

FCC Test Report

Report No: FCS202412149W01

Issued for

Applicant:	Shenzhen Aster Smart Glasses Technology Co., Ltd
Address:	Room 101, 1st Floor, Workshop No. 8, Xihu Industrial Area, Xikeng Community, Yuanshan Street, Longgang District, Shenzhen.
Product Name:	LIPO Aster Myopia Management Smart Glasses
Brand Name:	LIPO
Model Name:	LP-DY209
Series Model:	Xing 901, Xing 902, Xing 903, Xing 904, Xing 905, Xing 906, Xing 907, Xing 908, Xing 909, Xing 910, Xing 911, Xing 912, Xing 913, Xing 914, Xing 915, Xing 916, Xing 917, Xing 918
FCC ID:	2BMWZ-LP-DY209
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 0769-27280901 Fax: 0769-27280901 http://www.FCS-lab.com	

TEST RESULT CERTIFICATION

Applicant's Name.....: Shenzhen Aster Smart Glasses Technology Co., Ltd
Room 101, 1st Floor, Workshop No. 8, Xihu Industrial Area,
Address.....: Xikeng Community, Yuanshan Street, Longgang District,
Shenzhen.

Manufacture's Name.....: Shenzhen Aster Smart Glasses Technology Co., Ltd
Room 101, 1st Floor, Workshop No. 8, Xihu Industrial Area,
Address.....: Xikeng Community, Yuanshan Street, Longgang District,
Shenzhen.

Product Description

Product Name.....: LIPO Aster Myopia Management Smart Glasses
Model Name.....: LIPO
Brand Name: LP-DY209
Series Model.....: Xing 901,Xing 902,Xing 903,Xing 904,Xing 905,Xing 906,
Xing 907,Xing 908,Xing 909,Xing 910,Xing 911,Xing 912,
Xing 913,Xing 914,Xing 915,Xing 916,Xing 917,Xing 918
Test Standards.....: FCC Part15.247
Test Procedure.....: ANSI C63.10-2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document..

Date of Test.....:

Date (s) of performance of tests.: December 4, 2024 ~ December 14, 2024

Date of Issue.....: December 16, 2024

Test Result.....: Pass

Tested by :

(Scott Shen)

Reviewed by :

(Duke Qian)

Approved by :

(Jack Wang)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3. 6DB BANDWIDTH	13
3.1 Limit	13
3.2 Test Procedure	13
3.3 Test setup	13
3.4 Test results	14
4 CONDUCTED OUTPUT POWER	18
4.1 limit	18
4.2 test procedure	18
4.3 TEST SETUP	18
4.5 test results	18
5. POWER SPECTRAL DENSITY	19
5.1 LIMIT	19
5.2 TEST PROCEDURE	19
5.3 TEST SETUP	19
5.4 TEST RESULTS	20
5.5 original test data	21
6. Band edge and spurious(conducted)	23
6.1 LIMIT	23
6.2 TEST PROCEDURE	23
6.3 TEST SETUP	23
6.5 TEST RESULTS	24
6.5 Original test data	24

Table of Contents	Page
6.6 Spurious emissions	26
7 RADIATED EMISSION MEASUREMENT	28
8 CONDUCTED EMISSION TEST	41
9. ANTENNA REQUIREMENT	45
9.1 STANDARD REQUIREMENT	45
9.2 RESULT	45

Revision History

Rev.	Issue Date	Effect Page	Contents
00	December 16, 2024	N/A	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:
KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C			
Standard Section	Test Item	Judgment	Remark
FCC 15.247 (a) (2)	6dB Bandwidth	PASS	--
FCC 15.247 (b) (3)	Conducted Output Power	PASS	--
FCC 15.247 (e)	Power Spectral Density	PASS	--
FCC 15.247 (d)	Band-edge and Spurious Emissions (Conducted)	PASS	--
FCC 15.247 (d) FCC 15.209 FCC 15.205	Radiated Spurious Emissions	PASS	--
FCC 15.247 (d) FCC 15.209 FCC 15.205	Radiated Band Edge Compliance	PASS	--
FCC 15.207	Power Line Conducted Emission	PASS	--
FCC 15.203	Antenna requirement	PASS	--
15.205	Restricted Band Edge Emission	PASS	--

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan
Telephone:	+86-769-27280901
Fax:	+86-769-27280901
Laboray Accreditations:	
FCC Test Firm Registration Number:	514908
CNAS Number:	L15566
Designation number:	CN0127
A2LA accreditation number:	5545.01
ISED Number:	25801
CAB ID:	CN0097

