

FCC ID : 2BN5S-2503L

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density(mW/cm ²)	Average Time
(A) Limits for Occupational/Control Exposures				
300-1500	--	--	F/300	6
1500-100000	--	--	5	6
(B) Limits for General Population/Uncontrol Exposures				
300-1500	--	--	F/1500	6
1500-100000	--	--	1	30

11.1 Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot R^2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm²,If we know the maximum gain of the nd total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

RF Exposure Information: The radiated output power of this device meets the limits of FCC/IC radio frequency exposure limits.This device should be operated with a minimum separation distance of 20cm (8 inches) between the equipment and a person's body.

11.2 Measurement Result

915MHz

Antenna gain:-3.54 dBi

Measured power (dBm)	Tune-up power (dBm)	Max tune-up power (dBm)	Antenna Gain Numeric	Evaluation result (mW/cm ²)	Power density Limits (mW/cm ²)
-1.61	0	0	0.44	0.00009	1

Note:

$$EIRP = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$$

where

$EIRP$ is the equivalent isotropically radiated power, in dBm
 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m
 d_{Meas} is the measurement distance, in m

$$EIRP = P_{\text{Cond}} - G_{\text{EUT}}$$

where

$EIRP$ is the equivalent isotropically radiated power, in dBm
 P_{Cond} is the measured power at feedpoint of the EUT antenna, in dBm
 G_{EUT} is the gain of the EUT radiating element (antenna), in dBi