

TEST REPORT

Applicant: REOLINK TECHNOLOGY PTE. LTD.

31 KAKI BUKIT ROAD 3. #06-02. TECHLINK. Address:

SINGAPORE 417818

Equipment Type: WiFi module

WXT0LR1201 **Model Name:**

Brand Name: Reolink

2BN5S-2503B FCC ID:

ISED Number: 33667-2503B

47 CFR Part 15 Subpart E

Test Standard: RSS-247 Issue 3

(refer to section 3.1)

Sample Arrival Date: Dec. 09, 2024

Test Date: Dec. 17, 2024 - Dec. 20, 2024

Date of Issue: Sep. 02, 2025

ISSUED BY:

Julie zhu

Shenzhen BALUN Technology Co., Ltd.

Tested by: Julie Zhu Checked by: Ye Hongji Approved by: Sunny Zou

(Technical Director)

Sunmy Zou

Revision History

Version

Issue Date

Revisions

Rev. 01

Sep. 02, 2025

Initial Issue

TABLE OF CONTENTS

1	GENER	RAL INFORMATION	3
	1.1	Test Laboratory	3
	1.2	Test Location	3
2	PRODU	JCT INFORMATION	4
	2.1	Applicant Information	4
	2.2	Manufacturer Information	4
	2.3	General Description for Equipment under Test (EUT)	4
	2.4	Technical Information	5
3	SUMMA	ARY OF TEST RESULTS	6
	3.1	Test Standards	6
	3.2	Test Verdict	6
	3.3	Measurement Uncertainty	6
4	GENER	RAL TEST CONFIGURATIONS	7
	4.1	Test Environments	7
	4.2	Test Equipment List	7
	4.3	Test Software List	7
	4.4	Description of Test Setup	8
5	TEST I	TEMS	9
	5.1	DFS	9
Α	NNEX A	TEST RESULT	19
	A.1	CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	19
	A.2	NON-OCCUPANCY PERIOD	23
Α	NNEX B	TEST SETUP PHOTOS	25
Α	NNEX C	EUT EXTERNAL PHOTOS	25
Α	NNEX D	EUT INTERNAL PHOTOS	25

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.		
	☑ Block B, 1/F, Baisha Science and Technology Park, Shahe Xi		
	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Location	□ 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park,		
	No. 1008, Songbai Road, Yangguang Community, Xili Sub-district,		
	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	The laboratory is a testing organization accredited by FCC as a		
	accredited testing laboratory. The designation number is CN1196.		
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers of		
	test site are 11524A.		

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	REOLINK TECHNOLOGY PTE. LTD.
Address	31 KAKI BUKIT ROAD 3, #06-02, TECHLINK, SINGAPORE 417818

2.2 Manufacturer Information

Manufacturer	REOLINK TECHNOLOGY PTE. LTD.
Address	31 KAKI BUKIT ROAD 3, #06-02, TECHLINK, SINGAPORE 417818

2.3 General Description for Equipment under Test (EUT)

EUT Name	WiFi module
Model Name Under Test	WXT0LR1201
Series Model Name	N/A
Description of Model	N/A
name differentiation	N/A
Serial Number	2408210030000
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

Report No.: BL-SZ2571609-605

2.4 Technical Information

Network and Wireless	Bluetooth (BR+EDR+BLE)
connectivity	WIFI 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax

The requirement for the following technical information of the EUT was tested in this report:

Frequency Range		5250 MHz to 5350 MHz, 5470 MHz to 5725 MHz
Product Type		
		☐ Portable
		☐ Fix Location
Massinasson	utaut Dawas	5250 MHz to 5350 MHz: 39.54 mW
Maximum O	utput Power	5470 MHz to 5725 MHz: 39.63 mW
Antenna Typ	е	Dipole Antenna
	Antenna A	5250 MHz to 5350 MHz: 4.50 dBi
Antenna		5470 MHz to 5725 MHz: 3.78 dBi
Gain	Antenna B	5250 MHz to 5350 MHz: 2.95 dBi
		5470 MHz to 5725 MHz: 3.83 dBi

