

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

10.1-inch Digital Picture Frame

MODEL NUMBER: RPF010101

REPORT NUMBER: E04A24111293F00101

ISSUE DATE: December 23, 2024

FCC ID: 2BNB7RPF010101

Prepared for

Guangdong R&E Optical Electronic Technology CO., LTD

**NO.1 Fifth Industrial Road Jingmei Village Dongkeng Town Dongguan City Guangdong
Province China**

Prepared by

Guangdong Global Testing Technology Co., Ltd.

**Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park,
Dongguan city, Guangdong, People's Republic of China, 523808**

**This report shall not be reproduced, except in full, without the written approval of
Guangdong Global Testing Technology Co., Ltd.**

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	December 23, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATTESTATION OF TEST RESULTS.....	5
2. TEST METHODOLOGY.....	7
3. FACILITIES AND ACCREDITATION.....	7
4. CALIBRATION AND UNCERTAINTY	8
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	8
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	8
5. EQUIPMENT UNDER TEST	9
5.1. <i>DESCRIPTION OF EUT</i>	9
5.2. <i>CHANNEL LIST.....</i>	10
5.3. <i>MAXIMUM AVERAGE EIRP</i>	10
5.4. <i>TEST CHANNEL CONFIGURATION.....</i>	10
5.5. <i>THE WORSE CASE POWER SETTING PARAMETER</i>	11
5.6. <i>DESCRIPTION OF AVAILABLE ANTENNAS</i>	12
5.7. <i>SUPPORT UNITS FOR SYSTEM TEST</i>	12
5.8. <i>SETUP DIAGRAM</i>	12
6. MEASURING EQUIPMENT AND SOFTWARE USED.....	13
7. ANTENNA PORT TEST RESULTS	14
7.1. <i>Conducted Output Power.....</i>	14
7.2. <i>6dB Bandwidth and 99% Occupied Bandwidth.....</i>	16
7.3. <i>Power Spectral Density.....</i>	18
7.4. <i>Conducted Band edge and spurious emission</i>	20
7.5. <i>Duty Cycle</i>	22
8. RADIATED TEST RESULTS.....	23
9. ANTENNA REQUIREMENT	41
10. AC POWER LINE CONDUCTED EMISSION	42
11. TEST DATA.....	45
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION	46
APPENDIX: PHOTOGRAPHS OF THE EUT	48

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangdong R&E Optical Electronic Technology CO., LTD
Address: NO.1 Fifth Industrial Road Jingmei Village Dongkeng Town
Dongguan City Guangdong Province China

Manufacturer Information

Company Name: Guangdong R&E Optical Electronic Technology CO., LTD
Address: NO.1 Fifth Industrial Road Jingmei Village Dongkeng Town
Dongguan City Guangdong Province China

Factory Information

Company Name: Guangdong R&E Optical Electronic Technology CO., LTD
Address: NO.1 Fifth Industrial Road Jingmei Village Dongkeng Town
Dongguan City Guangdong Province China

EUT Information

Product Description: 10.1-inch Digital Picture Frame
Model: RPF010101
Series Model: N/A
Trademark: Rovesky
Sample Received Date: December 11, 2024
Sample Status: Normal
Sample ID: A24111293 001
Date of Tested: December 11, 2024 to December 13, 2024

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	Pass

Prepared By:

Win Huang

Win Huang

Project Engineer

Checked By:

Alan He

Alan He

Laboratory Leader

Approved By:

Shawn Wen

Shawn Wen

Laboratory Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS)

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 6947.01) Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to Supplier's Declaration of Conformity (SDoC) and Certification rules</p> <p>ISED (Company No.: 30714) Guangdong Global Testing Technology Co., Ltd. has been registered and fully described in a report filed with ISED. The Company Number is 30714 and the test lab Conformity Assessment Body Identifier (CABID) is CN0148.</p>
---------------------------	--

Note: All tests measurement facilities use to collect the measurement data are located at
Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city,
Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		10.1-inch Digital Picture Frame
Model		RPF010101
Series Model		N/A
Hardware Version		K1003T-V1.2_915A
Software Version		K1003.userdebug.2024-12-05+13.59.40
Ratings		AC 100-240V, 50-60Hz
Power Supply	AC	AC120V/60Hz

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2412 MHz to 2462 MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7
Number of Channels:	IEEE 802.11b/g/n-HT20: 11
Maximum Peak Power:	IEEE 802.11b: 18.19 dBm IEEE 802.11g: 21.59 dBm IEEE 802.11n-HT20: 21.6 dBm
Antenna Type:	PFC antenna
Antenna Gain:	2.0dBi
Normal Test Voltage:	5 Vdc
EUT Test software:	cmd.exe

5.2. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

5.3. MAXIMUM PEAK EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted Peak Output Power (dBm)
b	2412 ~ 2462	1-11[11]	18.19
g	2412 ~ 2462	1-11[11]	21.59
n HT20	2412 ~ 2462	1-11[11]	21.6

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software		cmd.exe				
Modulation Mode	Transmit Antenna Number	Test Channel				
		NCB: 20MHz			NCB: 40MHz	
		CH 1	CH 6	CH 11	CH 3	CH 6
802.11b	1	39	39	39		
802.11g	1	39	39	39		
802.11n HT20	1	39	39	39		

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps

802.11g mode: 6 Mbps

802.11n HT20 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

Conducted bandedge and spurious emissions tests were performed with SISO mode, as this port was found to have the worst case in terms of power settings amongst all supported possible SISO & MIMO port combinations.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

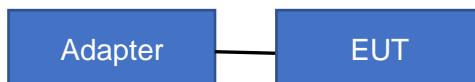
The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PFC antenna	1.6

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	<input checked="" type="checkbox"/> 1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	<input checked="" type="checkbox"/> 1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	<input checked="" type="checkbox"/> 1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.


5.7. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	SWITCHING ADAPTER	Jiu'anshun	SJ-05020001	N/A	

5.8. SETUP DIAGRAM

Radiated emissions:

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

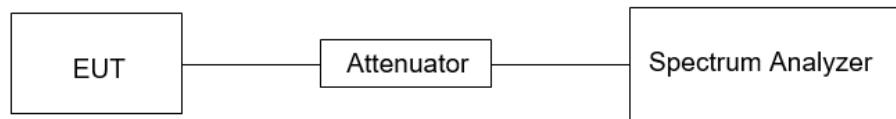
Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2024/09/14	2025/09/13
LISN/AMN	Rohde & Schwarz	ENV216	102843	2024/09/14	2025/09/13
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2024/09/14	2025/09/13
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

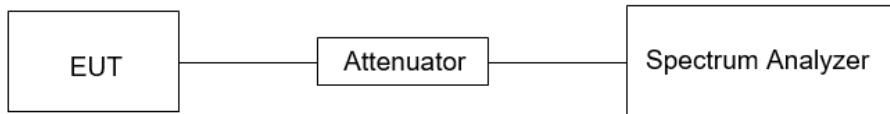
Please refer to section "Test Data" - Appendix A

7.2. 6DB BANDWIDTH OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz
VBW	For 6 dB Bandwidth: $\geq 3 \times$ RBW
Trace	Max hold
Sweep	Auto couple

a) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

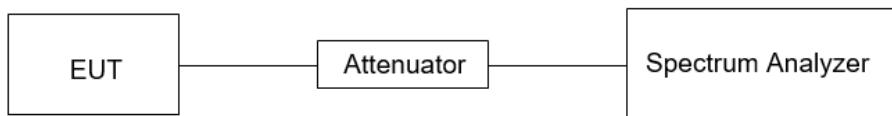
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	$\geq 3 \times \text{RBW}$
Span	$1.5 \times \text{DTS bandwidth}$
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

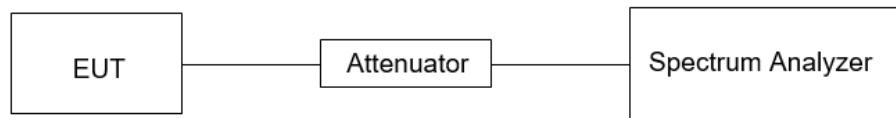
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
measurement points	\geq span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

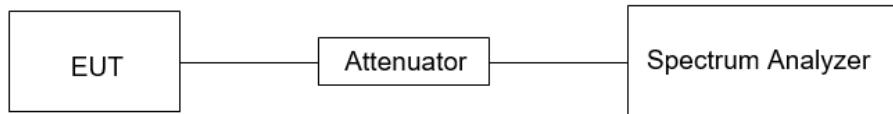
TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m	
		Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note:1. Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.
 2. Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

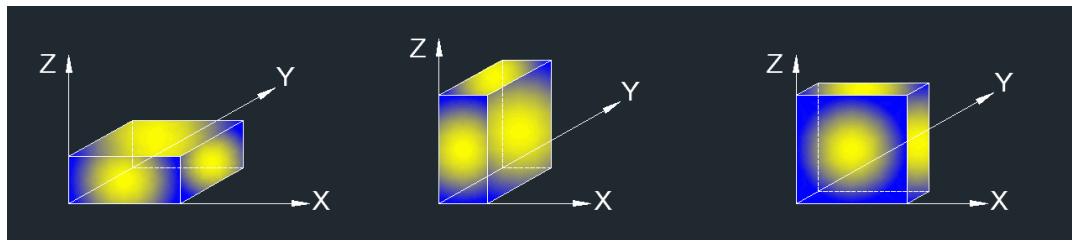
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to $Y-51.5 = Z$ dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

