) N/A

Standard 47 CFR Part 15.247

Test date August 13, 2025 to August 16, 2025

Issue date August 20, 2025

Test result Complied

Lucas Huang

Prepared by: Lucas Huang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	
T. N.E. GIVI VERGION	
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description *	
3.2. Radio Specification Description *	
3.3. Modification of EUT	
3.5. Testing Site	
• • • • • • • • • • • • • • • • • • • •	
4. TEST CONFIGURATION	7
4.1. Test frequency list	7
4.2. Descriptions of test mode	
4.3. Support unit used in test configuration	
4.4. Test sample information	
4.6. Statement of the measurement uncertainty	
4.7. Equipment Used during the Test	
5. TEST RESULTS	10
5.1. Evaluation Results (Evaluation)	
5.1.1. Antenna Requirement	
5.2. Radio Spectrum Matter Test Results (RF)	
5.2.1. Conducted Emission at AC power line	11
5.2.2. 6dB Bandwidth	14
5.2.3. Maximum Conducted Output Power	15
5.2.4. Power Spectral Density	16
5.2.5. Conducted band edge and spurious emission	17
5.2.6. Radiated band edge emission	18
5.2.7. Radiated Spurious Emission (below 1GHz)	24
5.2.8. Radiated Spurious Emission (Above 1GHz)	28
6. TEST SETUP PHOTOS	26
6. IEST SETUP PROTOS	
7. EXTERNAL AND INTERNAL PHOTOS	38
7.4 E. damed Bloods	
7.1. External Photos	38 20
7.2. IIIGIIIGI FIIOLOS	
8. APPENDIX REPORT	38

1. REPORT VERSION

Version No.	Issue date	Description
00	August 20, 2025	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Antenna Requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	6dB Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	Conducted band edge and spurious emission	47 CFR 15.247(d)	Pass
7	Radiated band edge emission	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

The measurement uncertainty is not included in the test result.

CISRR25081210202

3. **SUMMARY**

3.1. Product Description *

Main unit information:			
Product Name:	HELMET WIRELESS EARPHONE		
Trade Mark:	N/A		
Model No.:	X10 Pro		
Listed Model(s):	N/A		
Model difference:	N/A		
Power supply:	Input: DC 5V		
Hardware version:	N/A		
Software version:	N/A		
Accessory unit (AU) information:			
Battery information:	DC 3.7V		

3.2. Radio Specification Description *

Modulation type:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Chip Antenna
Antenna gain:	2.7dBi

Note:

- 1) *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.
- 2) Operation frequency list as follow:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474

7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen,Guangdong, China
Contact information	Tel: 86-755-2319 6848, email: service@cis-cn.net Website: http://www.cis-cn.net/
FCC registration number	736346
FCC designation number	CN1372

4. TEST CONFIGURATION

4.1. Test frequency list

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2440	2480

4.2. Descriptions of test mode

No	Test mode	Description	
TM1	TX mode	Keep the EUT in continuously transmitting mode with GFSK modulation at lowest, middle and highest channel.	
TM2	Link mode	Keep the EUT in Bluetooth linking mode with AE.	
TM3	Charging mode	Keep the EUT in charging mode status	

4.3. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	Adapter	Guangdong Sangu Technology Co. Itd	SG-0501000AU
2	Phone	Huawei	NZONE S7

4.4. Test sample information

Туре	Sample No.
Engineer sample	CISR250812102-S01
Normal sample	CISR250812102-S02

4.5. Environmental conditions

Туре	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

CISRR25081210202 Report No.:

2025-01-08

2026-01-07

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	1.63dB
2	Peak Output Power	1.34dB
3	Power Spectral Density	1.34dB
4	6dB Bandwidth	0.002%
5	Duty cycle	-
6	Conducted Band Edge and Spurious Emission	1.93dB
7	Radiated Band Edge Emission	3.76dB for 30MHz-1GHz
,	Tradiated Band Edge Emission	3.80dB for above 1GHz
0	Dedicted Spurious Emission	3.76dB for 30MHz-1GHz
8	Radiated Spurious Emission	3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

Condu	Conducted Emission at AC power line					
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2025-01-08	2026-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2025-01-08	2026-01-07
1	Artificial power	Schwarzheck	ENIV/216	1	2025-01-08	2026-01-07

ENV216

Schwarzbeck

Emissions in non-restricted frequency bands 6dB Bandwidth Maximum Conducted Output Power

network

Power Spectral Density

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2025-01-08	2026-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2025-01-08	2026-01-07
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2025-01-08	2026-01-07

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2025-01-08	2026-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2025-01-08	2026-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2025-01-08	2026-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2026-01-08
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2026-01-08
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2023-01-09	2026-01-08
10	RF Cable	Tonscend	Cable 1	/	2025-01-08	2026-01-07
11	RF Cable	Tonscend	Cable 2	1	2025-01-08	2026-01-07
12	RF Cable	SKET	Cable 3	1	2025-01-08	2026-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	1	2025-01-08	2026-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	1	2025-01-08	2026-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2026-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2025-01-08	2026-01-07
17	Variable-frequency power source	Pinhong	PH1110	1	2025-01-08	2026-01-07
18	6dB Attenuator	SKET	DC-6G	1	2025-01-08	2026-01-07
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2025-01-08	2026-01-07