Note ¹: This device (Client) is without radar detection, then the manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band. Note ²: The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	47 CFR Part 15 Subpart E	Unlicensed National Information Infrastructure Devices	
		Digital Transmission Systems (DTSs), Frequency Hopping	
2	RSS-247 Issue 3	Systems(FHSs) and Licence-Exemp Local Area Network (LE-LAN)	
		Devices	
3	KDB Publication 905462	UNII DFS Compliance Procedures New Rules	
3	D02v02		
4	KDB Publication 905462	UNII Clients Without Radar Detection New Rules	
4	D03v01r02		
E	KDB Publication	Guidelines for Compliance Testing of Unlicensed National Information	
5	789033 D02v02r01	Infrastructure (U-NII) Devices Part 15, Subpart E	

3.2 Test Verdict

No.	Description	FCC Part No.	RSS Part No.	Verdict	Remark
1	Channel Move Time	15.407	RSS-247, 6.3	Pass ^{Note}	Applicable
2	Channel Closing Transmission Time	15.407	RSS-247, 6.3	Pass ^{Note}	Applicable
3	Non- Occupancy Period	15.407	RSS-247, 6.3	Pass ^{Note}	Applicable

Note: Compared with the EUT of test report BL-SZ24C0723-605, the EUT of this report shows different things as below:

1. Update antenna and antenna gain.

Other hardware circuit and software are the same as EUT referred to in test report BL-SZ24C0723-605. Therefore, in addition to the above differences, all test data and EUT information are derived from the report BL-SZ24C0723-605 published by Shenzhen BALUN Technology Co., Ltd. on Mar. 13, 2025.

3.3 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.8°C
Humidity	4%

Tel: +86-755-66850100 Web: www.titcgroup.com E-mail: qc@baluntek.com

Page No. 6 / 26

Template No.: TRP-FCC&ISED 407 (2022-01-12)

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	21% to 62%		
Atmospheric Pressure	100 kPa to 102 kPa		
Temperature	NT (Normal Temperature)	+21.3℃ to +26.3℃	
Working Voltage of the EUT	NV (Normal Voltage)	3.3V	

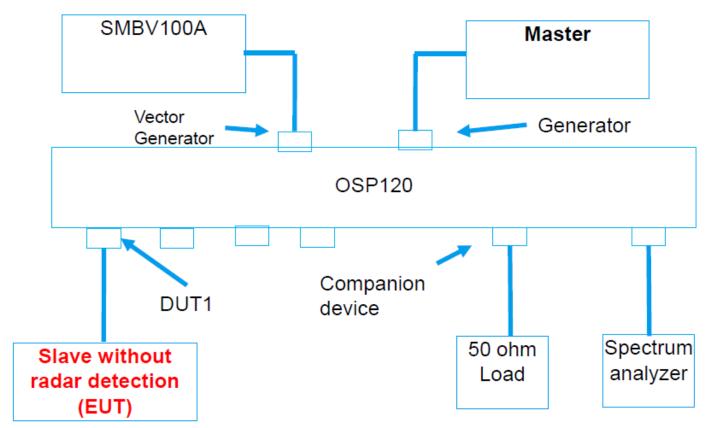
4.2 Test Equipment List

Description	Manufacturer	Model Serial No.		Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2023.12.27	2024.12.26
Signaling Unit	ROHDE&SCHWARZ	CMW270	100607	2024.05.08	2025.05.07
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	260592	2023.12.27	2024.12.26
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2024.05.08	2025.05.07
Switch Unit with	ROHDE&SCHWARZ	OSP120	101270	2024.05.08	2025.05.07
OSPB157					

Master	Access Point			
	Brand Name	TP-Link		
	Model No.	Archer AX6000		
	Serial No.	219BA29000505		
	FCC ID	TE7AX6000		
	SPEC.	The maximum EIRP is18.5dBm, Antenna Gain is 2.28dBi		

4.3 Test Software List

Description	Manufacturer	Software Version	Serial No.	Applicable test Setup
BL410R	BALUN	V2.1.1.488	N/A	The section 4.4.1


Tel: +86-755-66850100 Web: www.titcgroup.com E-mail: qc@baluntek.com

4.4 Description of Test Setup

4.4.1 Conducted Test Setup Configuration

Client without Radar Detection Mode

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

(Diagram 1)

5 TEST ITEMS

5.1 DFS

5.1.1U-NII DFS Rule Requirements

5.1.1.1 Working Mode and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

APPLICABILITY OF DFS REQUIREMENTS PRIOR TO USE A CHANNEL

	Operational Mode				
Requirement	Master	Client without radar detection	Client with radar detection		
Non-Occupancy Period ✓		✓	✓		
DFS Detection Threshold	✓	Not required	✓		
Channel Availability Check Time	✓	Not required	Not required		
Uniform Spreading	✓	Not required	Not required		
U-NII Detection Bandwidth	✓	Not required	✓		