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	RF output power, conducted	$\pm 0.71\text{dB}$
2	Unwanted Emissions, conducted	$\pm 2.988\text{ dB}$
3	Conducted Emission (9KHz-150KHz)	$\pm 4.13\text{ dB}$
4	Conducted Emission (150KHz-30MHz)	$\pm 4.74\text{ dB}$
5	All emissions radiated (9KHz -30MHz)	$\pm 3.1\text{ dB}$
6	All emissions, radiated(<1G) 30MHz-1000MHz	$\pm 5.2\text{ dB}$
7	All emissions, radiated 1GHz -18GHz	$\pm 4.66\text{ dB}$
8	All emissions, radiated 18GHz -40GHz	$\pm 4.31\text{ dB}$
9	Occupied bandwidth	$\pm 0.3\text{ dB}$
10	PSD	$\pm 0.48\text{dB}$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	LIPO Aster Myopia Management Smart Glasses
Trade Name	LIPO
Model Name	LP-DY209
Series Model	Xing 901,Xing 902,Xing 903,Xing 904,Xing 905,Xing 906, Xing 907,Xing 908,Xing 909,Xing 910,Xing 911,Xing 912, Xing 913,Xing 914,Xing 915,Xing 916,Xing 917,Xing 918
Model Difference	We (Shenzhen Aster Smart Glasses Technology Co., Ltd) hereby state that all the models are electrical identical including the same software parameter and hardware design (i.e., circuit design, PCB Layout, RF module/circuit, antenna type(s) and antenna location, components on PCB, etc.,), same mechanical structure and design (including product enclosure, materials, etc.,), the only difference is the model name and appearance color.
Channel List	Please refer to the Note 2.
Operation frequency	IEEE 802.11b: 2412MHz-2462MHz IEEE 802.11g: 2412MHz-2462MHz IEEE 802.11n HT20: 2412MHz-2462MHz
Modulation:	IEEE 802.11b: DSSS (CCK, QPSK, BPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20,: OFDM (64QAM, 16QAM, QPSK, BPSK)
Transmitter rate:	IEEE 802.11b: 1, 2, 5.5, 11 Mbps IEEE 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps IEEE 802.11n HT20: up to 20MHz max 65Mbps, 40MHz max
Power supply	Input voltage: 5V 1A Input power: 5W Output current: <200mA Output power: <1W
Battery	N/A
Sample number	FCS202411966
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

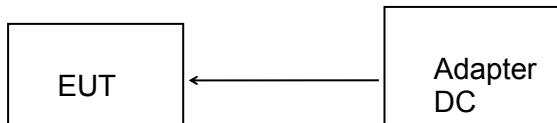
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	YSEN-Antenna-01	PCB antenna	N/A	-0.79	Antenna


1

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Mode 1

Test software: EspRFTestTool_v3.8_Manual.exe

The test software was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

Tested mode, channel, and data rate information				
Mode	Setting Tx Power	data rate (Mbps) (see Note)	Channel	Frequency (MHz)
IEEE 802.11b	8	1	LCHCH1	2412
	8	1	MCH: CH6	2437
	8	1	HCH:CH11	2462
IEEE 802.11g	20	6	LCH: CH1	2412
	20	6	MCH: CH6	2437
	20	6	HCH: CH11	2462
IEEE 802.11n HT20	20	MCS8	LCH:CH1	2412
	20	MCS8	MCH: CH6	2437
	20	MCS8	HCHCH11	2462

Note:

(1) According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test,

(2) During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	Adapter	Xiaomi	AD652G	N/A	Test use
2	USB cable	Xiaomi	0.5m	N/A	Test use
3	Glasses	LIPO	LP-DY209	N/A	Product combination

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2024. 08.28	2025. 08.27
Signal Analyzer	R&S	FSV40-N	FCS-E012	2024. 08.28	2025. 08.27
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2024. 08.28	2025. 08.27
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2024. 08.28	2025. 08.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2024. 08.28	2025. 08.27
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2024. 08.28	2025. 08.27
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2024. 08.28	2025. 08.27
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2024. 08.28	2025. 08.27
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2024. 08.28	2025. 08.27
Temperature & Humidity	HTC-1	victor	FCS-E005	2024. 08.28	2025. 08.27

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2024. 08.28	2025. 08.27
LISN	R&S	ENV216	FCS-E007	2024. 08.28	2025. 08.27
LISN	ETS	3810/2NM	FCS-E009	2024. 08.28	2025. 08.27
Temperature & Humidity	HTC-1	victor	FCS-E008	2024. 08.28	2025. 08.27