5. TEST RESULTS

5.1. Evaluation Results (Evaluation)

5.1.1. Antenna Requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

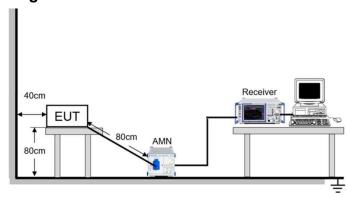
5.1.1.1. Test Result

Pass

5.1.1.2. Conclusion:

The EUT antenna is Chip Antenna(2.7dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

5.2. Radio Spectrum Matter Test Results (RF)

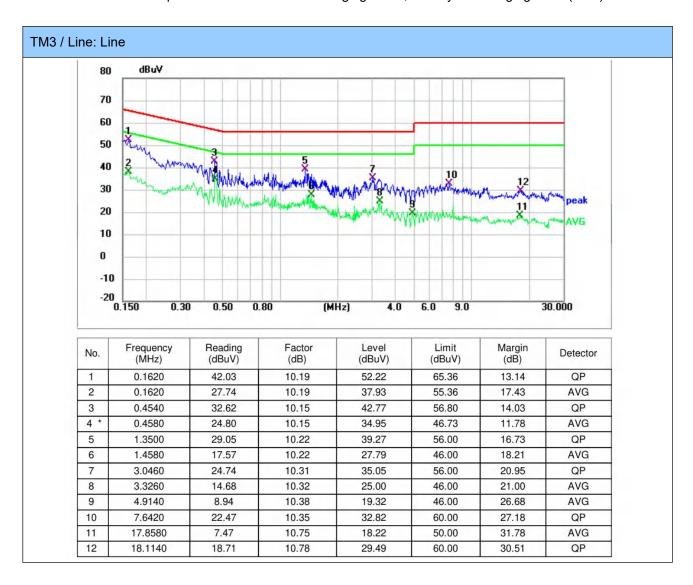

5.2.1. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator the utility (AC) power line, the radio free AC power line on any frequency or MHz, shall not exceed the limits in the µH/50 ohms line impedance stabilize	nat is designed to be conne quency voltage that is cond frequencies, within the ban he following table, as meas	cted to the public ucted back onto the d 150 kHz to 30		
	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
Test Limit:	0.15-0.5	66 to 56*	56 to 46*		
rest Limit.	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	1. The EUT was setup according to 2. The EUT was placed on a platfor above the conducting ground plane cm to the rear of the EUT. All other other grounded conducting surface. 3. The EUT and simulators are consimpedances stabilization network (Loupling impedance for the measur 4. The peripheral devices are also concept (Refer to the block diagram of the test of the state of the excess length of the power of the excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length of the power of the excess length. The excess length of the power of the excess length of the excess len	m of nominal size, 1 m by a line of nominal size, 1 m by a line of the wertical conducting place of EUT were at least nected to the main power the LISN). The LISN provides a ling equipment, connected to the main powerst setup and photographs of the EUT power cord, except connected through a LISN cord between the EUT and lenter of the lead to form a bettigated over the frequency the first setup and the fir	1.5 m, raised 80 cm ane was located 40 ast 80 cm from any arough a line 50 ohm /50uH er through a LISN. Cept the ground to the input power the LISN receptacle bundle not exceeding range from 0.15MHz		

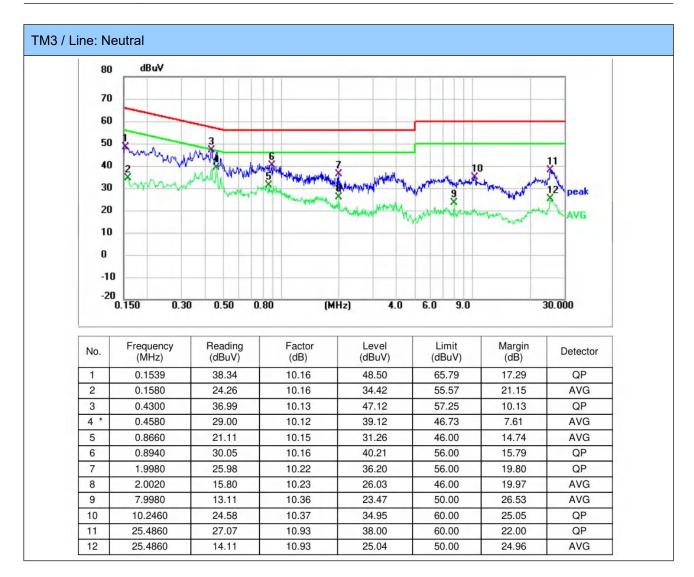
5.2.1.1. E.U.T. Operation

Operating Environment:						
Temperature: 22.4 °C			Humidity:	56.5 %	Atmospheric Pressure:	102 kPa
Pre test mode:		ТМЗ	3			
Final test mode	е:	ТМЗ	3			

5.2.1.2. Test Setup Diagram



5.2.1.3. Test Result


Pass

5.2.1.4. Test Data

The BT function of this product does not work in charging mode, so only the charging mode(TM3) is tested

Note:

^{1).} Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

^{2).} Margin = Limit - Level

5.2.2. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8
Procedure:	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

5.2.2.1. E.U.T. Operation

Operating Environment:						
Temperature:	23.3 °C		Humidity:	56.5 %	Atmospheric Pressure:	103 kPa
Pre test mode:		TM ²	1			
Final test mode	ə:	TM ²	1			