APPLICABILITY OF DFS REQUIREMENTS DURING NORMAL OPERATION

	Operational Mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshold	✓	Not required	✓		
Channel Closing Transmission Time	✓	✓	✓		
Channel Move Time	✓	✓	✓		
U-NII Detection Bandwidth	✓	Not required	✓		

5.1.2Test Limits and Radar Signal Parameters

Detection Thereshold Values

DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION

Maximum Transmit Power	Value (See Note ^{1 & 2 & 3})
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note ²: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note³: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS RESPONSE REQUIREMENT VALUES

Parameter	Value			
Non-occupancy period	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds See Note ¹ .			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Note 182.			
U-NII Detection Bandwidth	100% of the UNII transmission power bandwidth. See Note 3.			

Note ¹: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note ²: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note ³: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

SHORT PULSE RADAR TEST WAVEFORMS

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials		
0	1	1428	18	See Note	See Note		
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	(<u>1</u>).				
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\} $	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20 200-500 12-16		12-16	60%	30		
	Aggregate (Radar Types 1-4) 80% 120						

Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

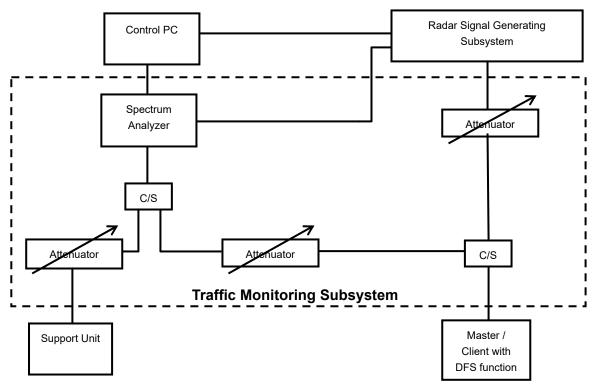
LONG PULSE RADAR TEST WAVEFORM

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

FREQUENCY HOPPING RADAR TEST WAVEFORM

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

5.1.2.1 Test Setup


See 4.4 for test setup description for the radiated test. The photo of test setup please refer to ANNEX B.

5.1.2.2 Test Procedure

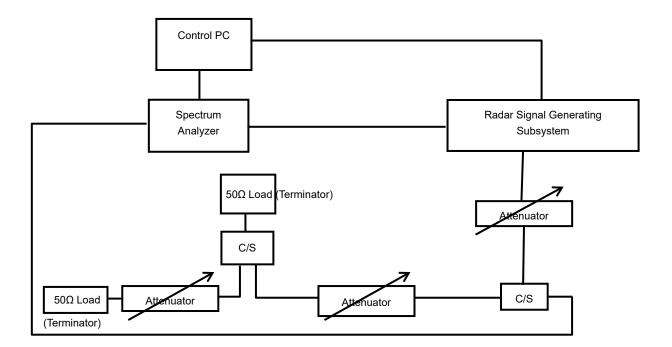
DFS MEASUREMENT SYSTEM:

A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Conducted setup configuration of ADT DFS Measurement System

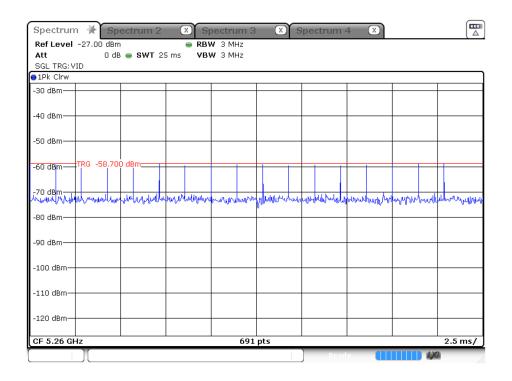
The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 $\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.

