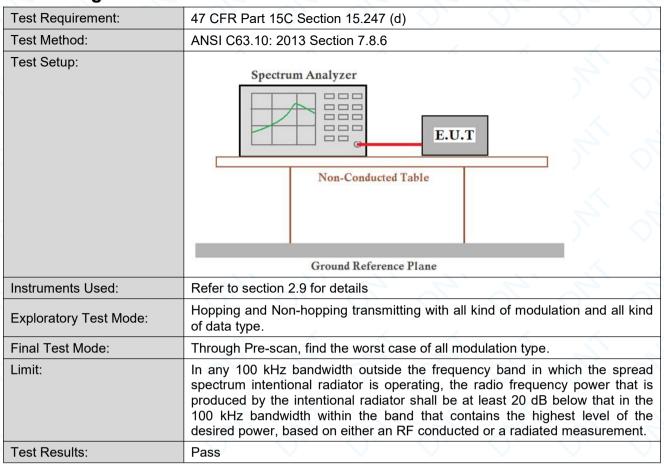


Report No.: DNT2412100089R5468-07399 Date:

Date: December 20, 2024 Page: 18 / 66

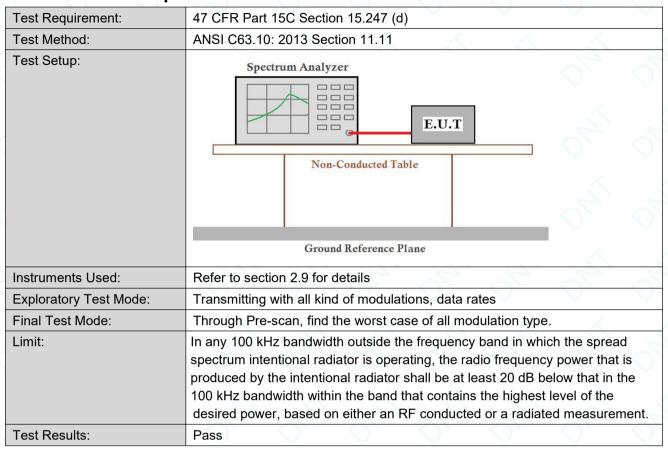
3.6 Hopping Channel Number



The detailed test data see: Appendix E

Report No.: DNT2412100089R5468-07399 Date: December 20, 2024 Page: 19 / 66

3.7 Band-edge for RF Conducted Emissions



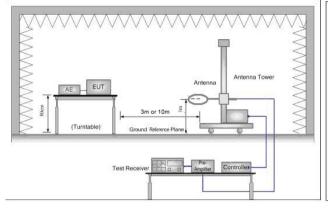
The detailed test data see: Appendix F

Report No.: DNT2412100089R5468-07399 Date: December 20, 2024 Page: 20 / 66

3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Date: December 20, 2024 Page: 21 / 66


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20)5		
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-A	Anechoic Ch	amber)	6 6
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average
				(DC<0.98)	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- <	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	()	30
	1.705MHz-30MHz	30	()-	○ -	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lin	nit

Report No.: DNT2412100089R5468-07399 Date: December 20, 2024

Page: 22 / 66

Test Setup:

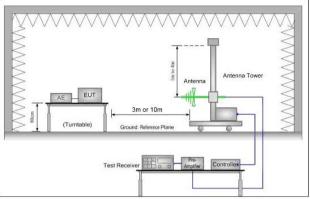


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

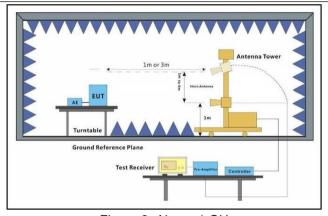
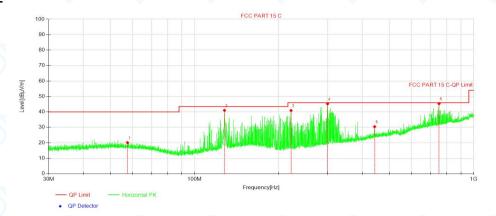