5.2.2.2. Test Setup Diagram

5.2.2.3. Test Result

Pass

5.2.2.4. Test Data

5.2.3. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.2.3.1. E.U.T. Operation

Operating Env	Operating Environment:					
Temperature:	23.3 °C		Humidity:	56.5 %	Atmospheric Pressure:	103 kPa
Pre test mode:		TM	1			
Final test mode	e:	TM	1			

5.2.3.2. Test Setup Diagram

5.2.3.3. Test Result

Pass

5.2.3.4. Test Data

5.2.4. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10
Procedure: ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission	

5.2.4.1. E.U.T. Operation

Operating Environment:									
Temperature:	Temperature: 23.3 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa								
Pre test mode:		TM	1						
Final test mode	e:	TM ²	1						

5.2.4.2. Test Setup Diagram

5.2.4.3. Test Result

Pass

5.2.4.4. Test Data

5.2.5. Conducted band edge and spurious emission

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

5.2.5.1. E.U.T. Operation

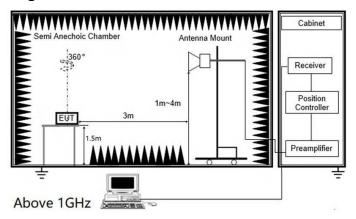
Operating Environment:									
Temperature:	Temperature: 23.3 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa								
Pre test mode:			1						
Final test mode: TM1									

5.2.5.2. Test Setup Diagram

5.2.5.3. Test Result

Pass

5.2.5.4. Test Data

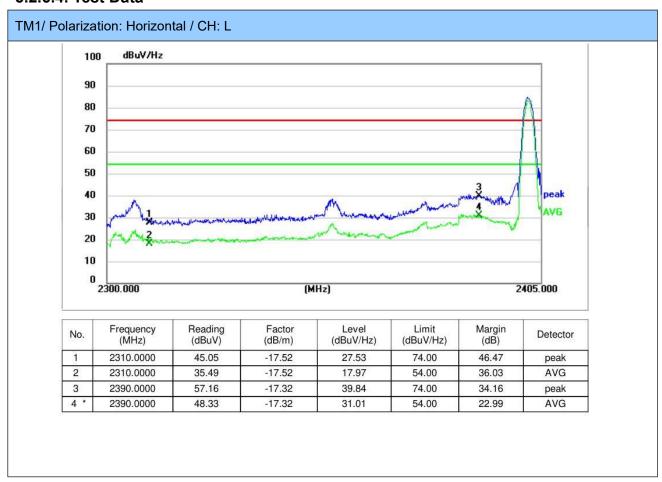

5.2.6. Radiated band edge emission

Test Requirement:	restricted bands, as defin	d), In addition, radiated emissic ed in § 15.205(a), must also co in § 15.209(a)(see § 15.205(c))	omply with the radiated				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
Toot Limit	216-960	200 **	3				
Test Limit:	Above 960	500	3				
	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 section 6.10						
Procedure:	 The EUT is placed on table is rotated 360 degree level. The EUT waspositioned meters. The antenna is scanned emission level. This is repartenna. In order to find the manipulated according to 5. Use the following special Span shall wide enough by Set RBW=1MHz, VBW Trace=max hold for Peak 	ph to fully capture the emission /=3MHz for >1GHz, Sweep time	above ground. The turn the maximum emission antenna to the EUT was 3 and out the maximum ertical polarization of the e interface cables were surement. being measured e=auto, Detector=peak,				