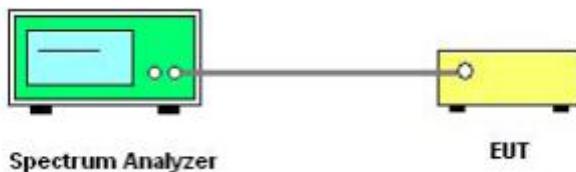
RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2024. 08.28	2025. 08.27
Spectrum Analyzer	Agilent	E4447A	MY50180039	2024. 08.28	2025. 08.27
Spectrum Analyzer	R&S	FSV-40	101499	2024. 08.28	2025. 08.27
Power Sensor	Agilent	UX2021XA	FCS-E021	2024. 08.28	2025. 08.27

3. 6DB BANDWIDTH

3.1 Limit

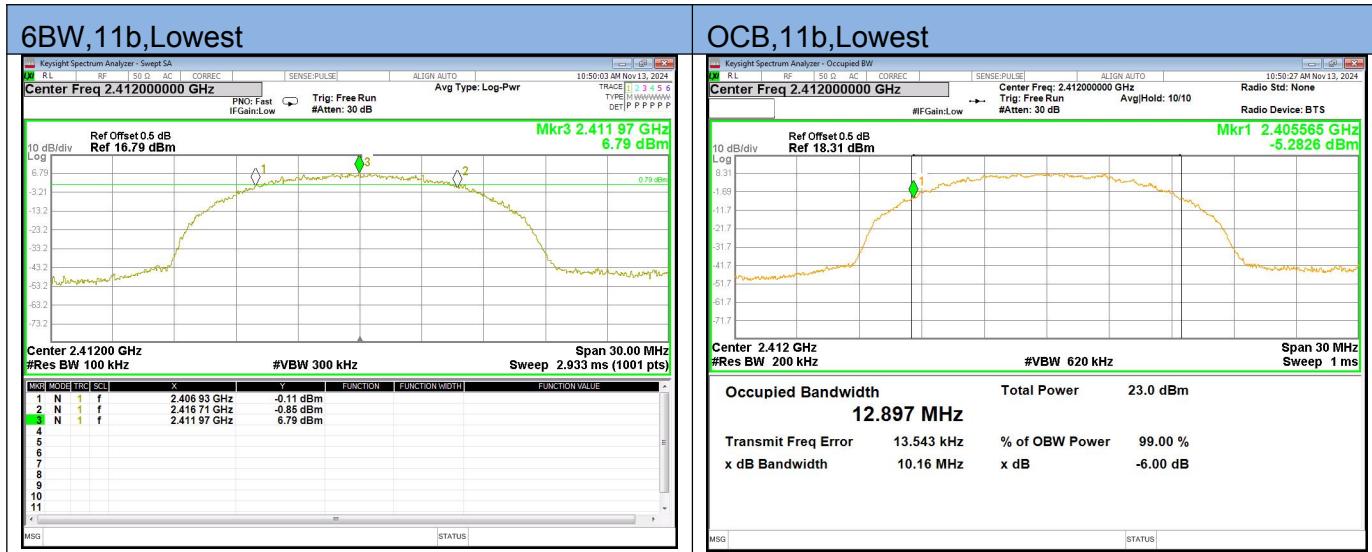
For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz


3.2 Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100KHz For 99% Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : $\geq 3 \times$ RBW For 99% Bandwidth : approximately $3 \times$ RBW
Trace	Max hold
Sweep	Auto

- (3) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission


3.3 Test setup

3.4 Test results

TestMode	Channel (MHz)	99%OBW (MHz)	6dB Bandwidth (MHz)	Limit(MHz)	Verdict
802.11b	2412MHz	12.897	9.780	0.5	Pass
802.11b	2437MHz	12.906	9.810	0.5	Pass
802.11b	2462MHz	12.982	9.750	0.5	Pass
802.11g	2412MHz	16.434	16.410	0.5	Pass
802.11g	2437MHz	16.446	16.410	0.5	Pass
802.11g	2462MHz	16.462	16.410	0.5	Pass
802.11n 20	2412MHz	17.197	16.860	0.5	Pass
802.11n 20	2437MHz	17.208	16.710	0.5	Pass
802.11n 20	2462MHz	17.221	16.950	0.5	Pass

3.5 Original Test Data

6BW,11b,Middle

OCB,11b,Middle

6BW,11b,Highest

OCB,11b,Highest



6BW,11g,Lowest

OCB,11g,Lowest

4 CONDUCTED OUTPUT POWER

4.1 limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 test procedure

- Connect each EUT's antenna output to power sensor by RF cable and attenuator
- Measure the PK output power of each antenna port by power sensor.