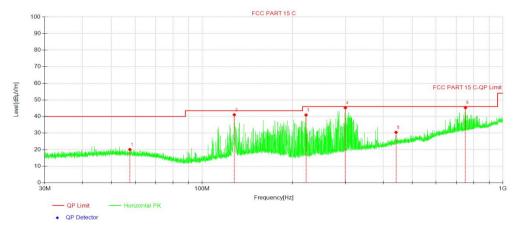
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

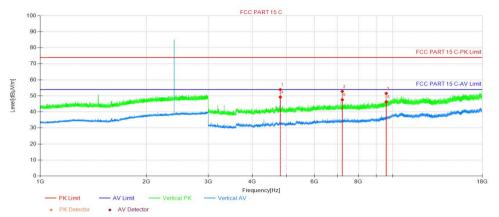

Report No.: DNT	2412100089R5468-07399	Date:	December 20, 2024	Page:	23 / 66
Test Configuration:	Measurements Below 1000MHz		9, 9,		
	• RBW = 120 kHz				\bigcirc
	• VBW = 300 kHz				
	Detector = Peak				K
	Trace mode = max hold				47
	Peak Measurements Above 1000	MHz			\bigcirc
	• RBW = 1 MHz				
	VBW ≥ 3 MHz				K
	Detector = Peak				-
	Sweep time = auto				\bigcirc
	Trace mode = max hold				×
	Average Measurements Above 1	000MHz			
	• RBW = 1 MHz				-
	VBW = 10 Hz, when duty cycle	is no less	s than 98 percent.		\bigcirc
	VBW ≥ 1/T, when duty cycle is	less tha	n 98 percent where T is	the minimur	n
	transmission duration over which maximum power control level for			nitting at its	
Exploratory Test Mode:	Transmitting with all kind of modu				
Exploratory Tost Mode.	Charge+Transmitting mode.	ilations, a	add rates.		
Final Test Mode:	Pretest the EUT at Transmitting n	node.			
	Through Pre-scan, find the DH5 of type.	of data typ	pe is the worst case of A	ll modulatio	n
Instruments Used:	Refer to section 2.9 for details				
Test Results:	Pass				


Date: December 20, 2024 Page: 24 / 66

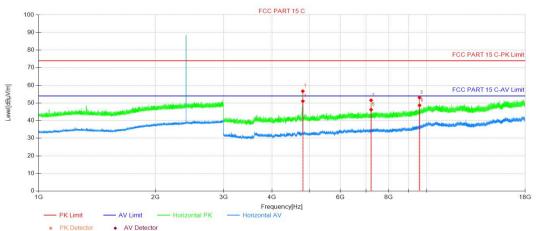
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	66.40	40.80	-9.52	31.28	40.00	8.72	100	236	QP	Vertical
2	114.43	52.54	-10.76	41.78	43.50	1.72	100	0	QP	Vertical
3	154.98	48.92	-7.79	41.13	43.50	2.37	100	296	QP	Vertical
4	216.78	53.14	-11.06	42.08	46.00	3.92	100	256	QP	Vertical
5	496.80	43.49	-2.05	41.44	46.00	4.56	100	280	QP	Vertical
6	734.49	39.02	2.96	41.98	46.00	4.02	100	0	QP	Vertical



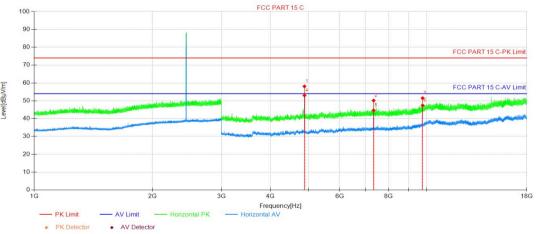
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	57.51	28.63	-8.51	20.12	40.00	19.88	100	153	QP	Horizontal
2	127.97	50.64	-9.61	41.03	43.50	2.47	100	65	QP	Horizontal
3	221.62	51.95	-11.05	40.90	46.00	5.10	100	360	QP	Horizontal
4	299.52	52.24	-7.01	45.23	46.00	0.77	100	276	QP	Horizontal
5	441.43	33.47	-3.01	30.46	46.00	15.54	100	194	QP	Horizontal
6	751.16	41.90	3.43	45.33	46.00	0.67	100	70	QP	Horizontal