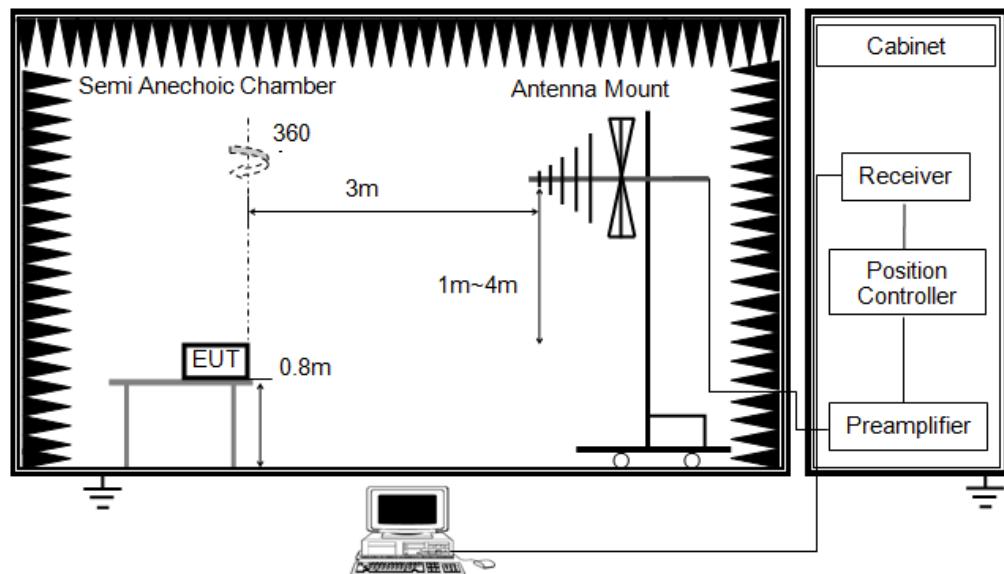
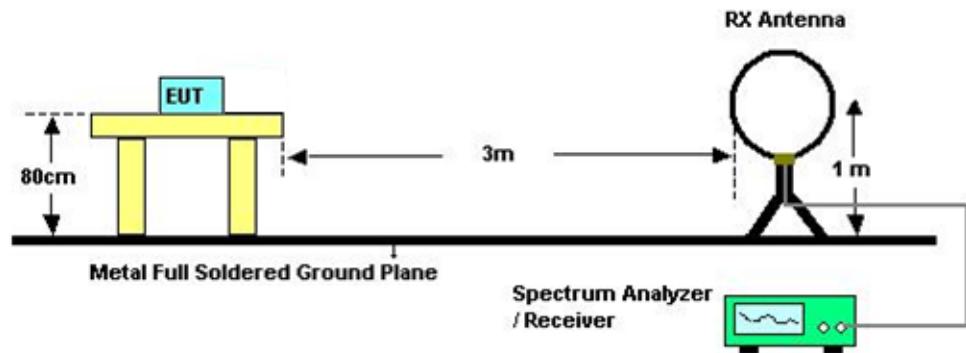
RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

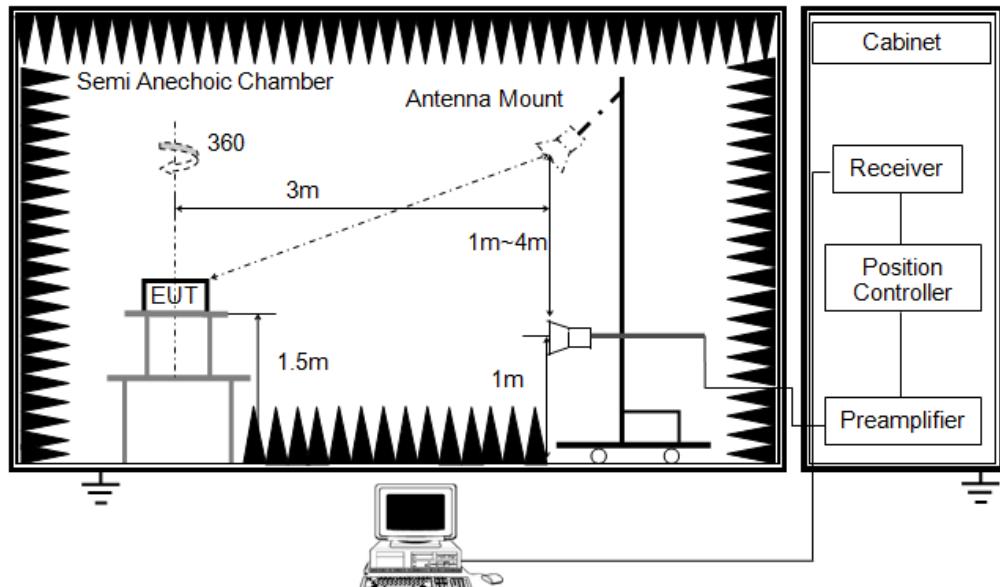
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


Above 1G

The setting of the spectrum analyser

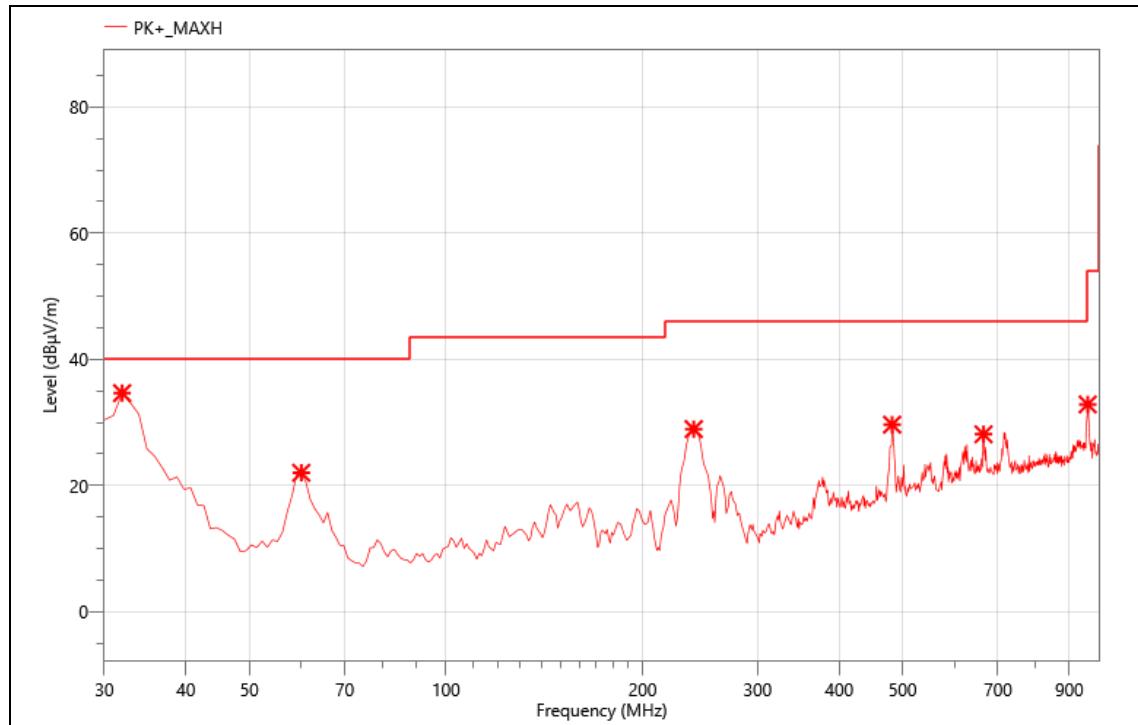
RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold



1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 1.5 m above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