4.3 TEST SETUP

4.5 test results

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
802.11b	2412MHz	16.85	30	Pass
802.11b	2437MHz	16.80	30	Pass
802.11b	2462MHz	16.75	30	Pass
802.11g	2412MHz	16.67	30	Pass
802.11g	2437MHz	16.60	30	Pass
802.11g	2462MHz	16.61	30	Pass
802.11n 20	2412MHz	15.89	30	Pass
802.11n 20	2437MHz	15.92	30	Pass
802.11n 20	2462MHz	15.79	30	Pass

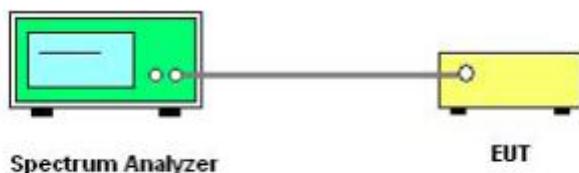
5. POWER SPECTRAL DENSITY

5.1 LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 TEST PROCEDURE

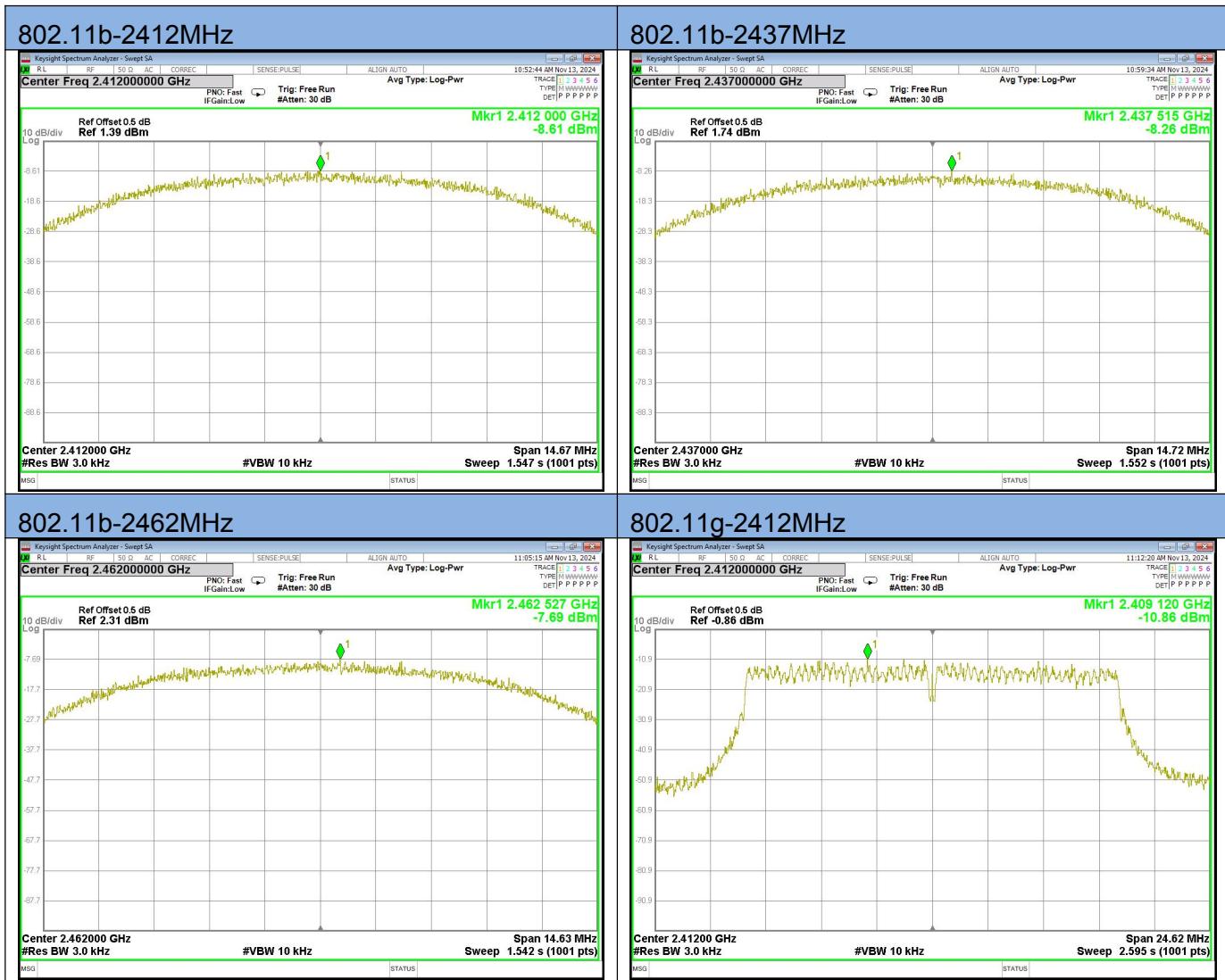
(1) Connect EUT's antenna output to spectrum analyzer by RF cable.