Date: December 20, 2024 Page: 25 / 66

For above 1GHz DH5 2402MHz

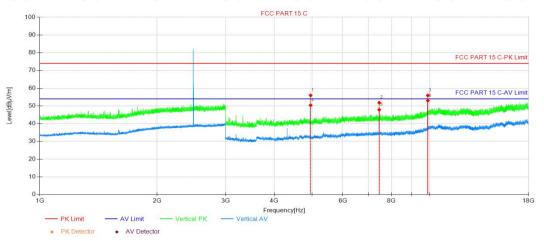

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	58.56	-4.61	53.95	74.00	20.05	150	340	Peak	Vertical
2	7206.21	54.58	-1.76	52.82	74.00	21.18	150	356	Peak	Vertical
3	9607.83	50.72	0.87	51.59	74.00	22.41	150	142	Peak	Vertical
4	4804.59	53.90	-4.61	49.29	54.00	4.71	150	340	AV	Vertical
5	7206.96	49.39	-1.76	47.63	54.00	6.37	150	15	AV	Vertical
6	9608.58	45.49	0.88	46.37	54.00	7.63	150	142	AV	Vertical


	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	4803.84	61.31	-4.61	56.70	74.00	17.30	150	17	Peak	Horizon
	2	7206.21	53.31	-1.76	51.55	74.00	22.45	150	72	Peak	Horizon
	3	9607.83	52.23	0.87	53.10	74.00	20.90	150	90	Peak	Horizon
	4	4804.59	55.66	-4.61	51.05	54.00	2.95	150	0	AV	Horizon
	5	7206.96	47.97	-1.76	46.21	54.00	7.79	150	72	AV	Horizon
•	6	9608.58	47.79	0.88	48.67	54.00	5.33	150	110	AV	Horizon

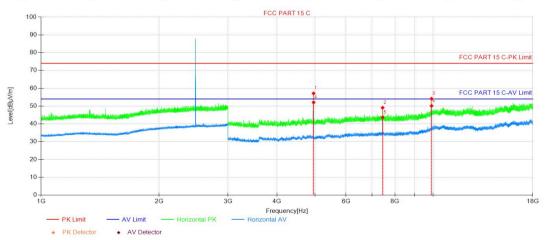
Date: December 20, 2024 Page: 26 / 66

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	60.99	-4.72	56.27	74.00	17.73	150	342	Peak	Vertical
2	7323.21	54.83	-1.49	53.34	74.00	20.66	150	342	Peak	Vertical
3	9763.83	50.74	1.64	52.38	74.00	21.62	150	342	Peak	Vertical
4	4882.59	55.73	-4.72	51.01	54.00	2.99	150	357	AV	Vertical
5	7323.96	50.71	-1.49	49.22	54.00	4.78	150	4	AV	Vertical
6	9764.58	45.84	1.64	47.48	54.00	6.52	150	165	AV	Vertical



	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	4881.84	62.79	-4.72	58.07	74.00	15.93	150	15	Peak	Horizon
	2	7323.21	51.65	-1.49	50.16	74.00	23.84	150	69	Peak	Horizon
	3	9764.58	49.89	1.64	51.53	74.00	22.47	150	144	Peak	Horizon
	4	4882.59	57.72	-4.72	53.00	54.00	1.00	150	15	AV	Horizon
ĺ	5	7323.96	46.12	-1.49	44.63	54.00	9.37	150	90	AV	Horizon
	6	9764.58	45.76	1.64	47.40	54.00	6.60	150	108	AV	Horizon


Date: December 20, 2024

Page: 27 / 66

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	60.85	-4.86	55.99	74.00	18.01	150	341	Peak	Vertical
2	7440.22	53.16	-1.34	51.82	74.00	22.18	150	341	Peak	Vertical
3	9919.84	53.66	2.26	55.92	74.00	18.08	150	341	Peak	Vertical
4	4960.59	55.26	-4.86	50.40	54.00	3.60	150	341	AV	Vertical
5	7440.97	49.21	-1.34	47.87	54.00	6.13	150	341	AV	Vertical
6	9920.59	50.69	2.27	52.96	54.00	1.04	150	357	AV	Vertical