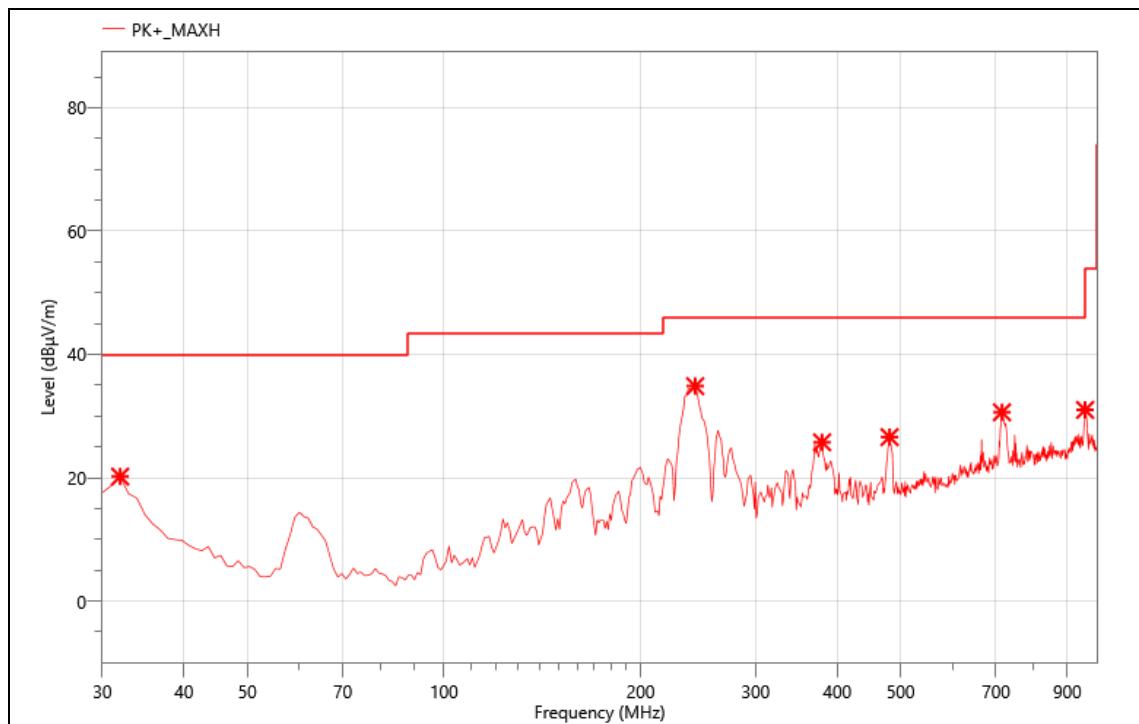
TEST SETUP


TEST ENVIRONMENT

Temperature	22.1 °C	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

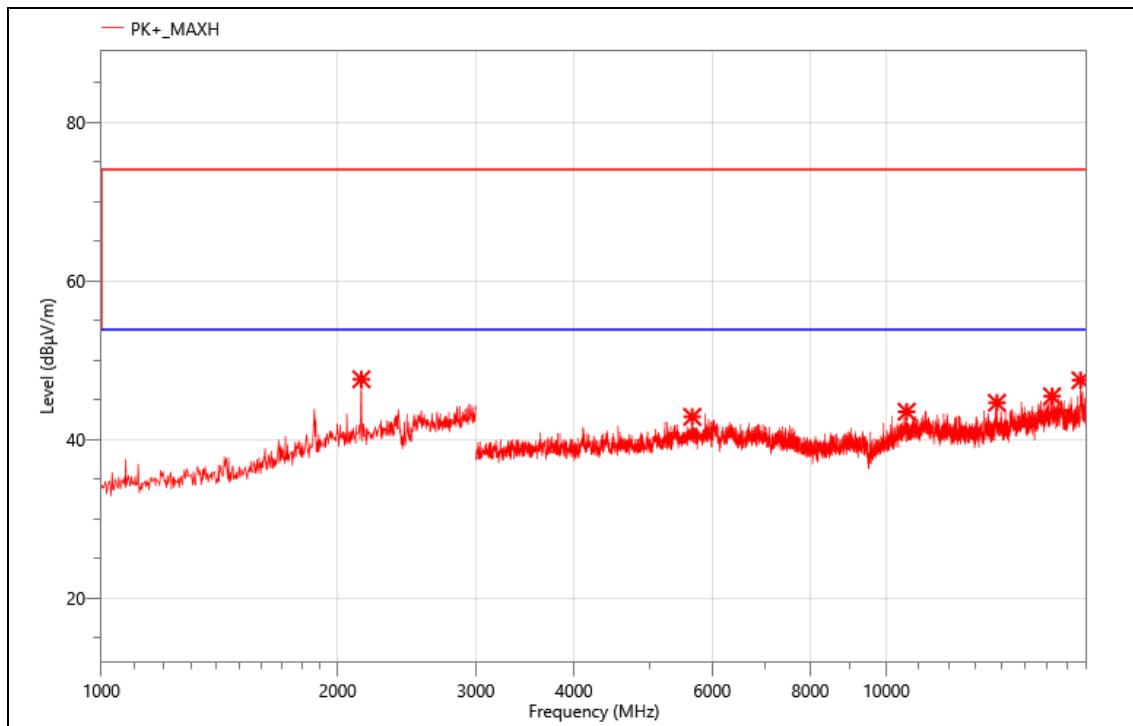
The worst data of the mode (802.11n20 2412MHz) are recorded in the following pages.


Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Det.	Pol.
1	31.940	49.97	-15.33	34.64	40.00	5.36	PK+	V
2	60.070	46.51	-24.49	22.02	40.00	17.98	PK+	V
3	239.520	48.60	-19.66	28.94	46.00	17.06	PK+	V
4	482.020	42.61	-12.97	29.64	46.00	16.36	PK+	V
5	665.350	36.31	-8.19	28.12	46.00	17.88	PK+	V
6	960.230	36.67	-3.82	32.85	53.90	21.05	PK+	V

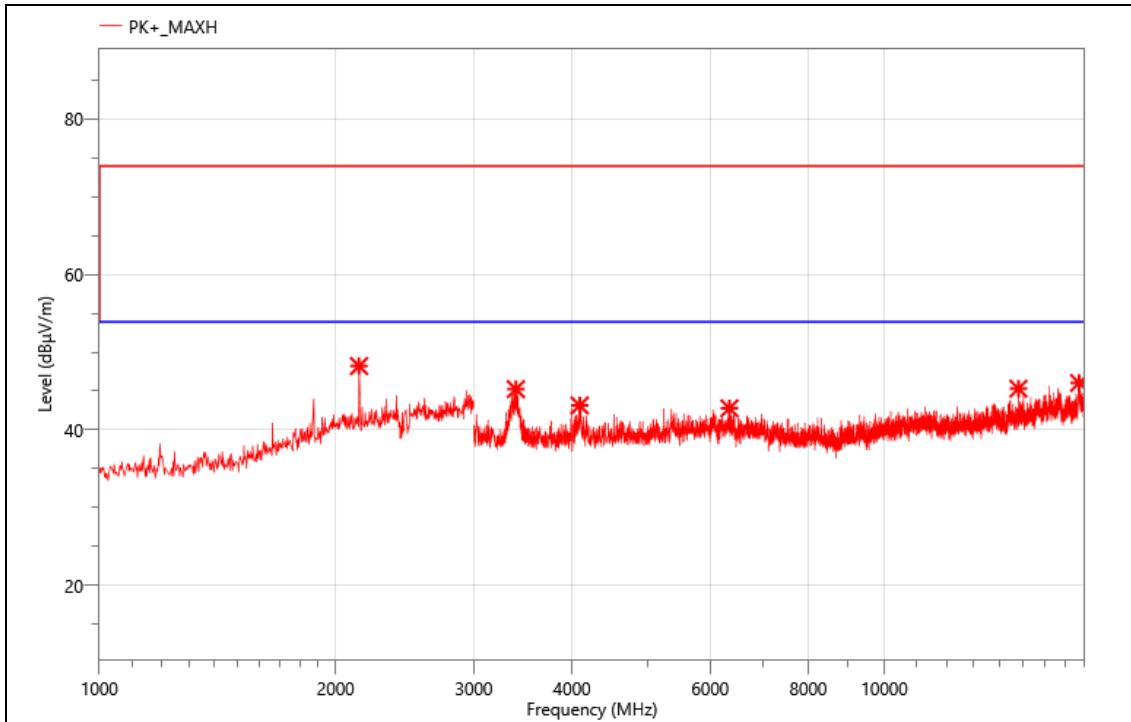
Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa


Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	31.940	35.53	-15.33	20.20	40.00	19.80	PK+	H
2	242.430	54.34	-19.48	34.86	46.00	11.14	PK+	H
3	379.200	40.70	-14.94	25.76	46.00	20.24	PK+	H
4	481.050	39.59	-12.99	26.60	46.00	19.40	PK+	H
5	714.820	37.66	-7.03	30.63	46.00	15.37	PK+	H
6	958.290	34.80	-3.79	31.01	46.00	14.99	PK+	H

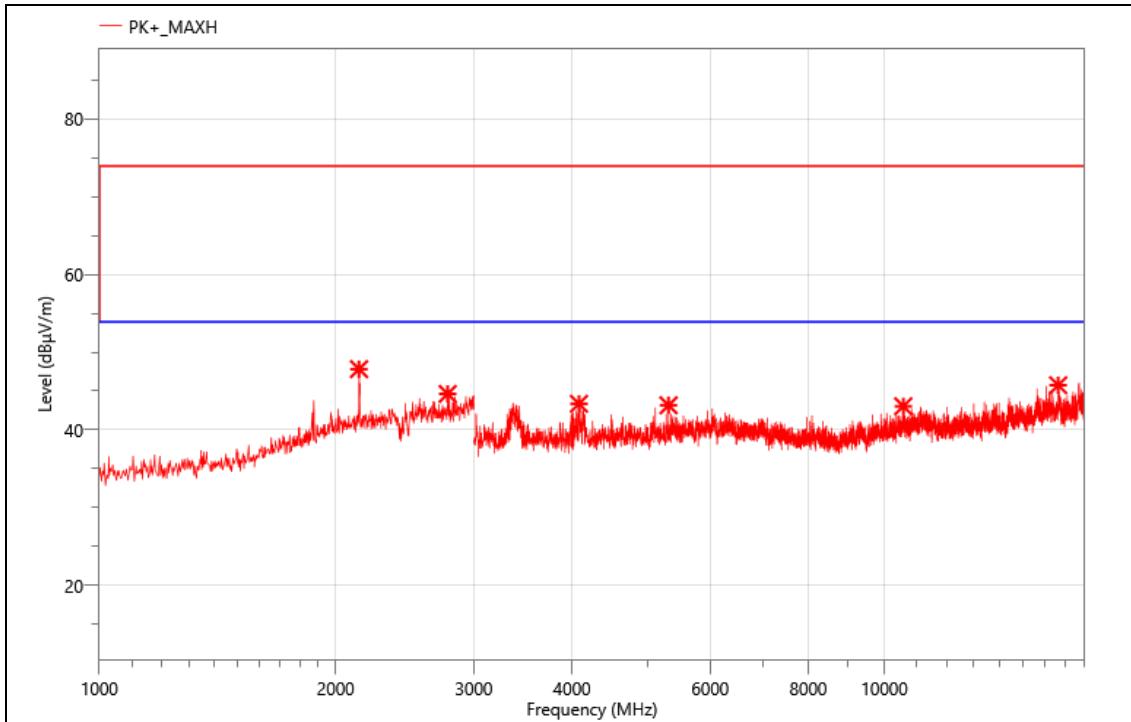
Above 1GHz

The worst result as bellow:


Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

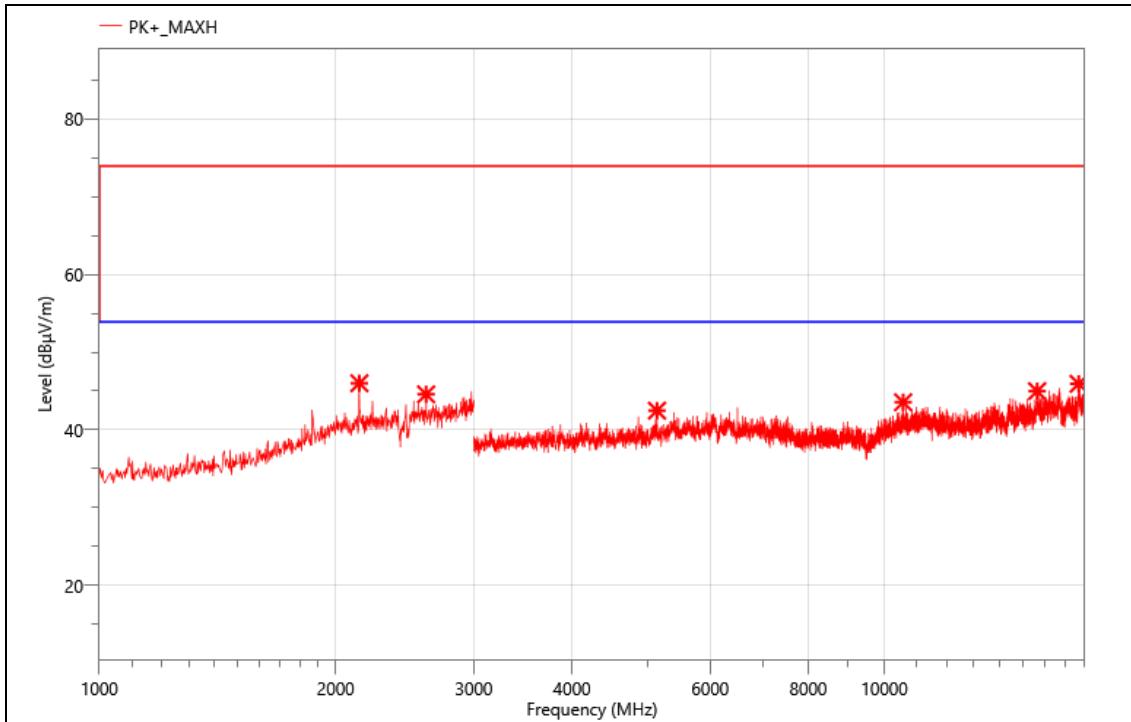
Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Det.	Pol.
1	2144.000	56.69	-9.05	47.64	74.00	26.36	PK+	H
2	5659.500	52.04	-9.14	42.90	74.00	31.10	PK+	H
3	10614.000	48.76	-5.21	43.55	74.00	30.45	PK+	H
4	13831.500	48.38	-3.71	44.67	74.00	29.33	PK+	H
5	16258.500	46.31	-0.81	45.50	74.00	28.50	PK+	H
6	17674.500	47.20	0.32	47.52	74.00	26.48	PK+	H


Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

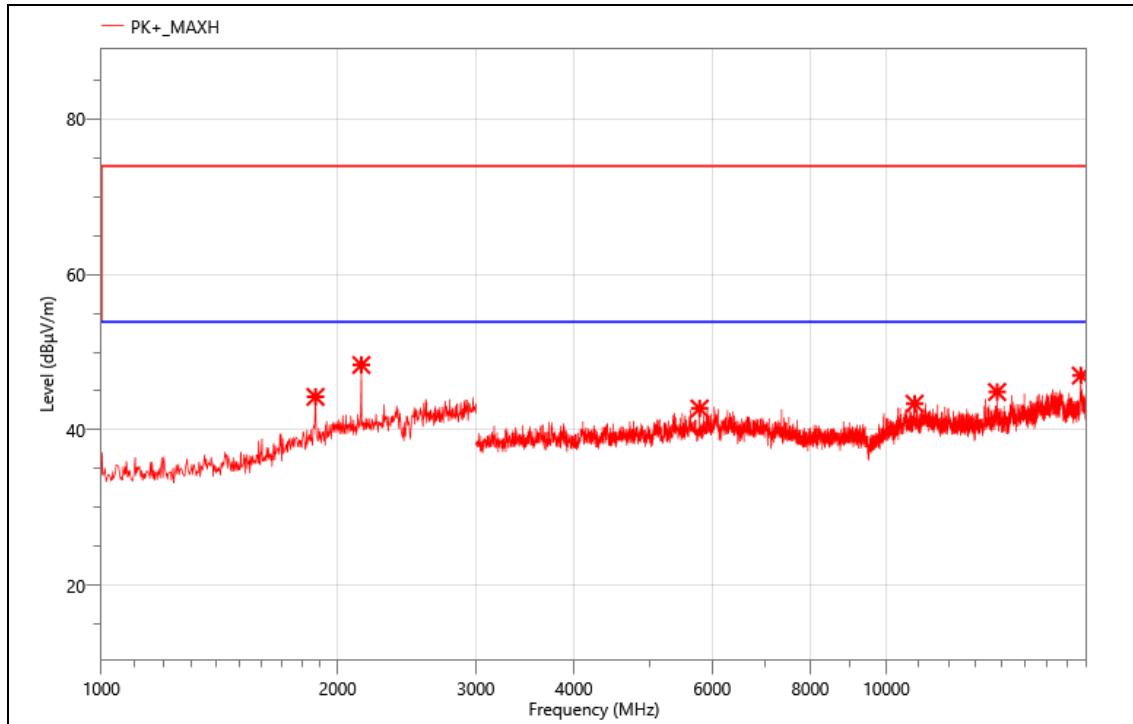
Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2142.000	57.26	-9.05	48.21	74.00	25.79	PK+	V
2	3393.000	59.62	-14.38	45.24	74.00	28.76	PK+	V
3	4092.000	55.77	-12.63	43.14	74.00	30.86	PK+	V
4	6348.000	50.73	-7.96	42.77	74.00	31.23	PK+	V
5	14818.500	48.60	-3.3	45.30	74.00	28.70	PK+	V
6	17706.000	45.98	0.05	46.03	74.00	27.97	PK+	V


Mode:	11N20 2437
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

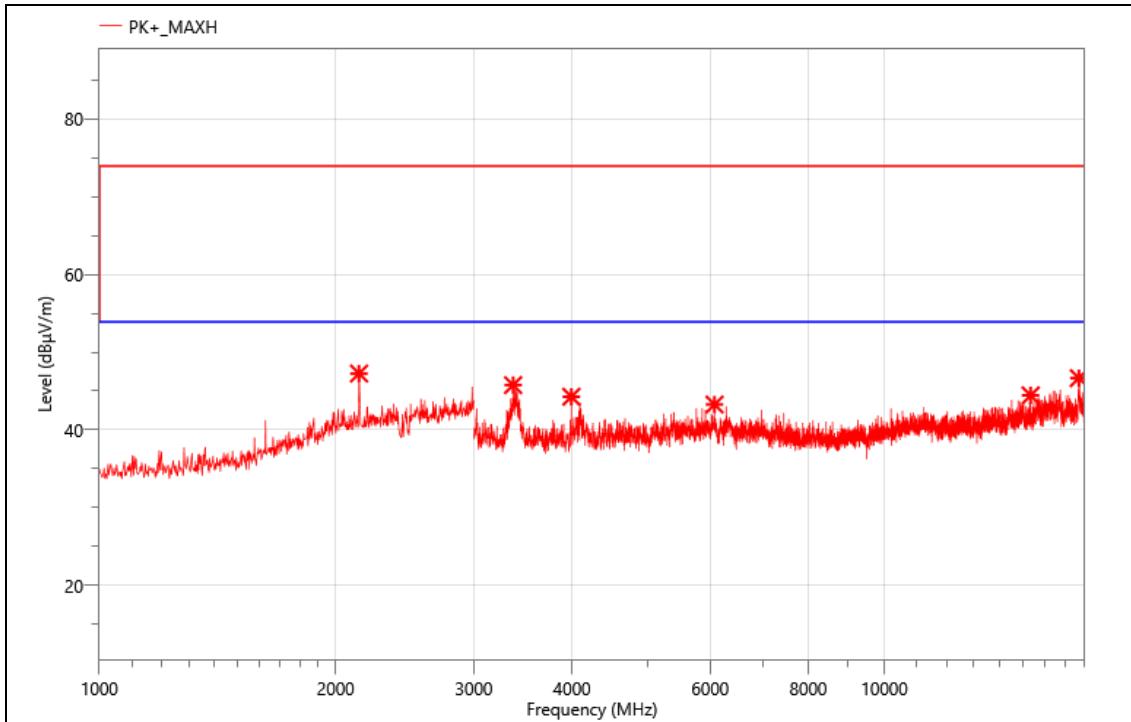
Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2142.000	56.86	-9.05	47.81	74.00	26.19	PK+	V
2	2778.000	53.00	-8.38	44.62	74.00	29.38	PK+	V
3	4083.000	56.08	-12.73	43.35	74.00	30.65	PK+	V
4	5310.000	53.20	-10.04	43.16	74.00	30.84	PK+	V
5	10572.000	48.17	-5.14	43.03	74.00	30.97	PK+	V
6	16651.500	46.53	-0.79	45.74	74.00	28.26	PK+	V


Mode:	11N20 2437
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2144.000	55.05	-9.05	46.00	74.00	28.00	PK+	H
2	2608.000	52.80	-8.23	44.57	74.00	29.43	PK+	H
3	5133.000	52.75	-10.28	42.47	74.00	31.53	PK+	H
4	10569.000	48.66	-5.11	43.55	74.00	30.45	PK+	H
5	15654.000	47.04	-2.06	44.98	74.00	29.02	PK+	H
6	17682.000	45.64	0.28	45.92	74.00	28.08	PK+	H