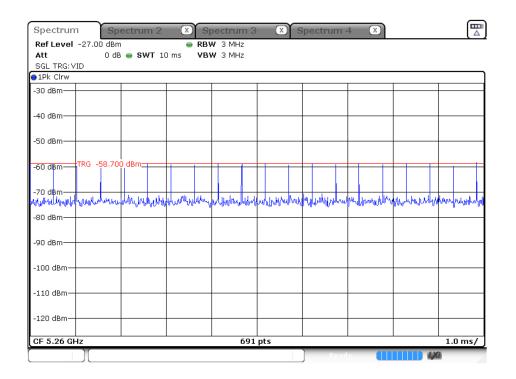
CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:


The measured channel is 5500 MHz in 20MHz Bandwidth and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master antenna gain is 2.28dBi and required detection threshold is -58.72 dBm = (-62 +1 +2.28) dBm. The calibrated conducted detection threshold level is set to -58.72 dBm.

Tel: +86-755-66850100 Web: www.titcgroup.com E-mail: qc@baluntek.com

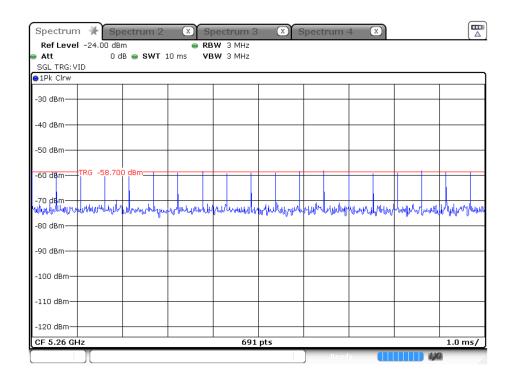
Page No. 12 / 26


Conducted setup configuration of Calibration of DFS Detection Threshold Level

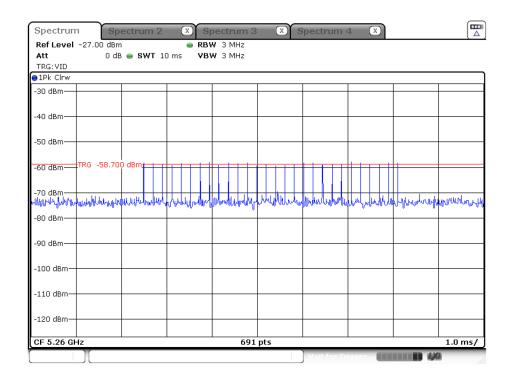


Radar Waveform Calibration Result

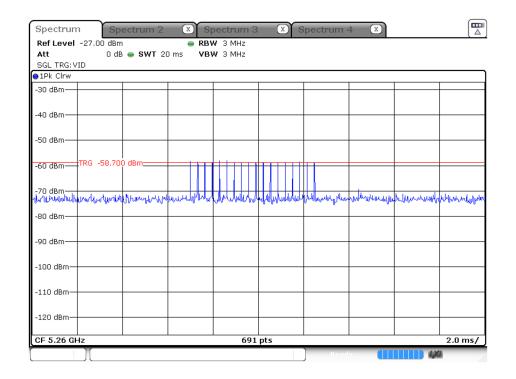
Radar Type 0 Calibration Plot (5260MHz)



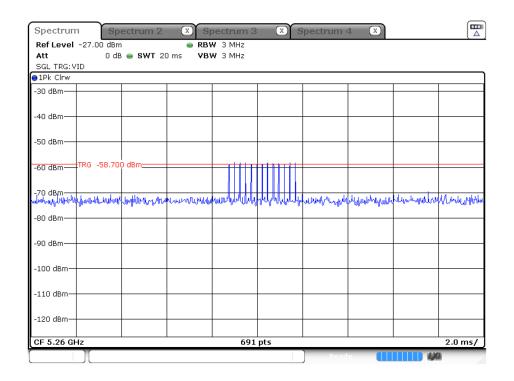
Radar Type 1 test A Calibration Plot (5260MHz)



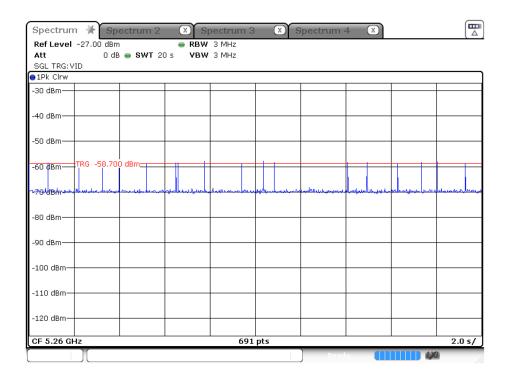
Radar Type 1 test B Calibration Plot (5260MHz)