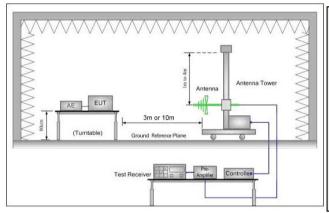
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	62.01	-4.86	57.15	74.00	16.85	150	19	Peak	Horizon
2	7440.22	50.42	-1.34	49.08	74.00	24.92	150	74	Peak	Horizon
3	9920.59	51.87	2.27	54.14	74.00	19.86	150	55	Peak	Horizon
4	4960.59	56.93	-4.86	52.07	54.00	1.93	150	3	AV	Horizon
5	7440.97	44.99	-1.34	43.65	54.00	10.35	150	74	AV	Horizon
6	9920.59	47.85	2.27	50.12	54.00	3.88	150	55	AV	Horizon

Date: December 20, 2024 Page: 28 / 66

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)


- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2412100089R5468-07399 Date: December 20, 2024 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Ab 4011-	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			

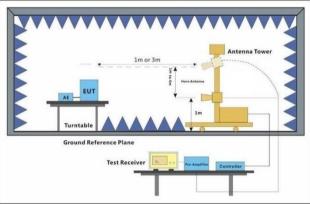


Figure 1. 30MHz to 1GHz

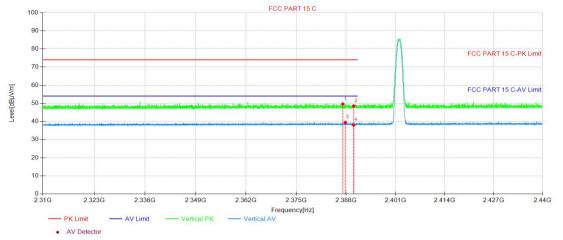
Figure 2. Above 1 GHz

Test Procedure:

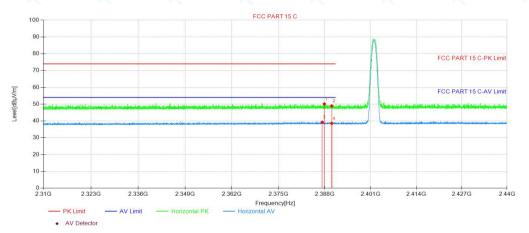
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz


Dongguan DN Testing Co., Ltd.

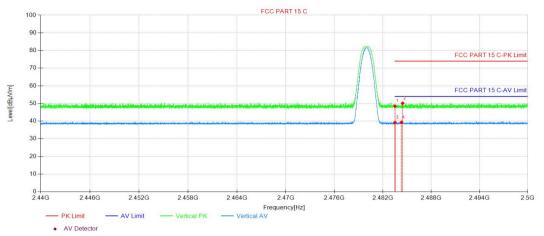
Report No.: DN	Γ2412100089R5468-07399	Date:	December 20, 2024	Page:	30 / 6
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Abov 	e 1000 M	1Hz		
	 RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak 				
	 Sweep time = auto Trace mode = max hold Average Measurements Al RBW = 1 MHz 				
	 VBW = 10 Hz, when duty VBW ≥ 1/T, when duty minimum transmission duration over which maximum power control level for t 	cycle is le	ess than 98 percent wher mitter is on and is transm	e T is the	
Exploratory Test Mode:	Transmitting with all kind of modul Transmitting mode.		•		
Final Test Mode:	Pretest the EUT Transmitting mod Through Pre-scan, find the DH5 of type. Only the worst case is recorded in	of data ty		l modulatior	
Instruments Used:	Refer to section 2.9 for details				K
Test Results:	Pass		9 9	P	



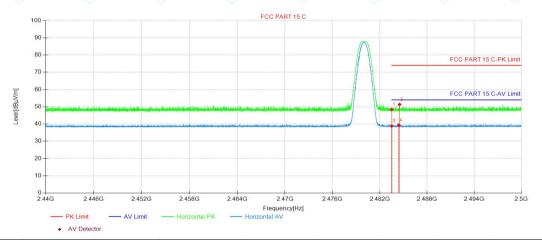
Page: 31 / 66 Date: December 20, 2024

Test Date DH5 2402MHz

١	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	2387.17	50.38	-0.80	49.58	74.00	24.42	150	346	Peak	Vertical
	2	2390.01	49.30	-0.80	48.50	74.00	25.50	150	97	Peak	Vertical
	3	2387.85	40.24	-0.80	39.44	54.00	14.56	150	219	AV	Vertical
	4	2390.01	38.84	-0.80	38.04	54.00	15.96	150	302	AV	Vertical