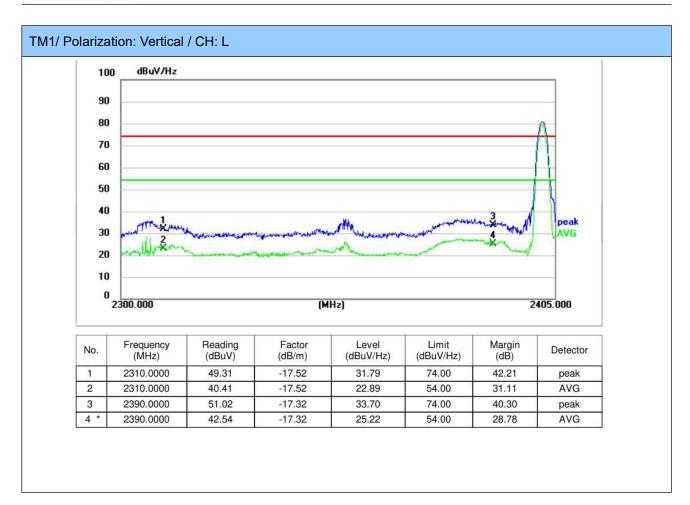
5.2.6.1. E.U.T. Operation

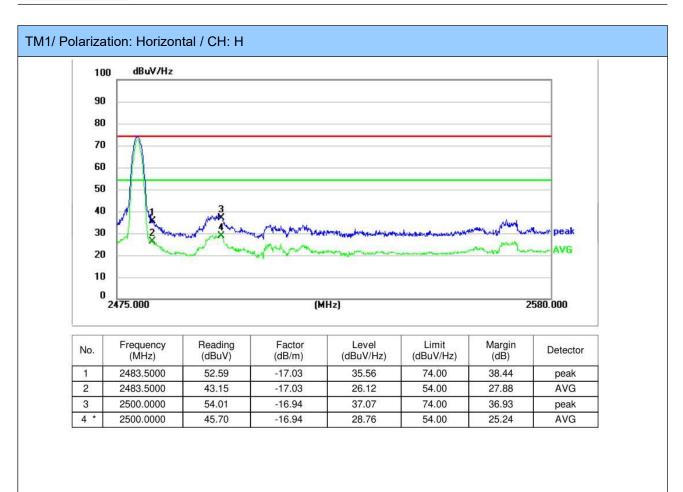
Operating Environment:										
Temperature: 23 °C Humidity: 56.5 % Atmospheric Pressure: 102 kPa										
Pre test mode:	TM1									
Final test mode	ə:									

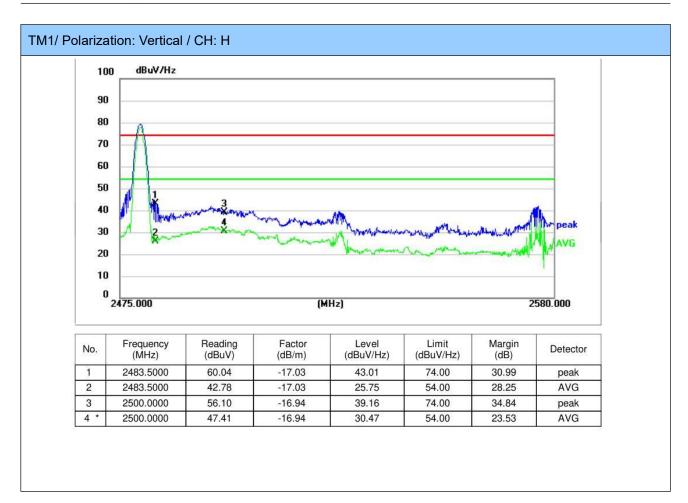
5.2.6.2. Test Setup Diagram



5.2.6.3. Test Result


Pass

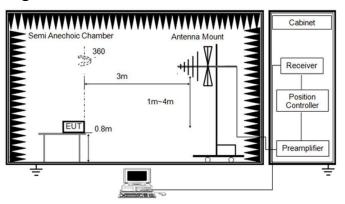

5.2.6.4. Test Data



Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level

5.2.7. Radiated Spurious Emission (below 1GHz)

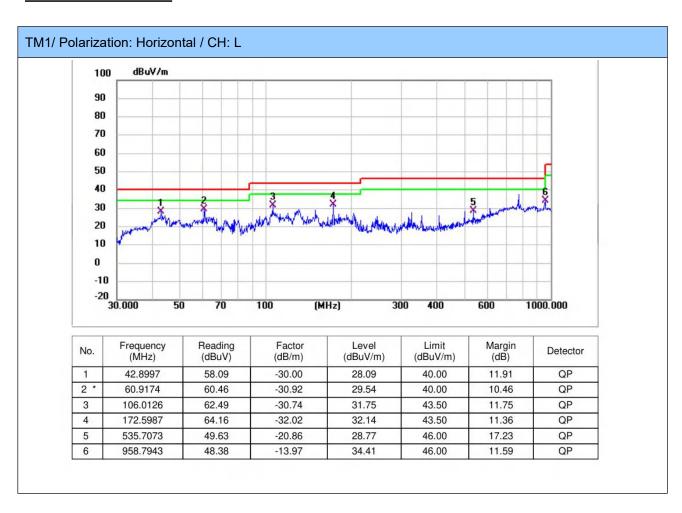

Test Requirement:	restricted bands, as defined	In addition, radiated emissions w in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
Test Limit:	Above 960	500	3				
	these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 section (6.6.4					
Procedure:	2. The EUT is placed on a to GHz, and 1.5 m for above 1 determine the position of the 3. The EUT was set 3 meter the top of a variable height a 4. For each suspected emistune the Antenna tower (fror degrees) to find the maximum for the test in order to get be 5. Set to the maximum powe 6. Use the following spectrum a) Span shall wide enough the b) RBW=120 kHz, VBW=30 Trace=max hold; If the emission level of the Euclidean the specific specif	es from the receiving antenna, whi antenna tower. sion, the EUT was arranged to its on 1 m to 4 m) and turntable (from our reading. A pre-amp and a high better signal level to comply with the er setting and enable the EUT trai	e ground for below 1 do degrees to ich was mounted on s worst case and then 0 degree to 360 pass filter are used e guidelines. nsmit continuously. g measured; ction=peak, or is 3 dB lower than Otherwise, the				

5.2.7.1. E.U.T. Operation

Operating Environment:									
Temperature:	Temperature: 23 °C		Humidity: 56.5 % Atmospheric Pressure: 102 kPa						
Pre test mode: TM1, TM2, TM3									
Final test mode	e:	All of the listed pre (TM1) is recorded		ested, only the data of the	worst mode				