(2) Set the spectrum analyzer as follows:

Center frequency	DTS Channel center frequency
RBW:	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW:	$\geq 3\text{RBW}$
Span	1.5 times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

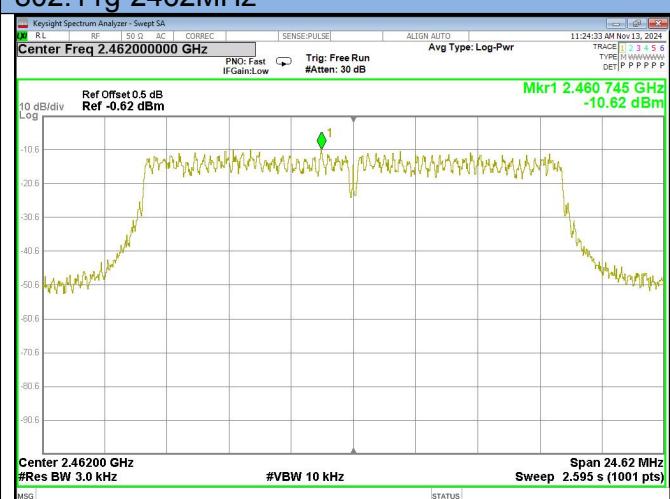
(3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW

(4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


5.3 TEST SETUP

5.4 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
802.11b	2412MHz	-8.61	8	Pass
802.11b	2437MHz	-8.26	8	Pass
802.11b	2462MHz	-7.69	8	Pass
802.11g	2412MHz	-10.86	8	Pass
802.11g	2437MHz	-11.29	8	Pass
802.11g	2462MHz	-10.62	8	Pass
802.11n 20	2412MHz	-11.25	8	Pass
802.11n 20	2437MHz	-12.12	8	Pass
802.11n 20	2462MHz	-10.83	8	Pass


5.5 original test data

802.11g-2437MHz

802.11g-2462MHz

802.11n 20-2412MHz

802.11n 20-2437MHz

802.11n 20-2462MHz

6. Band edge and spurious(conducted)

6.1 LIMIT

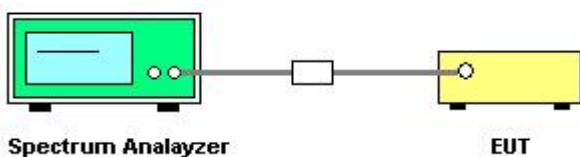
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

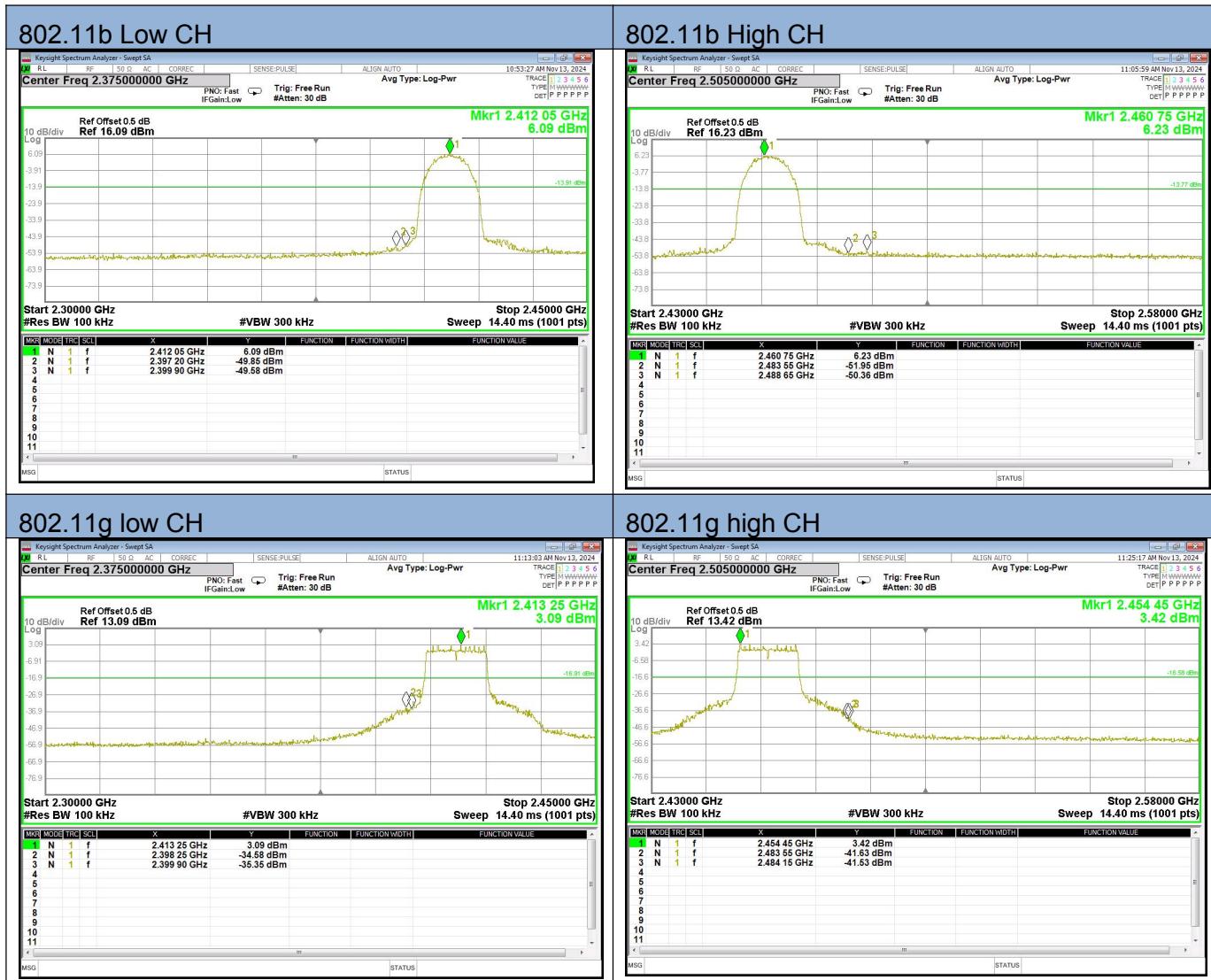
Center frequency	DTS Channel center frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