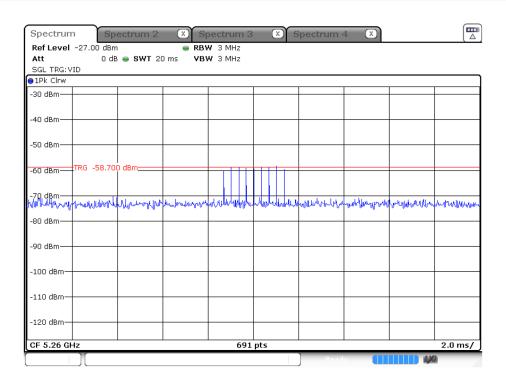
Radar Type 2 Calibration Plot (5260MHz)



Radar Type 3 Calibration Plot (5260MHz)



Radar Type 4 Calibration Plot (5260MHz)



Radar Type 5 Calibration Plot (5260MHz)

Radar Type 6 Calibration Plot (5260MHz)

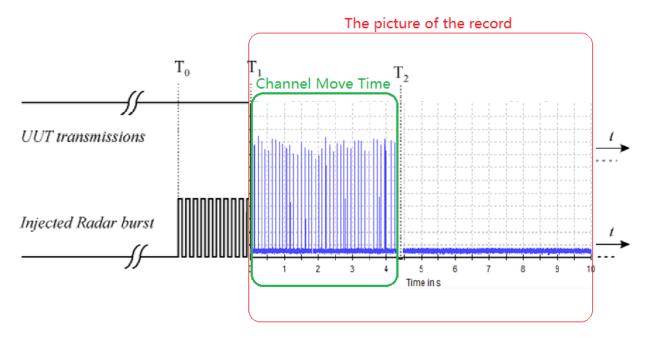
Report No.: BL-SZ2571609-605

5.1.2.3 Test Result

Please refer to ANNEX A.

ANNEX A TEST RESULT

A.1 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME


Result of DFS Channel Shutdown

Note: The radar test signals are injected into the Master Device.

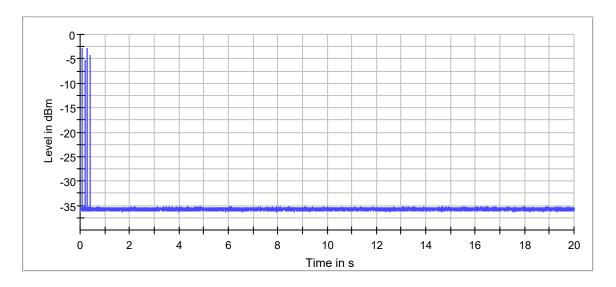
This test was investigated for different bandwidth (the lowest and the highest bandwidth).

Description	Operation Mode	Operation Channel	Value (s)	Limit
Channel Move Time	802.11a	52	0.418	10 s
Channel Closing Transmission Time	802.11a	52	0.004	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11a	100	0.589	10 s
Channel Closing Transmission Time	802.11a	100	0.007	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11ac (80 MHz)	58	0.462	10 s
Channel Closing Transmission Time	802.11ac (80 MHz)	58	0.004	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Channel Move Time	802.11ac (80 MHz)	106	0.525	10 s
Channel Closing Transmission Time	802.11ac (80 MHz)	106	0.005	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
Test Verdict			Pass	

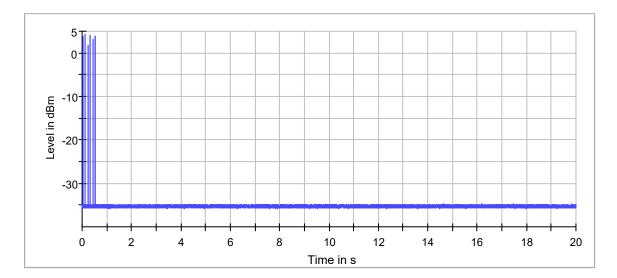
T0 denotes DFS test signal start generated on the channel.

T1 denotes the end of the radar burst.

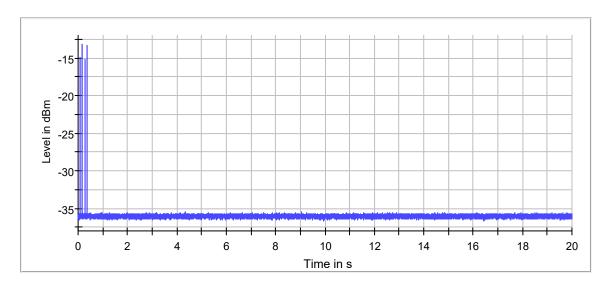
T2 denotes the instant when the UUT has ceased all transmissions on the channel.