Mode:	11N20 2462
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

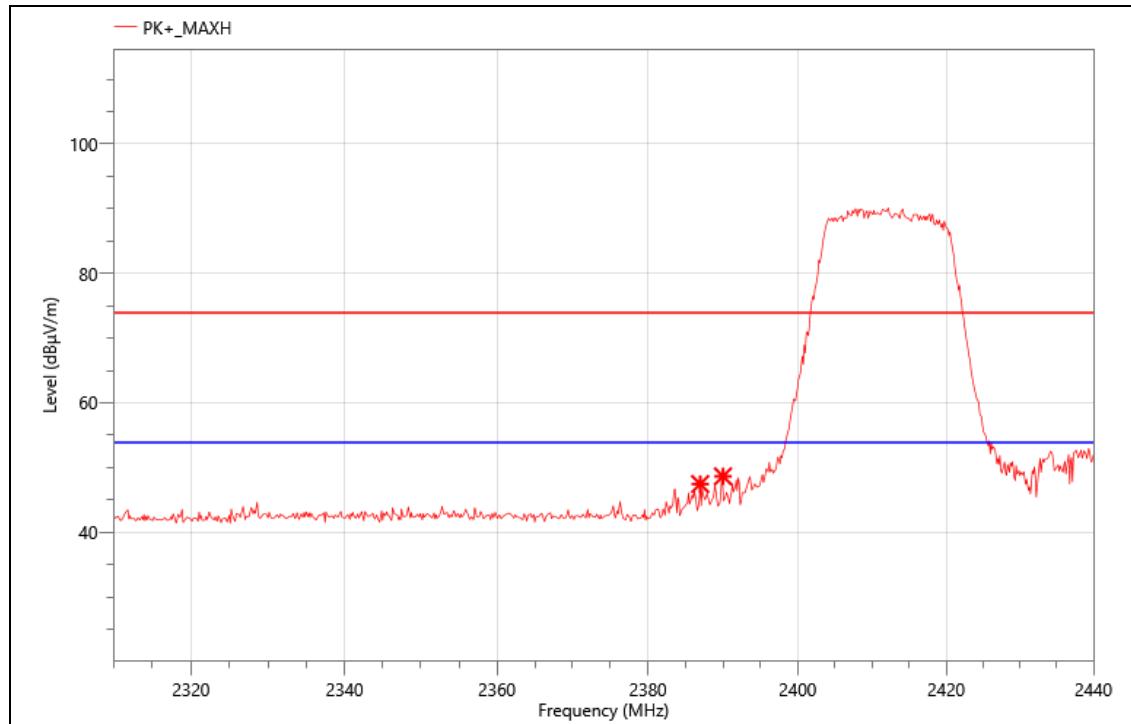
No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	1874.000	54.59	-10.35	44.24	74.00	29.76	PK+	H
2	2144.000	57.40	-9.05	48.35	74.00	25.65	PK+	H
3	5782.500	51.81	-9.07	42.74	74.00	31.26	PK+	H
4	10864.500	48.49	-5.12	43.37	74.00	30.63	PK+	H
5	13837.500	48.57	-3.7	44.87	74.00	29.13	PK+	H
6	17694.000	46.77	0.21	46.98	74.00	27.02	PK+	H

Mode:	11N20 2462
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

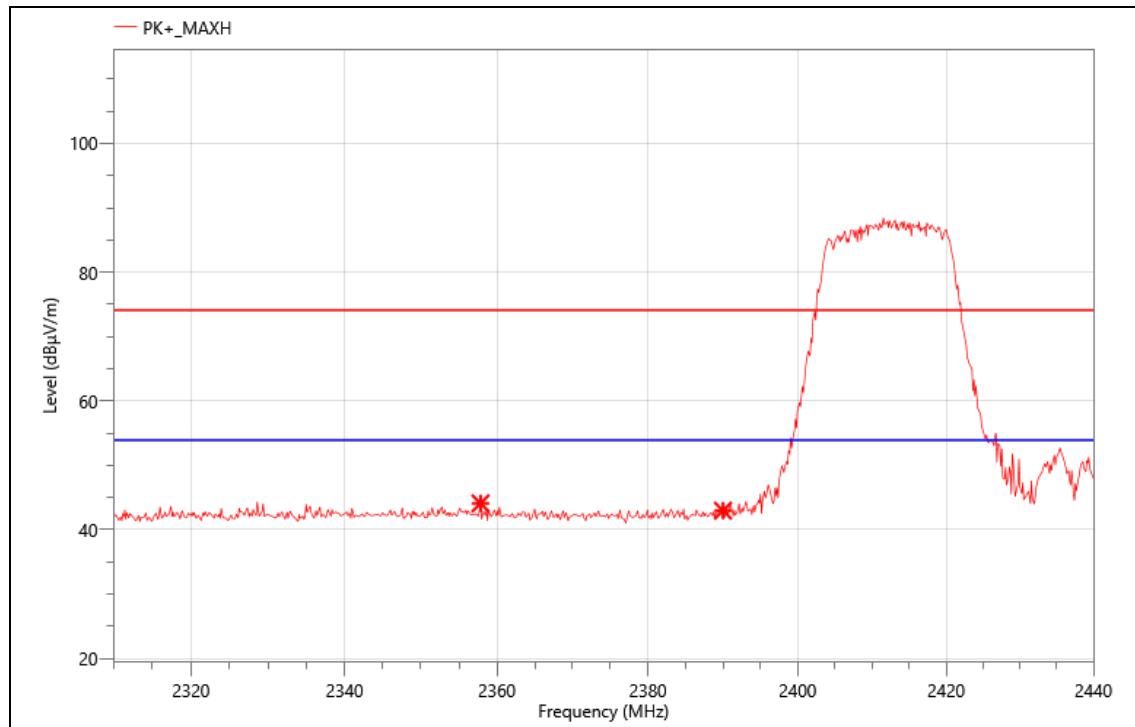
No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2142.000	56.30	-9.05	47.25	74.00	26.75	PK+	V
2	3366.000	60.25	-14.49	45.76	74.00	28.24	PK+	V
3	3993.000	57.55	-13.29	44.26	74.00	29.74	PK+	V
4	6076.500	51.36	-8.1	43.26	74.00	30.74	PK+	V
5	15358.500	47.42	-2.98	44.44	74.00	29.56	PK+	V
6	17691.000	46.42	0.23	46.65	74.00	27.35	PK+	V

No others harmonics emissions are higher than 20 dB below the limits of 47 CFR Part 15.247.


Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

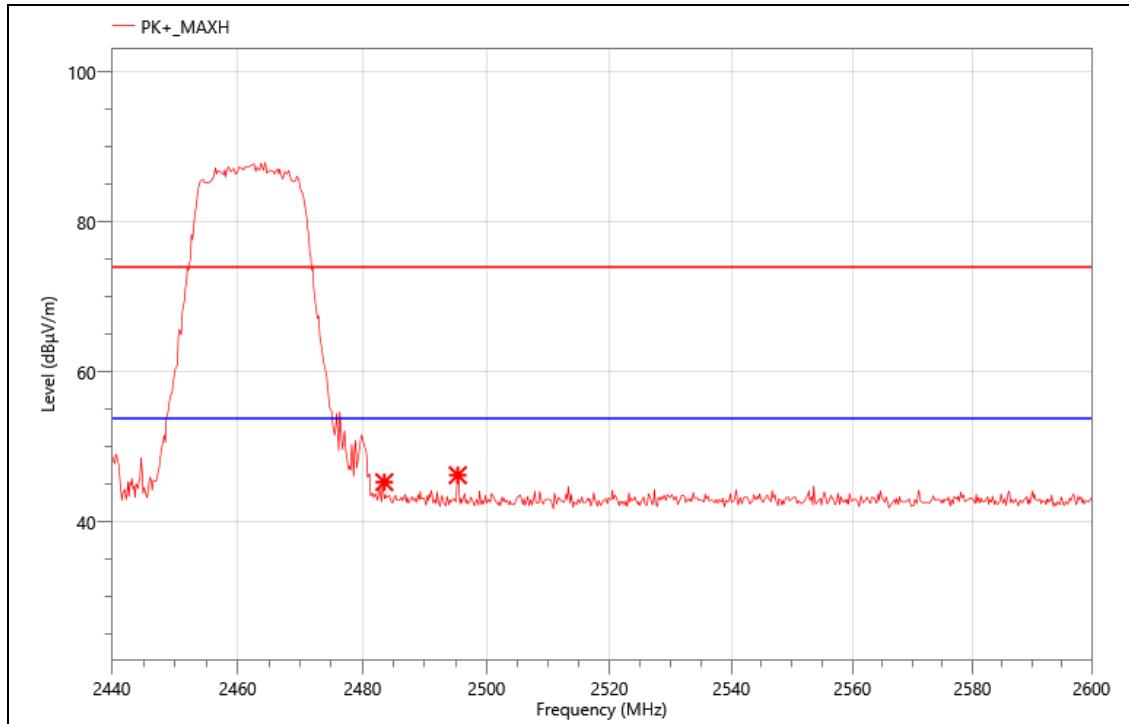
Band Edge


The worst result as bellow:

Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

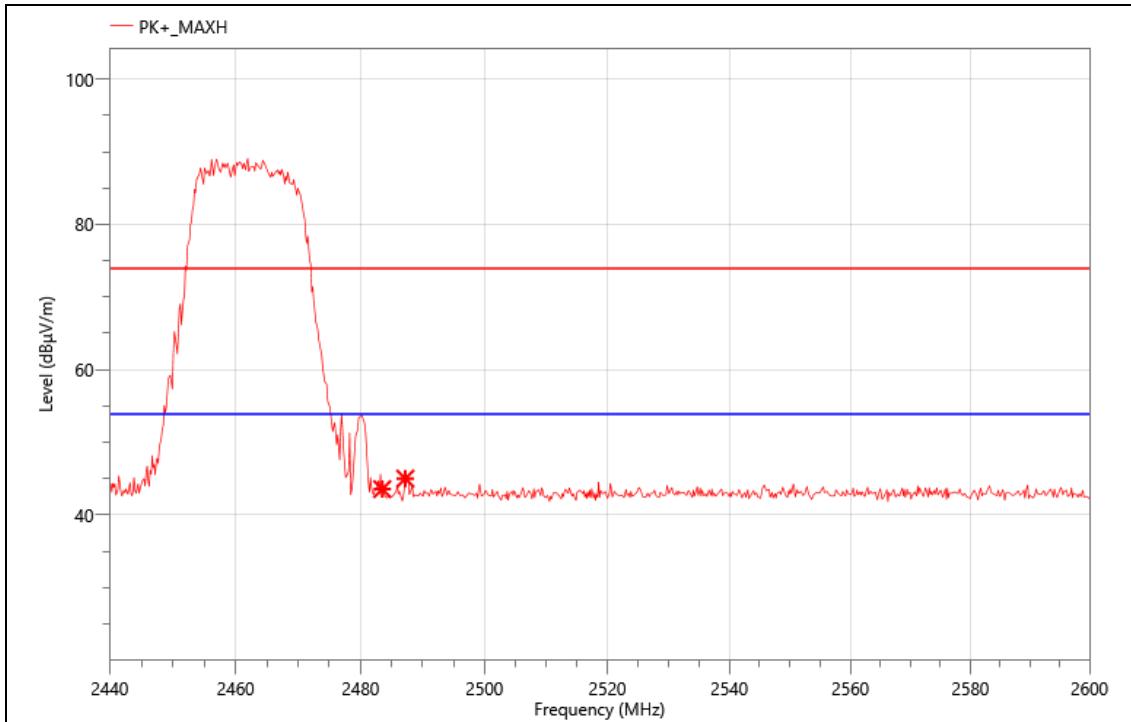
Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2386.960	24.79	22.66	47.45	74.00	26.55	PK+	V
2	2390.000	25.93	22.72	48.65	74.00	25.35	PK+	V