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2387.91	50.95	-0.80	50.15	74.00	23.85	150	70	Peak	Horizon
2	2390.01	49.77	-0.80	48.97	74.00	25.03	150	117	Peak	Horizon
3	2387.33	40.05	-0.80	39.25	54.00	14.75	150	117	AV	Horizon
4	2390.01	39.37	-0.80	38.57	54.00	15.43	150	24	AV	Horizon



Report No.: DNT2412100089R5468-07399 Date: December 20, 2024 Page: 32 / 66

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.77	-0.29	48.48	74.00	25.52	150	324	Peak	Vertical
2	2484.45	50.44	-0.28	50.16	74.00	23.84	150	88	Peak	Vertical
3	2483.50	39.50	-0.29	39.21	54.00	14.79	150	33	AV	Vertical
4	2484.31	39.65	-0.28	39.37	54.00	14.63	150	347	AV	Vertical

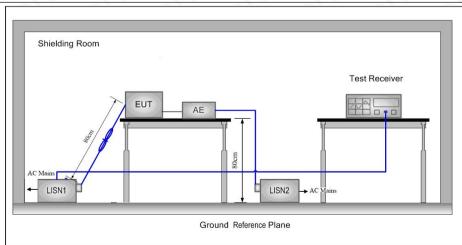
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.73	-0.29	48.44	74.00	25.56	150	139	Peak	Horizon
2	2484.50	51.61	-0.28	51.33	74.00	22.67	150	313	Peak	Horizon
3	2483.50	39.15	-0.29	38.86	54.00	15.14	150	38	AV	Horizon
4	2484.40	39.68	-0.28	39.40	54.00	14.60	150	161	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.



Date: December 20, 2024 Page: 33 / 66

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15	5.207					
Test Method:	ANSI C63.10: 2013		<u> </u>				
Test Frequency Range:	150kHz to 30MHz						
Limit:	- (MI)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarit	nm of the frequency.					
	room. 2) The EUT was connected Impedance Stabilization Net impedance. The power cabl a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rat 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN 1 unit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal of the interest of the int	ework) which provides a 5 es of all other units of the bonded to the ground rese LISN 1 for the unit being as used to connect multipling of the LISN was not estated upon a non-metallical for floor-standing arrangund reference plane, with a vertical ground reference was bonded to the howas placed 0.8 m from the vertical ground reference plane, and reference plane. This confide the LISN 1 and the EUT appendix was at least 0.8 m emission, the relative poerface cables must be characteristics.	ioΩ/50μH + 5Ω linear EUT were connected to eference g measured. A ple power cables to a exceeded. c table 0.8m above the gement, the EUT was erence plane. The rear ference plane. The orizontal ground the boundary of the ne for LISNs distance was T. All other units of m from the LISN 2. ositions of				

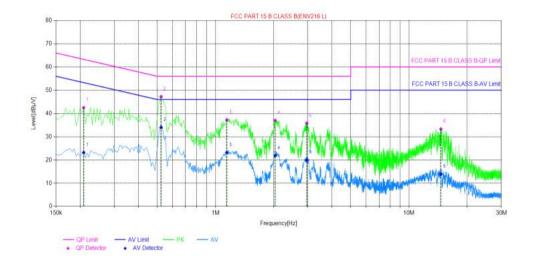
Test Setup:

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Dongguan DN Testing Co., Ltd.


Report No.: DNT2412100089R5468-07399 Date: December 20, 2024 Page: 34 / 66

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	ΑV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.2085	9.93	42.48	63.26	20.78	23.18	53.26	30.08	PASS
2	0.5235	9.86	47.23	56.00	8.77	34.01	46.00	11.99	PASS
3	1.1445	9.72	37.26	56.00	18.74	23.23	46.00	22.77	PASS
4	2.0355	9.73	37.03	56.00	18.97	21.92	46.00	24.08	PASS
5	2.9625	9.74	35.82	56.00	20.18	19.90	46.00	26.10	PASS
6	14.6085	9.98	33.30	60.00	26.70	13.95	50.00	36.05	PASS