FCC §15.247 (i), §2.1091 – RF Exposure

FCC ID: 2BNCZ-JH600

Applied procedures / limit

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Note: *f* is frequency in MHz

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz

^{* =} Power density limit is applicable at frequencies greater than 100 MHz

^{* =} Plane-wave equivalent power density

MPE PREDICTION

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna
G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna, R=20cm

Test Result of RF Exposure Evaluation

	Modes& Channel Freq. (MHz)	Tune up Produce power	Maximu m peak output power (dBm)	Output power to antenna (mW)	Antenna Gain (numeric)	Power Density (S) (mW/ cm2)	Limit (mW / cm2	Result
2.4G WIFI ANT1	802.11g&2 437	14±1	15	31.6228	1.9724 (2.95dBi)	0.0124	1	Pass
2.4G WIFI ANT2	802.11g&2 437	14±1	15	31.6228	1.9724 (2.95dBi)	0.0124	1	Pass
5.8G WIFI ANT1	802.11a&5 745	14±1	15	31.6228	2.6669 (4.26dBi)	0.01679	1	Pass
5.8G WIFI ANT2	802.11a&5 825	14±1	15	31.6228	2.6669 (4.26dBi)	0.01679	1	Pass

For the Max simultaneous transmission MPE:

When a number of sources at different frequencies, and/or broadband sources, contribute to the total exposure, it becomes necessary to weigh each contribution relative to the MPE in accordance with the provisions of Table (A) and Table (B). To comply with the MPE, the fraction of the MPE in terms of E2, H2 (or power density) incurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity. In order to ensure compliance with the MPE for a controlled environment, the sum of the ratios of the power density to the corresponding MPE should not exceed unity. That is

$$\sum_{i=1}^{n} \frac{S_i}{MPE_i}$$

Tech nolo gy	Prod	e up duce (dBm) ANT 2	Tun	mum e-up Bm) ANT 2	Antenna Gain(ANT 1/ANT 2) (numeric)	(5	Density S) cm2) ANT 2	MPE Limit (mW/ cm2)	∑ MPE Ratio	Σ MPE Ratio Limit	Result
2.4G WIFI MIM O	14 ±1	14 ±1	15	15	1.9724 (2.95dBi)	0.0124	0.0124	1	0.0248	1	Pass

Tech nolo gy	Prod	e up duce (dBm) ANT 2	Tun	mum e-up Bm) ANT 2	Antenna Gain(ANT 1/ANT 2) (numeric)	(5	Density S) cm2) ANT 2	MPE Limit (mW/ cm2)	∑ MPE Ratio	Σ MPE Ratio Limit	Result
5G WIFI MIM O	14 ±1	14 ±1	15	15	2.6669 (4.26dBi)	0.0167 9	0.0167 9	1	0.0335 8	1	Pass

WIFI supported simultaneous transmission:

2.4GWIFI MIMO+5GWIFI MIMO: Σ MPE Ratio: 0.0248+0.03358=0.05838 \leq 1, So passed.