5.2.7.2. Test Setup Diagram

Below 1 GHz and above 30 MHz


5.2.7.3. Test Result

Pass

5.2.7.4. Test Data

For 30 MHz ~ 1000 MHz

TM1/ Polarization: Vertical / CH: L 100 dBuV/m 90 80 70 60 50 40 30 20 10 0 -10 -20 30.000 (MHz) 1000.000 50 70 100 300 400 600 Reading Factor Limit Frequency Level Margin Detector No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 65.5725 60.97 40.00 10.89 QP -31.86 29.11 105.2716 43.50 2 60.95 -30.79 30.16 13.34 QP 3 167.8240 57.79 -32.46 25.33 43.50 18.17 QP 4 * 252.9481 63.74 -28.35 35.39 46.00 10.61 QP 5 508.2581 52.35 -21.70 30.65 46.00 15.35 QP 711.6734 49.19 -16.88 32.31 46.00 13.69 QP 6

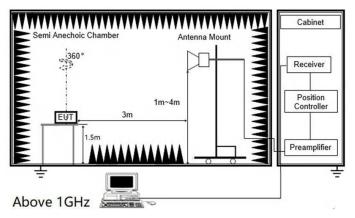
Note:

1) For 9 kHz ~ 30 MHz Measurement

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

- 2) Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 3) Margin = Limit Level

5.2.8. Radiated Spurious Emission (Above 1GHz)


Test Requirement:	restricted bands, as defin	d), in addition, radiated emissioned in § 15.205(a), must also coin § 15.209(a)(see § 15.205(c)	omply with the radiated				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
Test Limit:	Above 960	500	3				
	15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 section 6.6.4						
Procedure:	2. The EUT is placed on GHz, and 1.5 m for above determine the position of 3. The EUT was set 3 methe top of a variable heig 4. For each suspected er tune the Antenna tower (degrees) to find the maxifor the test in order to get 5. Set to the maximum per 6. Use the following special Span shall wide enough Set RBW=1MHz, VBW Trace=max hold for Peak	mission, the EUT was arranged from 1 m to 4 m) and turntable mum reading. A pre-amp and at better signal level to comply wower setting and enable the EUstrum analyzer settings to fully capture the emission weakly and some surement onto the entry of the settings of the fully capture the emission of the entry of the e	above ground for below 1 ed 360 degrees to a, which was mounted on I to its worst case and then (from 0 degree to 360 a high pass filter are used with the guidelines. JT transmit continuously. being measured; e=auto, Detector=peak,				

5.2.8.1. E.U.T. Operation

Operating Environment:									
Temperature:	23 °C	Humidity:	56.5 %	Atmospheric Pressure:	102 kPa				
Pre test mode: TM1, TM2, TM3									
Final test mode	э:	All of the listed pro (TM1) is recorded		sted, only the data of the	worst mode				

5.2.8.2. Test Setup Diagram

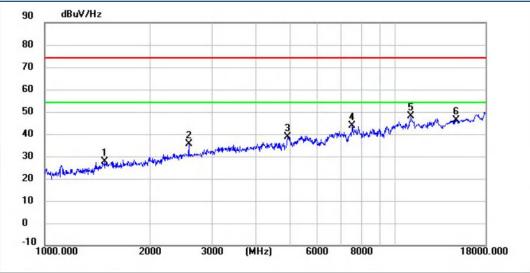
5.2.8.3. Test Result

Pass

5.2.8.4. Test Data

<u>For 1 GHz ~ 25 GHz</u>

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1525.3000	53.43	-20.69	32.74	74.00	41.26	peak
2	3133.5000	48.17	-14.30	33.87	74.00	40.13	peak
3	4782.5000	45.27	-9.98	35.29	74.00	38.71	peak
4	6943.2000	37.21	3.14	40.35	74.00	33.65	peak
5	10800.5000	32.05	12.60	44.65	74.00	29.35	peak
6 *	17894.6000	26.72	23.35	50.07	74.00	23.93	peak


TM1/ Polarization: Vertical / CH: L dBuV/Hz -10 1000.000 18000.000

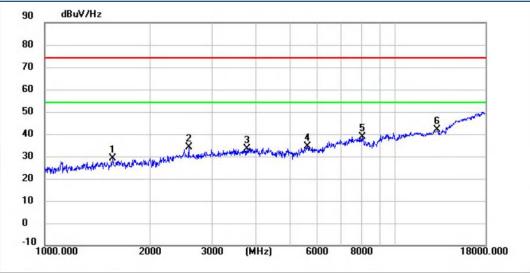
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1683.4000	51.53	-20.19	31.34	74.00	42.66	peak
2	2575.9000	52.32	-16.38	35.94	74.00	38.06	peak
3	5000.1000	45.50	-8.74	36.76	74.00	37.24	peak
4	7339.3000	35.78	4.77	40.55	74.00	33.45	peak
5	12204.7000	29.78	14.68	44.46	74.00	29.54	peak
6 *	14379.0000	29.46	18.55	48.01	74.00	25.99	peak

(MHz)