Mode:	11N20 2412
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2357.840	21.34	22.75	44.09	74.00	29.91	PK+	H
2	2390.000	20.25	22.72	42.97	74.00	31.03	PK+	H


Mode:	11N20 2462
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2483.500	22.19	23.15	45.34	74.00	28.66	PK+	V
2	2495.360	23.15	23.12	46.27	74.00	27.73	PK+	V

Mode:	11N20 2462
Power:	AC 120V/60Hz
TE:	Big
Date	2024/12/12
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Corr. (dB)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Det.	Pol.
1	2483.500	20.42	23.15	43.57	74.00	30.43	PK+	H
2	2487.200	21.88	23.14	45.02	74.00	28.98	PK+	H

Note:

1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

9. ANTENNA REQUIREMENT

REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

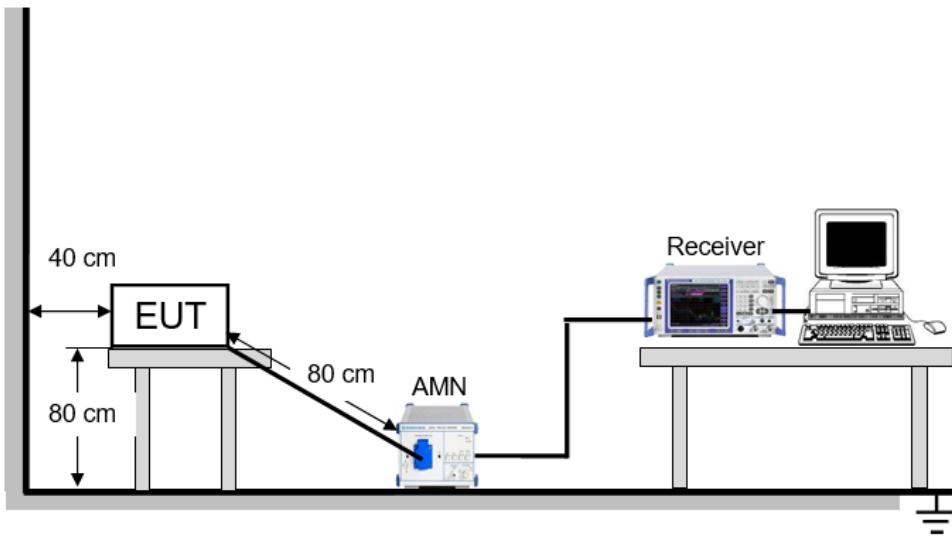
DESCRIPTION

The EUT's antenna, permanent attached antenna, used PFC antenna, The antenna's gain is 2.0dBi and meets the requirement.

10. AC POWER LINE CONDUCTED EMISSION

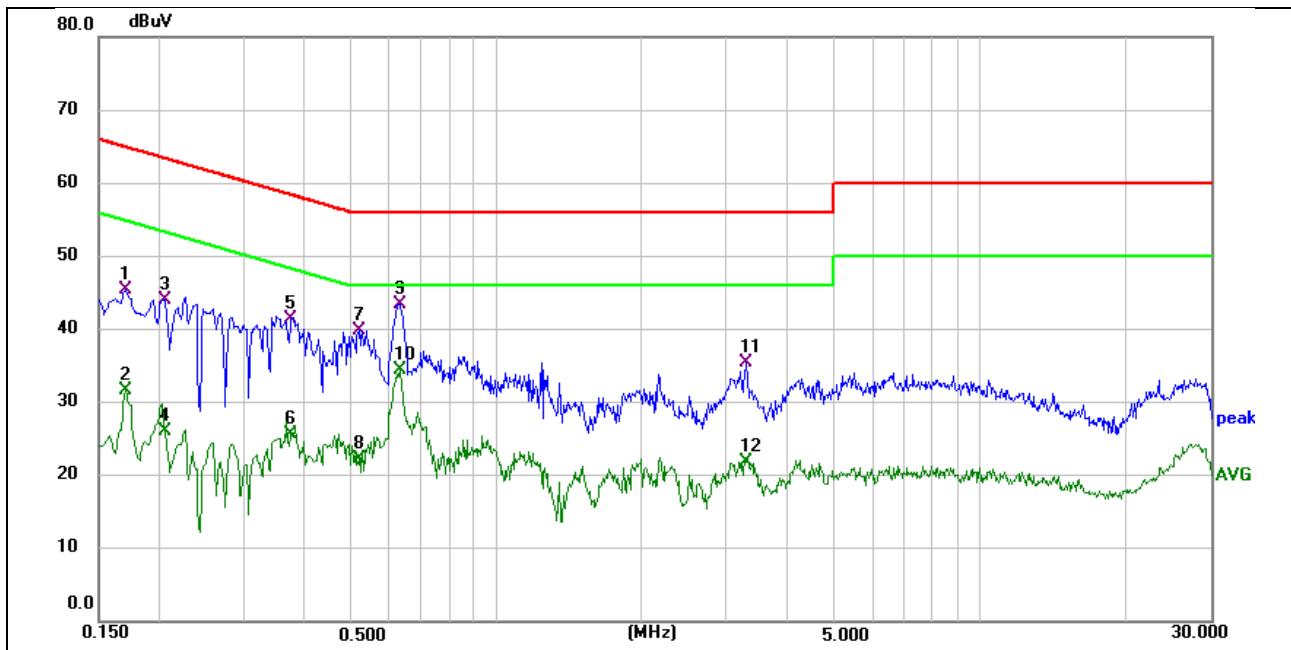
LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

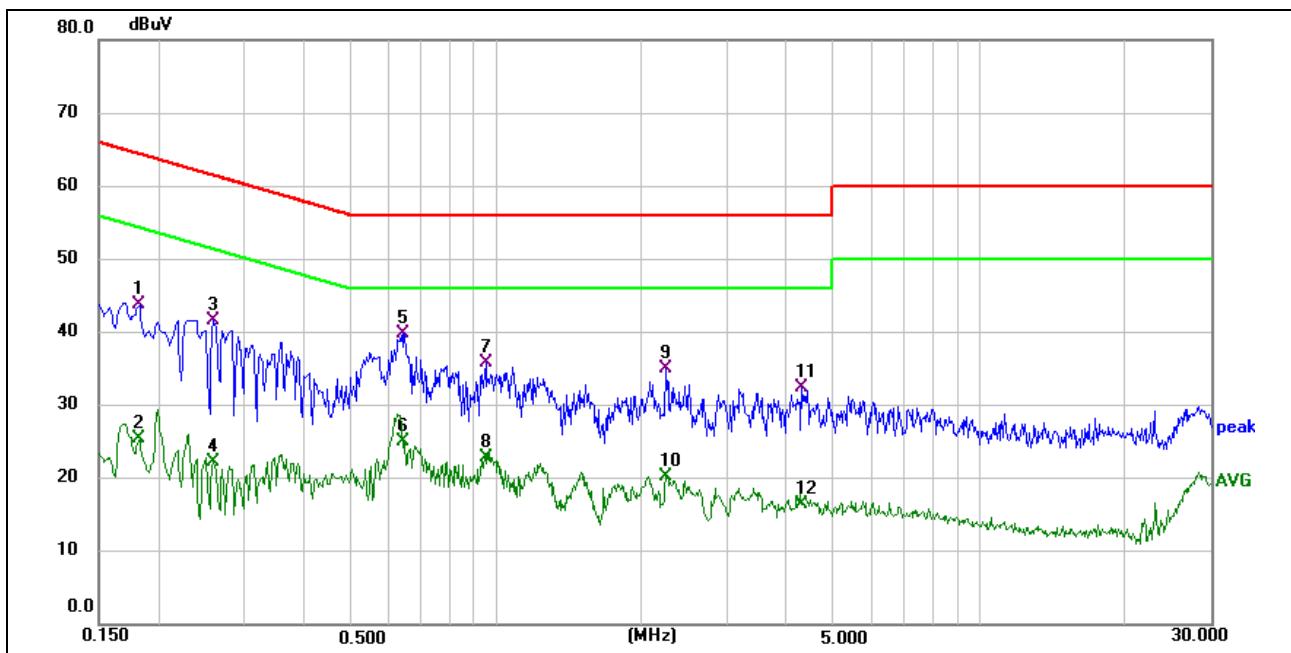
TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT


Temperature	26°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Phase: N

Mode: 802.11b 2412MHz

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1700	35.50	9.91	45.41	64.96	-19.55	QP
2	0.1700	21.68	9.91	31.59	54.96	-23.37	AVG
3	0.2060	34.04	10.00	44.04	63.37	-19.33	QP
4	0.2060	15.98	10.00	25.98	53.37	-27.39	AVG
5	0.3740	31.14	10.33	41.47	58.41	-16.94	QP
6	0.3740	15.24	10.33	25.57	48.41	-22.84	AVG
7	0.5180	29.22	10.64	39.86	56.00	-16.14	QP
8	0.5180	11.65	10.64	22.29	46.00	-23.71	AVG
9	0.6300	32.56	10.86	43.42	56.00	-12.58	QP
10	0.6300	23.46	10.86	34.32	46.00	-11.68	AVG
11	3.2780	25.71	9.64	35.35	56.00	-20.65	QP
12	3.2780	12.20	9.64	21.84	46.00	-24.16	AVG

Phase: L1

Mode: 802.11b 2412MHz

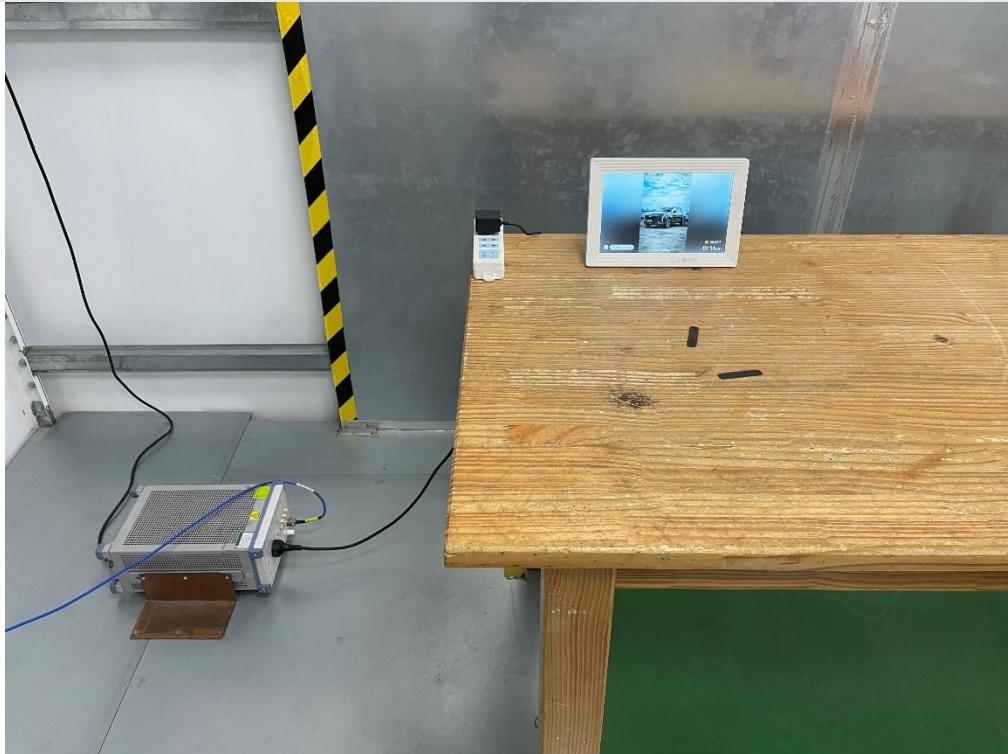
No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1819	33.91	9.94	43.85	64.40	-20.55	QP
2	0.1819	15.42	9.94	25.36	54.40	-29.04	AVG
3	0.2580	31.58	10.08	41.66	61.50	-19.84	QP
4	0.2580	12.24	10.08	22.32	51.50	-29.18	AVG
5	0.6419	29.05	10.78	39.83	56.00	-16.17	QP
6	0.6419	14.19	10.78	24.97	46.00	-21.03	AVG
7	0.9500	26.35	9.51	35.86	56.00	-20.14	QP
8	0.9500	13.25	9.51	22.76	46.00	-23.24	AVG
9	2.2380	25.41	9.53	34.94	56.00	-21.06	QP
10	2.2380	10.64	9.53	20.17	46.00	-25.83	AVG
11	4.2780	22.79	9.56	32.35	56.00	-23.65	QP
12	4.2780	6.99	9.56	16.55	46.00	-29.45	AVG

Note: 1. Result = Reading + Correct Factor.

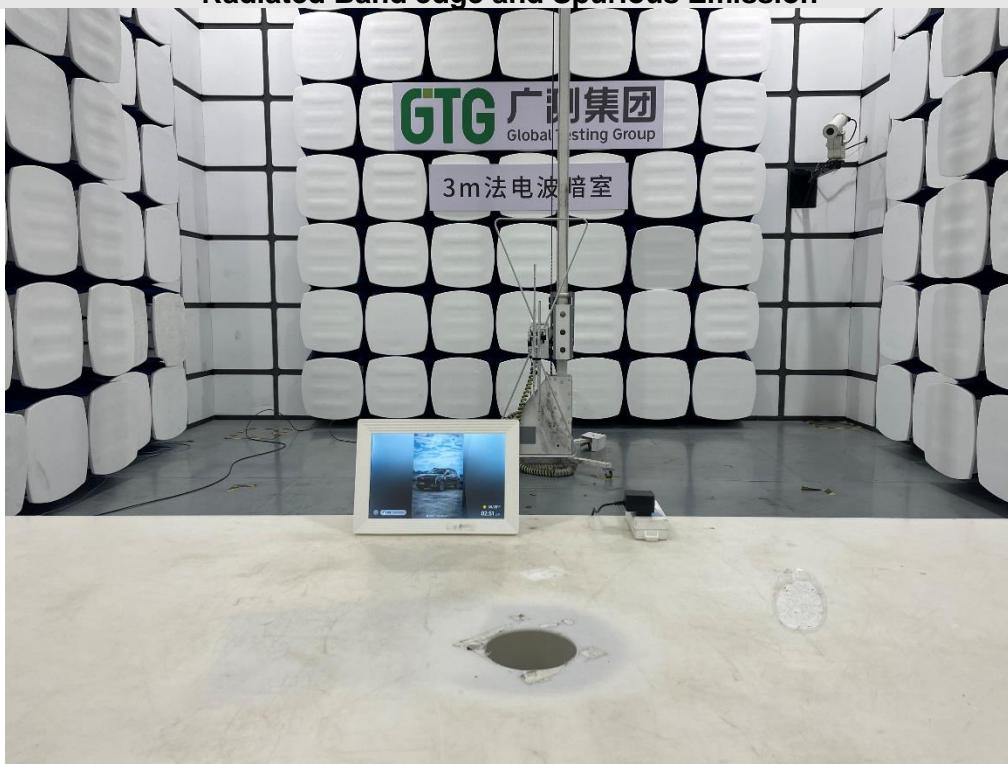
2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.


Note: All the modes have been tested, only the worst data was recorded in the report.