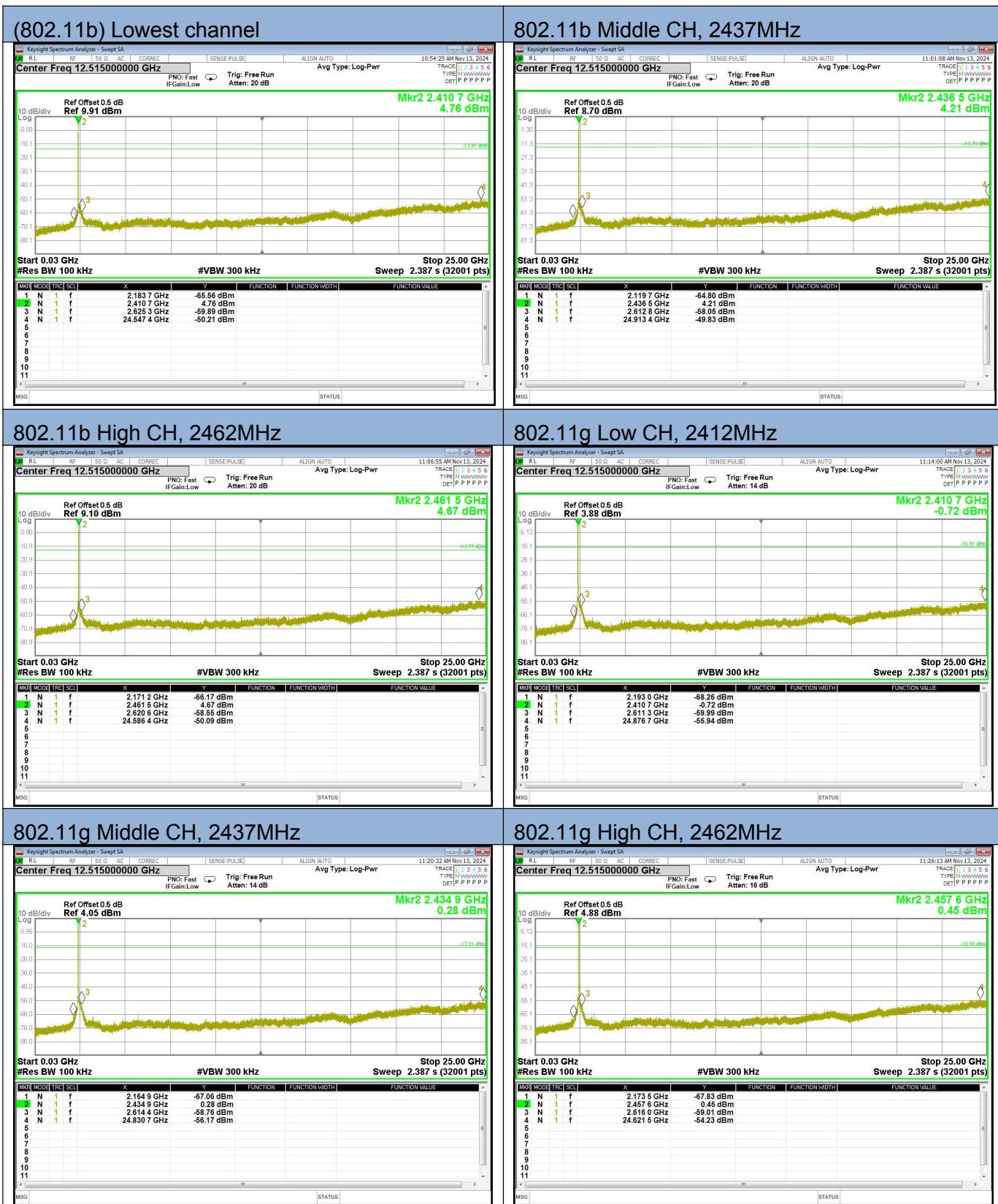
(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be measured
Number of measurement points	\geq span/RBW
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