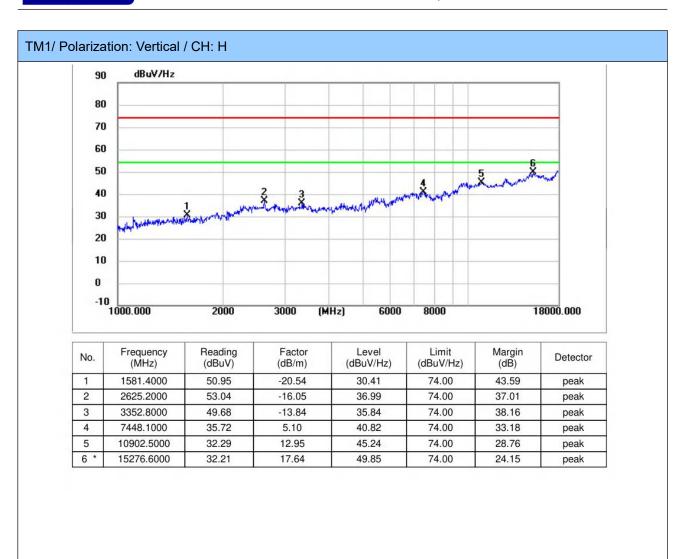
TM1/ Polarization: Horizontal / CH: M 90 dBuV/Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1487.9000	48.35	-20.75	27.60	74.00	46.40	peak
2	2575.9000	51.81	-16.38	35.43	74.00	38.57	peak
3	4938.9000	47.95	-9.15	38.80	74.00	35.20	peak
4	7522.9000	38.39	5.34	43.73	74.00	30.27	peak
5 *	11098.0000	34.61	13.47	48.08	74.00	25.92	peak
6	14906.0000	28.49	17.85	46.34	74.00	27.66	peak

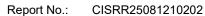
18000.000


TM1/ Polarization: Vertical / CH: M dBuV/Hz -10 1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1120.7000	48.25	-21.69	26.56	74.00	47.44	peak
2	1822.8000	48.56	-19.47	29.09	74.00	44.91	peak
3	2492.6000	49.70	-16.98	32.72	74.00	41.28	peak
4	4386.4000	45.82	-11.35	34.47	74.00	39.53	peak
5	6319.3000	41.23	-2.64	38.59	74.00	35.41	peak
6 *	11713.4000	29.61	14.12	43.73	74.00	30.27	peak


(MHz)

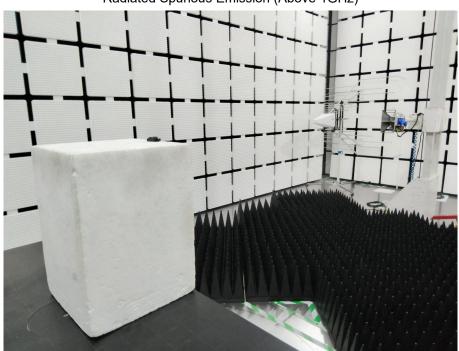
TM1/ Polarization: Horizontal / CH: H



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1566.1000	49.64	-20.59	29.05	74.00	44.95	peak
2	2575.9000	50.52	-16.38	34.14	74.00	39.86	peak
3	3788.0000	46.37	-12.91	33.46	74.00	40.54	peak
4	5610.4000	41.00	-6.61	34.39	74.00	39.61	peak
5	8049.9000	32.33	6.54	38.87	74.00	35.13	peak
6 *	13172.0000	25.71	16.14	41.85	74.00	32.15	peak

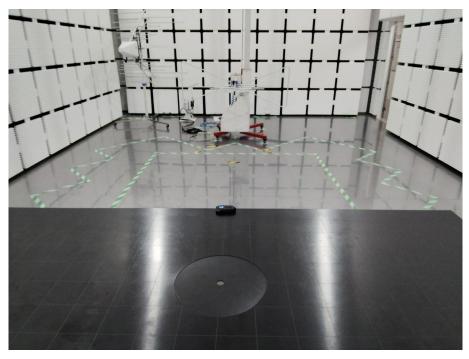
Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.



6. TEST SETUP PHOTOS

Conducted Emission at AC power line



Radiated band edge emission Radiated Spurious Emission (Above 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS

7.1. External Photos

Please refer to RF report: CISRR25081210201

7.2. Internal Photos

Please refer to RF report: CISRR25081210201

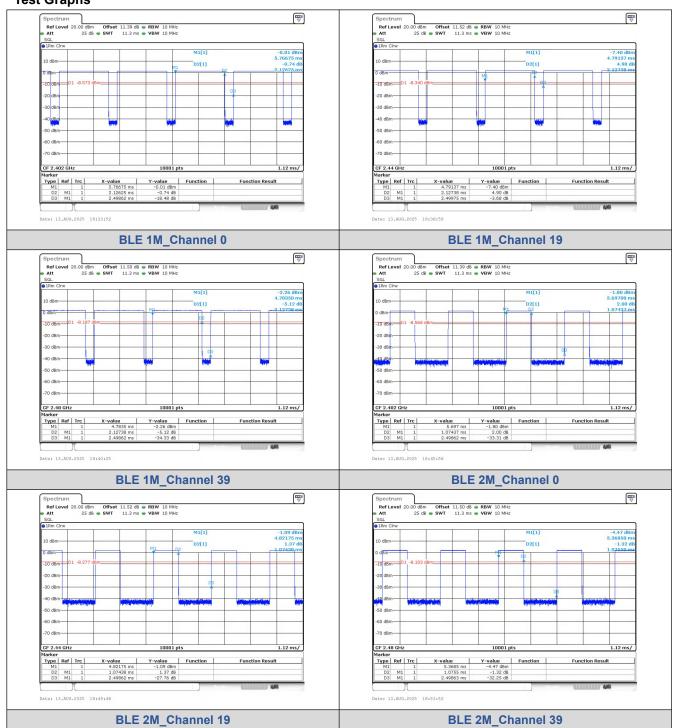
8. Appendix Report

CISRR25081210202

Appendix Report

Project No.: CISR250812102

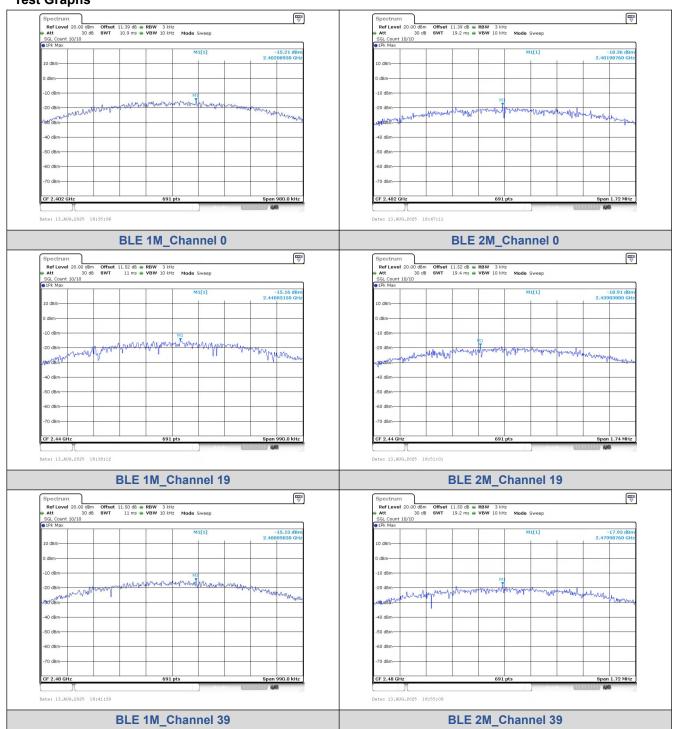
Test Engineer: James Wang


Supervised by: Jimmy Huang

8.1. Duty Cycle

Test Result

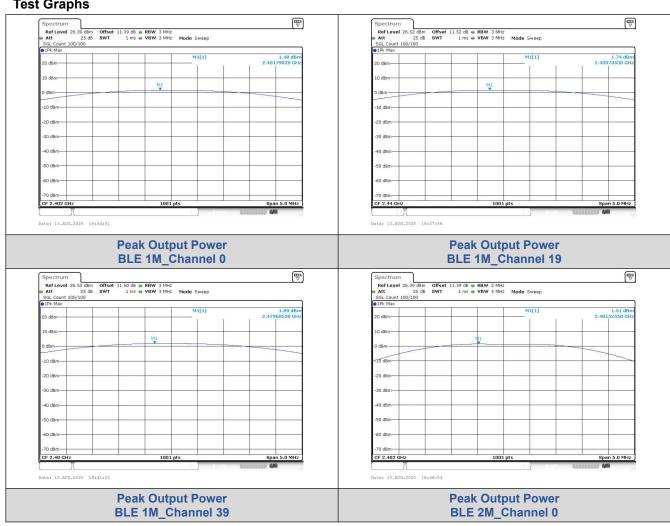
Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)	1/T
	0	2.126	2.499	85.10	0.8510	0.7007	0.4704
BLE 1M	19	2.127	2.500	85.10	0.8510	0.7007	0.4701
	39	2.127	2.499	85.14	0.8514	0.6987	0.4701
	0	1.074	2.499	43.00	0.4300	3.6653	0.9311
BLE 2M	19	1.074	2.499	43.00	0.4300	3.6653	0.9311
	39	1.075	2.499	43.04	0.4304	3.6613	0.9302



8.2. Power Spectral Density

Test Result

Mode	Channel	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
BLE 1M	0	-15.210	≤8	PASS
BLE 1M	19	-15.160	≤8	PASS
BLE 1M	39	-15.130	≤8	PASS
BLE 2M	0	-18.360	≤8	PASS
BLE 2M	19	-18.910	≤8	PASS
BLE 2M	39	-17.930	≤8	PASS

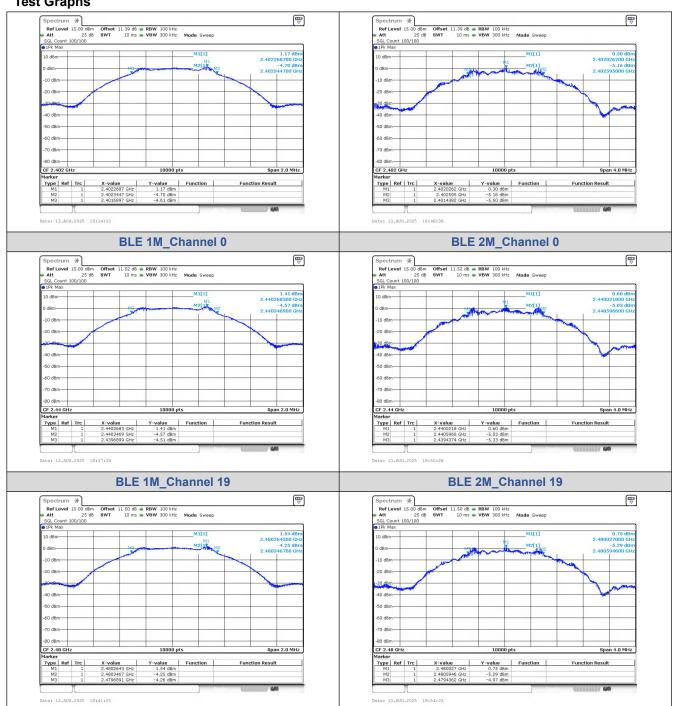


CISRR25081210202 Report No.:


