

TEST REPORT

Applicant:

TOUCH DYNAMIC INC.

Address:

121 Corporate Blvd, South Plainfield, NJ 07080,

USA

Equipment Type:

Vector

Model Name:

Vector

Brand Name:

TOUCH_DYNAMIC

FCC ID:

2BMQJ-VECTOR

Test Standard:

47 CFR Part 15 Subpart B

ANSI C63.4-2014

Sample Arrival Date:

Sep. 12, 2024

Test Date:

Oct. 21, 2024 - Oct. 22, 2024

Date of Issue:

Jan. 06, 2025

ISSUED BY:

Shanghai Tejet Communications Technology Co., Ltd. Testing Center

Tested by: Chai Yong

Checked by: Huang Chengkun

Approved by: Chen Zidong

(Technical Director)

Chai Yong

Huang Chongkun

Chen Zidorg

Revision History

VersionIssue DateRevisions ContentRev. 01Jan. 06, 2025Initial Issue

TABLE OF CONTENTS

1 GENERAL INFORMATION	4
1.1 Test Laboratory	4
1.2 Test Location	4
2 PRODUCT INFORMATION	5
2.1 Applicant Information	5
2.2 Manufacturer Information	5
2.3 General Description for Equipment under Test (EUT)	5
2.4 Ancillary Equipment	6
2.5 Technical Information	6
3 SUMMARY OF TEST RESULTS	7
3.1 Test Standards	7
3.2 Verdict	7
3.3 Decision Rule	7
3.4 Test Uncertainty	7
4 GENERAL TEST CONFIGURATIONS	8
4.1 Test Enclosure List	8
4.2 Test Configurations	8
4.3 Test Setups	9
5 TEST ITEMS	11
5.1 Emission Tests	11
5.1.1 Radiated emission	11
5.1.2 Conducted emission	13
ANNEX A TEST RESULTS AND TEST EQUIPMENT LIST	14
A.1 Radiated emission	14
A.2 Conducted emission	21

Report No.: BL-SH2490677-401

Page No. 3 / 26

ANNEX B TEST SETUP PHOTOS	. 25
ANNEX C EUT EXTERNAL PHOTOS	. 25
ANNEX D FUT INTERNAL PHOTOS	25

Page No. 4 / 26

1 GENERAL INFORMATION

1.1 Test Laboratory

Name Shanghai Tejet Communications Technology Co., Ltd. Testing Center	
Address	1st to 2nd floors, Building 1, No. 222 Xuanlan Road, Xuanqiao Town, Pudong New
Address	District, Shanghai

1.2 Test Location

Name	Shanghai Tejet Communications Technology Co., Ltd. Testing Center	
Location	1st to 2nd floors, Building 1, No. 222 Xuanlan Road, Xuanqiao Town, Pudong New	
	District, Shanghai	
Accreditation	The laboratory is a testing organization accredited by FCC as a accredited testing	
Certificate	laboratory. The designation number is CN1352.	

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	TOUCH DYNAMIC INC.
Address	121 Corporate Blvd, South Plainfield, NJ 07080, USA

2.2 Manufacturer Information

Manufacturer	TOUCH DYNAMIC INC.
Address	121 Corporate Blvd, South Plainfield, NJ 07080, USA

2.3 General Description for Equipment under Test (EUT)

Equipment Type	Vector
Model Name Under Test	Vector
Series Model Name	N/A
Description of Model Name Differentiation	N/A
Hardware Version	V1.0
Software Version	D0773_TOUCH_DYNAMIC_COMBO_20241029
Dimensions (Approx.)	367 mm (L)× 200 mm (W)× 290 mm (H)
Weight (Approx.)	3986g

2.4 Ancillary Equipment

	All In One Touch Terminal		
An aillen. Faurings and 4	Brand Name	N/A	
Ancillary Equipment 1	Model No.	Vector(Sub)	
	Serial No.	N/A	
	Adapter		
	Brand Name	FLYPOWER	
Ancillary Equipment 2	Model No.	PS65E240Y250H	
	Serial No.	N/A	
	Rated Input	100-240 V~, 50/60 Hz, 1.5 A	
	Rated Output	24.0 V= 2.5 A, 60.0W	
	US Gauge Power Cord		
Ancillary Equipment 3	Model No.	N/A	
	Length (Approx.)	1.0 m	

2.5 Technical Information

Network and wireless	2.4G WIFI,5G WIFI
connectivity	Bluetooth
Classification of equipment	Class B
Highest frequency	
generatedor used in the	5850 MHz
device or onwhich the device	3630 IVITZ
operates oltunes(MHz)	