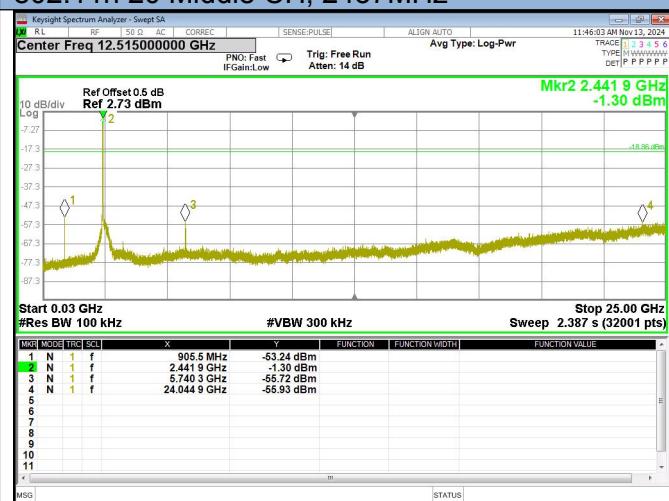
(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

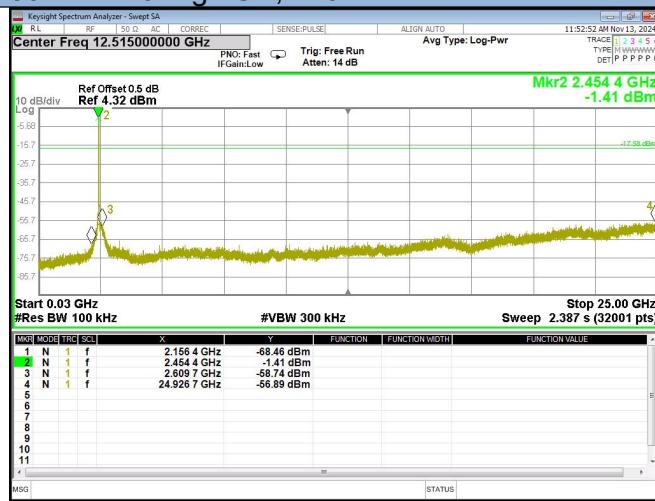

6.3 TEST SETUP

6.5 TEST RESULTS


Eut set mode	CH or Frequency	Result
802.11b	CH1	Pass
	CH11	Pass
802.11g	CH1	Pass
	CH11	Pass
802.11n 20	CH1	Pass
	CH11	Pass