8.3. Conducted Output Power

Test Result

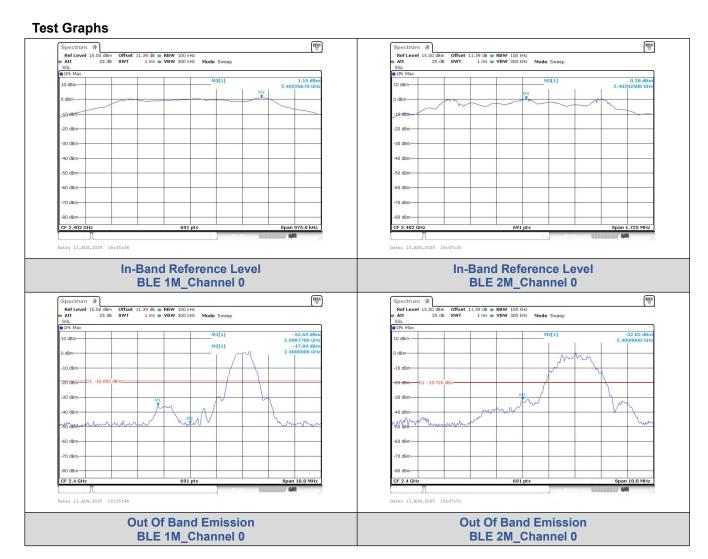
Mode	Channel	Peak Output Power (dBm)	Peak Output Power (mW)	Limit (dBm)	Result
	0	1.48	1.41	≤30	PASS
BLE 1M	19	1.74	1.49	≤30	PASS
	39	1.89	1.55	≤30	PASS
	0	1.51	1.42	≤30	PASS
BLE 2M	19	1.81	1.52	≤30	PASS
	39	1.97	1.57	≤30	PASS

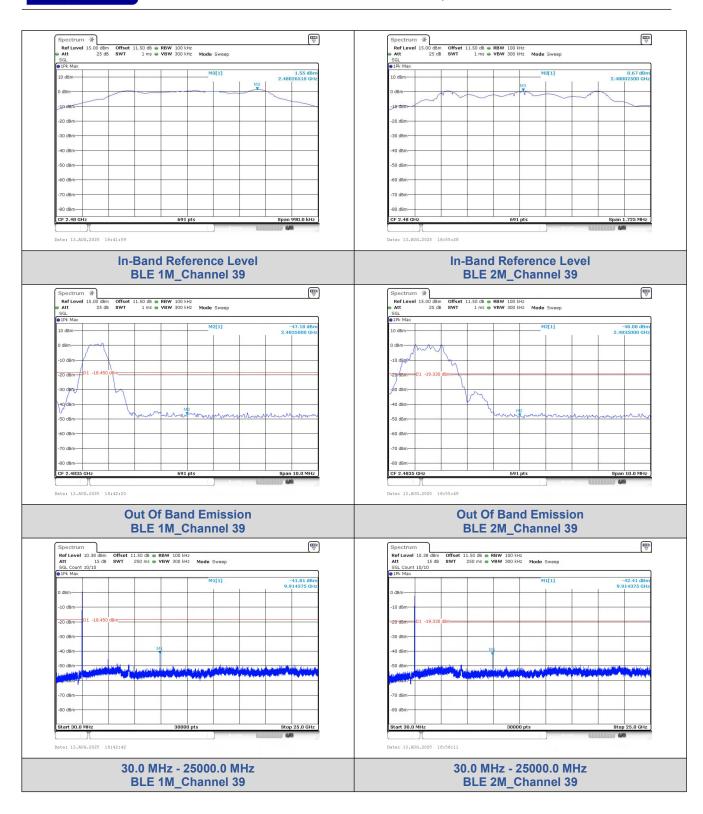


8.4. 6dB Bandwidth

Test Result

Mode	Channel	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	0	2402	0.6500	-	PASS
BLE 1M	19	2440	0.6600		PASS
	39	2480	0.6600		PASS
	0	2402	1.150	≥0.5	PASS
BLE 2M	19	2440	1.160		PASS
	39	2480	1.150		PASS




8.5. Conducted Out Of Band Emission

Test Result

Mode	Channel	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
		2398.77	-35.629	-18.85	-16.779	PASS
	0	2400.00	-47.890	-18.85	-29.040	PASS
BLE 1M		9602.20	-45.088	-18.85	-26.238	PASS
DLC IIVI	19	9753.73	-44.559	-18.6	-25.959	PASS
	39	2483.50	-47.180	-18.45	-28.730	PASS
	39	9914.37	-41.812	-18.45	-23.362	PASS
	0	2400.00	-32.020	-19.72	-12.300	PASS
		9602.25	-45.284	-19.72	-25.564	PASS
BLE 2M	19	9753.73	-44.775	-19.43	-25.345	PASS
	39	2483.50	-48.080	-19.33	-28.750	PASS
		9914.37	-42.412	-19.33	-23.082	PASS

----End of the report-----