The time difference between T1 and T2 shall be measured. This value (*Channel Move Time*) shall be noted and compared with the limit.

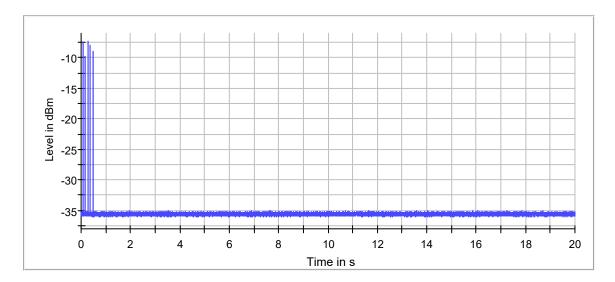
The aggregate duration (*Channel Closing Transmission Time*) of all transmissions from the UUT on Chrduring the *Channel Move Time* shall be compared to the limit.


DFS Test schematic graphic

802.11a Channel 52

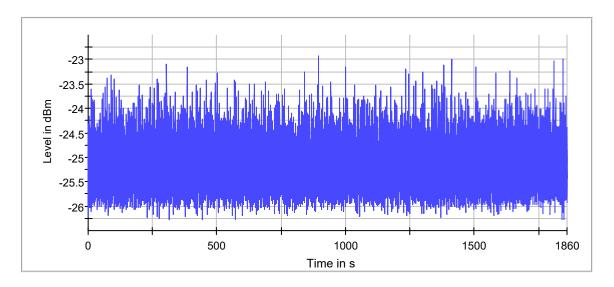


802.11a Channel 100

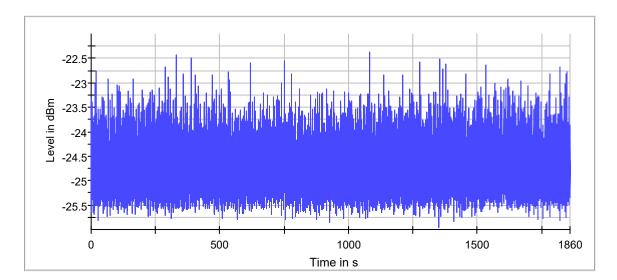


802.11ac(80 MHz) Channel 58

802.11ac(80 MHz) Channel 106

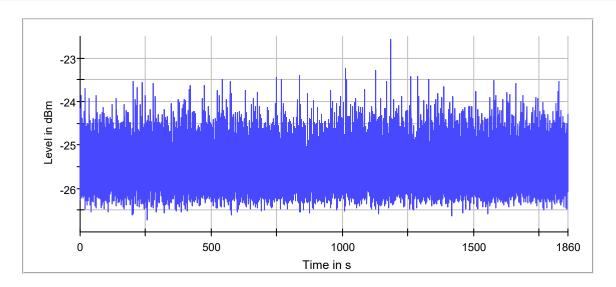


A.2 NON-OCCUPANCY PERIOD

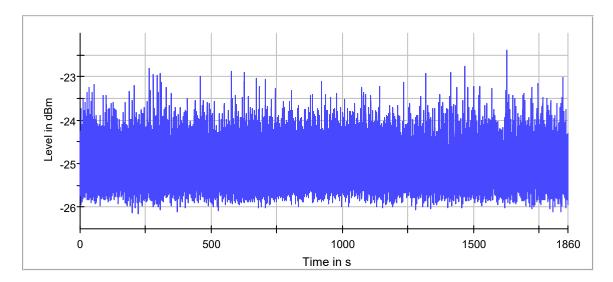

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

802.11a Channel 52



802.11a Channel 100



802.11ac(80 MHz) Channel 58

802.11ac(80 MHz) Channel 106

Report No.: BL-SZ2571609-605

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2571609-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2571609-AW-1.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2571609-AI-1.PDF".

Report No.: BL-SZ2571609-605

Statement

- 1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
- 2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
- 3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
- 4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
- 5. The test data and results are only valid for the tested samples provided by the customer.
- 6. This report shall not be partially reproduced without the written permission of the laboratory.
- 7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

-- END OF REPORT--