6.5 Original test data


6.6 Spurious emissions


802.11n 20 Low CH, 2412MHz

802.11n 20 Middle CH, 2437MHz

802.11n 20 High CH, 2462MHz

7 RADIATED EMISSION MEASUREMENT

7.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

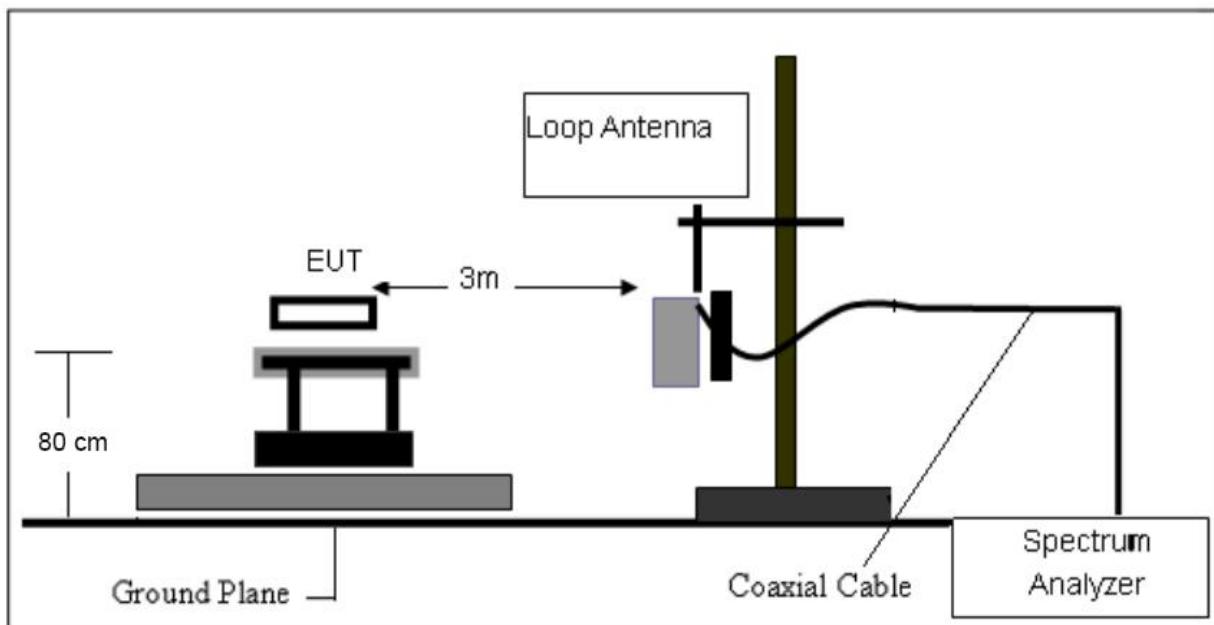
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz

For Band edge

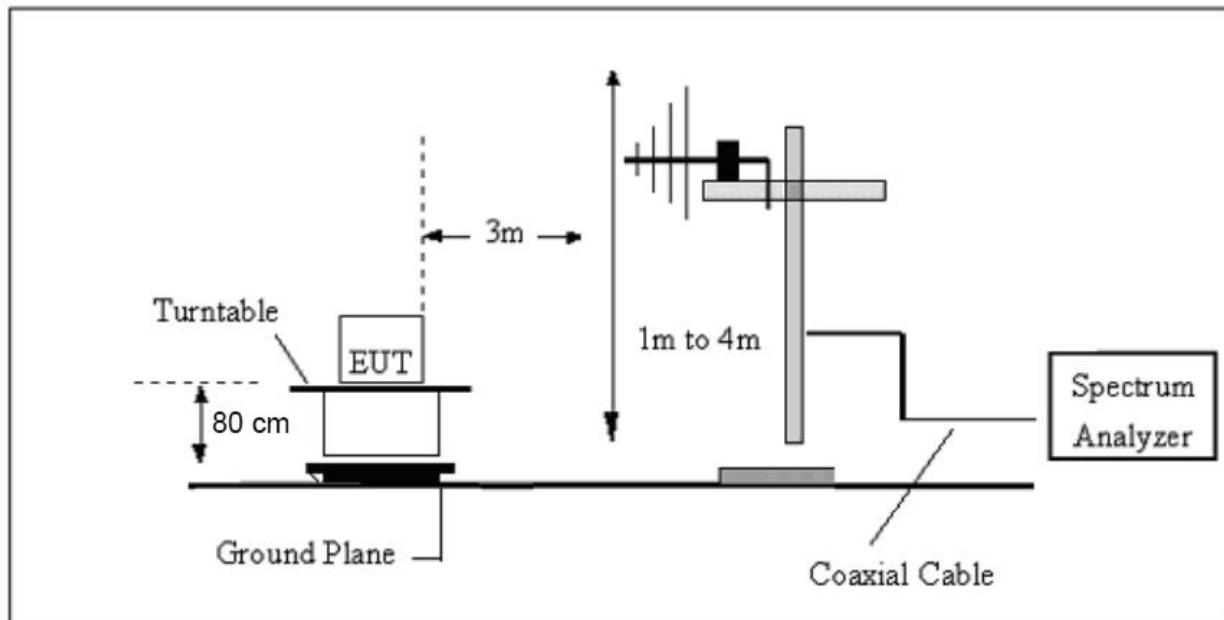
Spectrum Parameter	Setting
Detector	Peak/AV
Start/Stop Frequency	Lower Band Edge: 2300 to 2403 MHz Upper Band Edge: 2479 to 2500 MHz
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

7.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