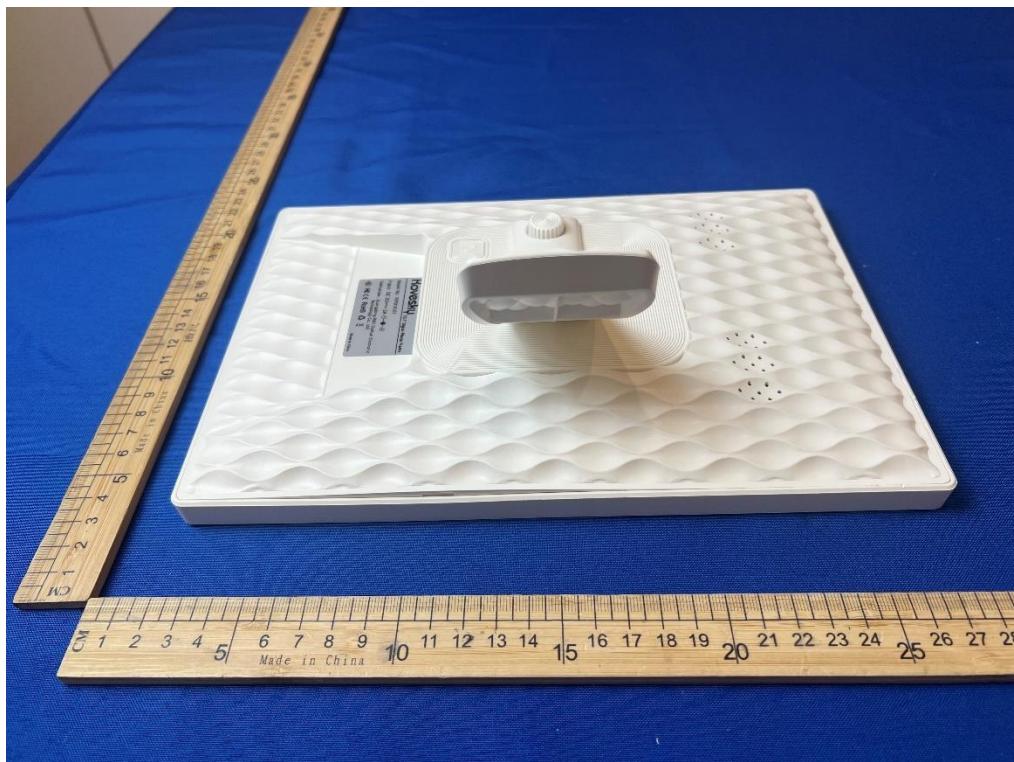
11. TEST DATA

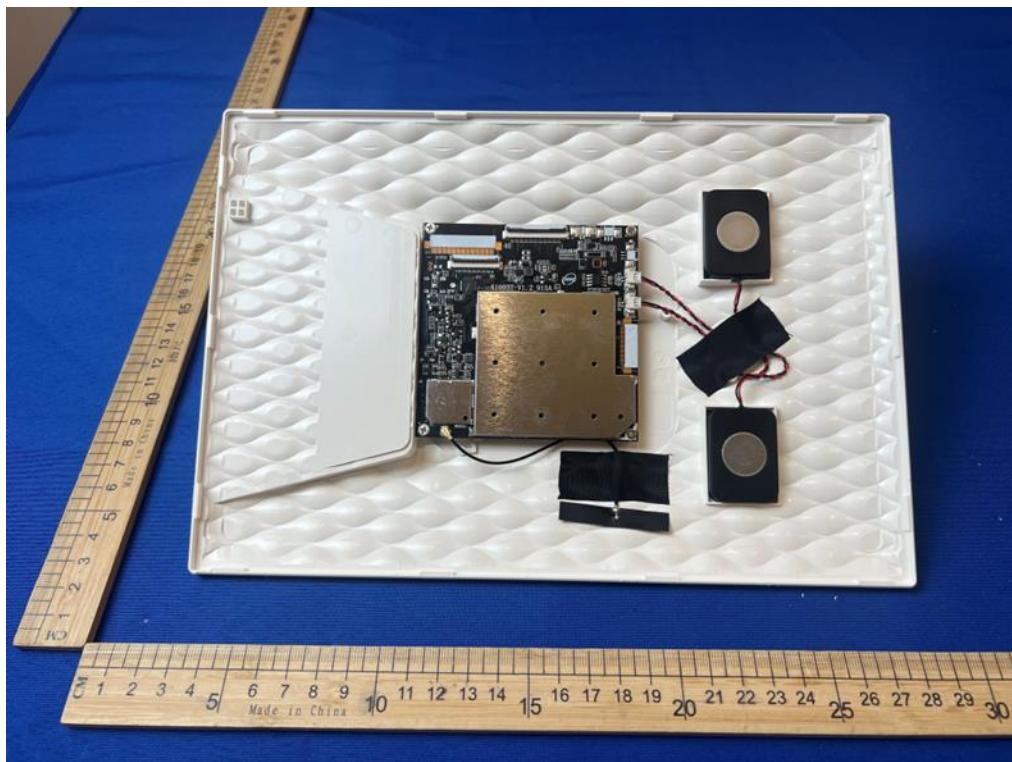

Please refer to section "Test Data" - Appendix A

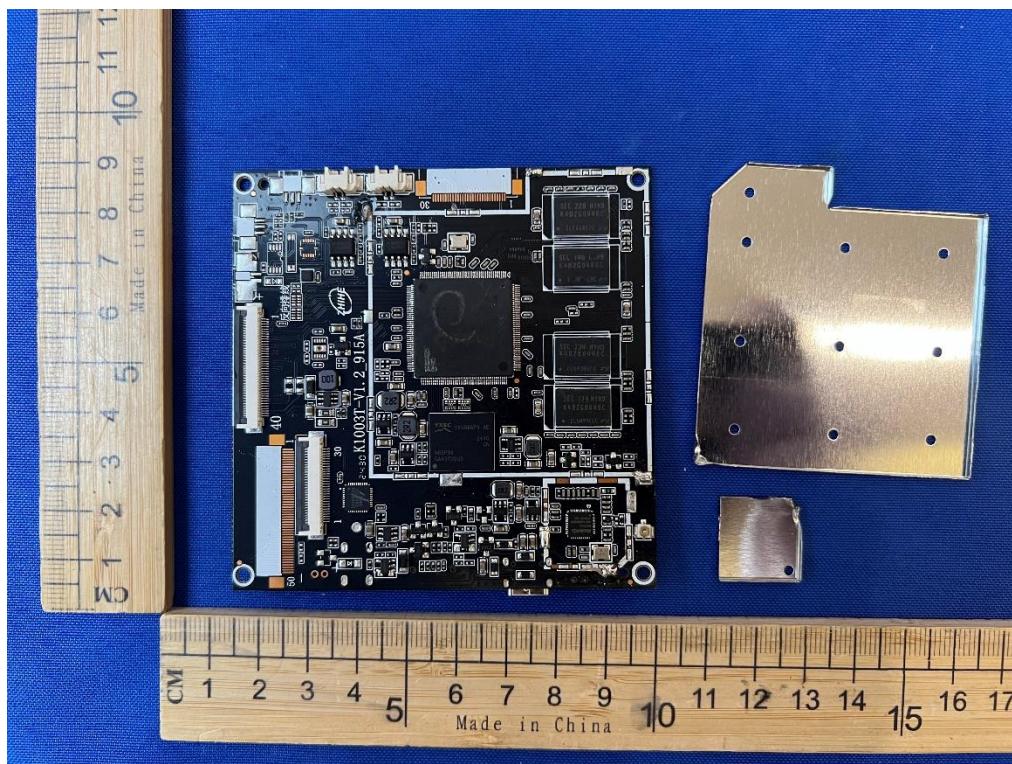
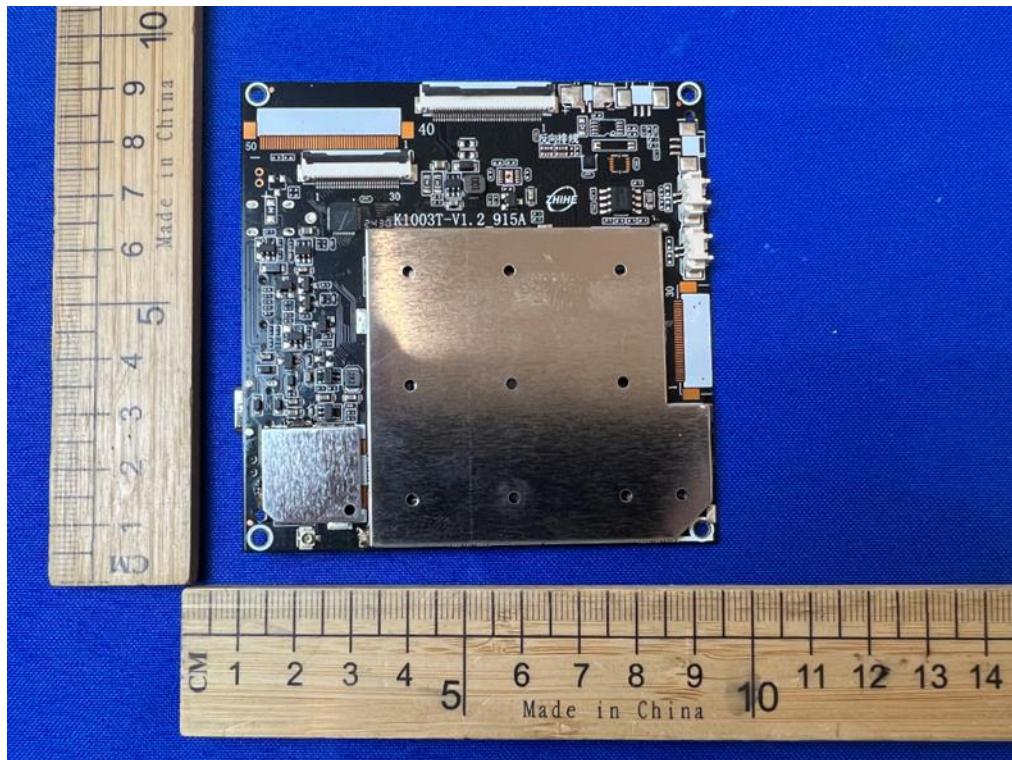
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

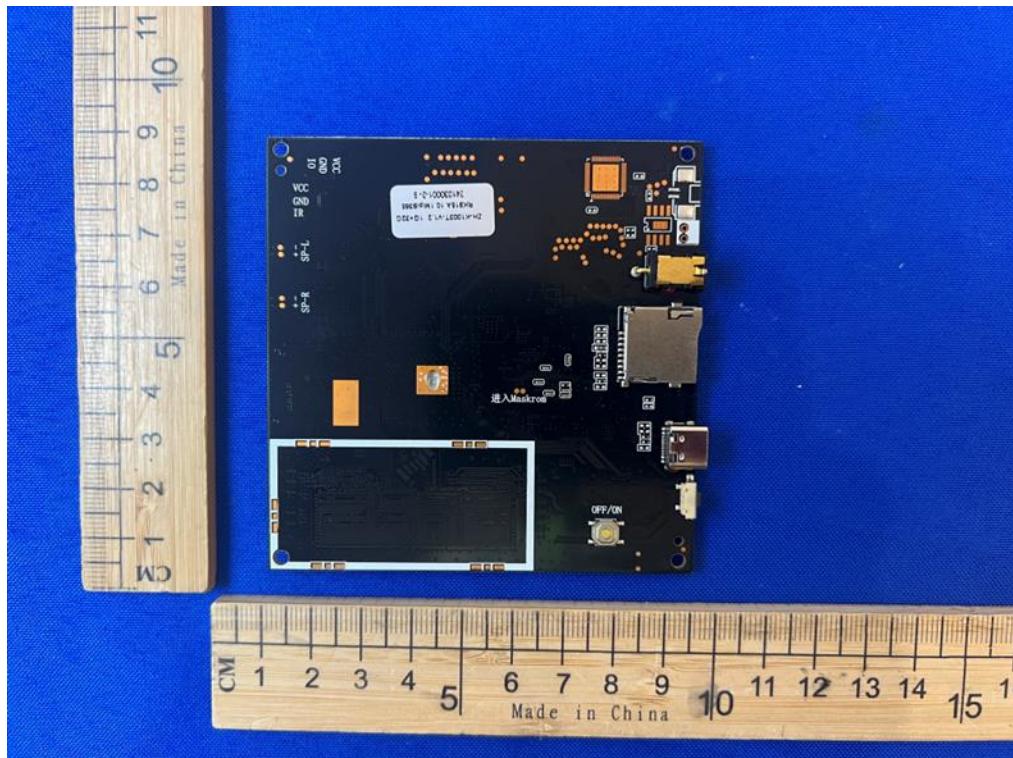
AC Power Line Conducted Emission


Radiated Band edge and Spurious Emission







APPENDIX: PHOTOGRAPHS OF THE EUT

END OF REPORT