Page No. 7 / 26

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	47 CFR Part 15 Subpart B	Unintentional Radiators	
		American National Standard for Methods of Measurement of	
2	ANSI C63.4-2014	Radio-Noise Emissions from Low-Voltage Electrical and	
		Electronic Equipment in the Range of 9 kHz to 40 GHz	

3.2 Verdict

N	Ю.	Description	FCC Rule	Test Verdict	Remark
	1	Radiated Emission	15.109	Pass	
	2	Conducted Emission, AC Ports	15.107	Pass	

3.3 Decision Rule

	No Need
\boxtimes	Use General conformity decision rule (Consider uncertainty or not \boxtimes No \square Yes)
	Use Special Conformity Decision Rule (Consider uncertainty or not \square No \square Yes)

3.4 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (150 kHz-30 MHz)-AMN	2.6 dB
Radiated emissions (30 MHz-1 GHz)-966#2	4.4 dB
Radiated emissions (1 GHz-18 GHz) -966#2	5.2 dB
Radiated emissions (18 GHz-40 GHz) -966#2	5.5 dB

4 GENERAL TEST CONFIGURATIONS

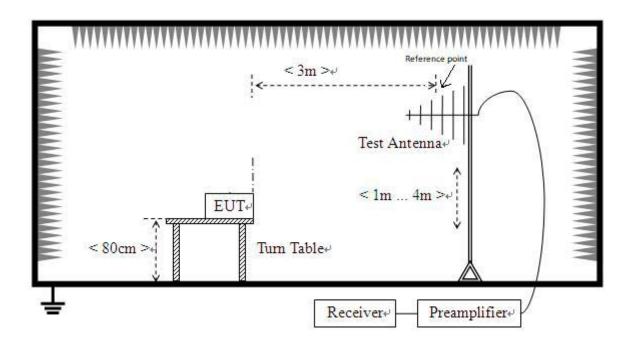
4.1 Test Enclosure List

Description	Manufacturer	Model	Serial No.	Length	Description	Use
WiFi Router	XIAOMI	AC1200	N/A	N/A	N/A	\boxtimes
Laptop	Lenovo	X5-15 ABU017	N/A	N/A	N/A	\boxtimes
Cash Register	MAJET	405C	N/A	N/A	N/A	\boxtimes
Hard Disk	N/A	N/A	N/A	N/A	N/A	\boxtimes

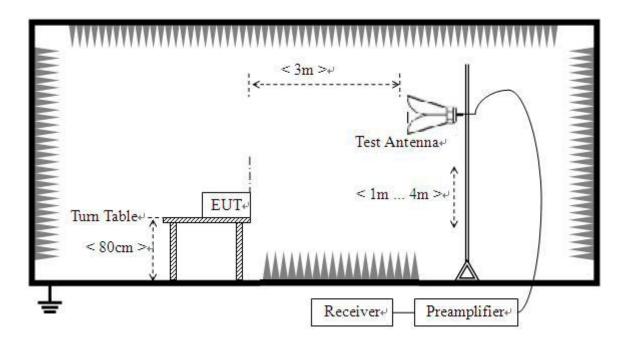
4.2 Test Configurations

All test modes of EUT are listed in the table below.

	The Camera (Front) Test Mode
Mode 1	EUT + Adapter + All In One Touch Terminal + Hard Disk + RJ45 Cable + Laptop +
	Cash Register + US Gauge Power Cord
	The Video Play Test Mode
Mode 2	EUT + Adapter + All In One Touch Terminal + Hard Disk + RJ45 Cable + Laptop +
	Cash Register + US Gauge Power Cord
	The USB Test Mode
Mode 3	EUT + Adapter + All In One Touch Terminal + USB Cable + Hard Disk + RJ45
	Cable + Laptop + Cash Register + US Gauge Power Cord

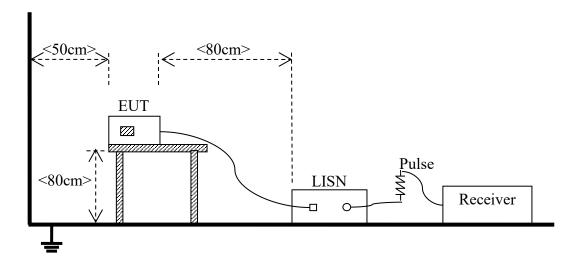

Test Case	Test Mode Configuration	Worst Mode	
Radiated emission	Mode 1~Mode 3	1	
Conducted emission	Mode 1~Mode 3	1	

Note: Based on client request, all normal using modes of the normal function were tested, but only data of the worst mode (if test case has) was reported in this report.



4.3 Test Setups

Test Setup 1


Radiated Emission (30 MHz-1 GHz)

Radiated Emission (above 1 GHz)

Test Setup 2

Conducted emission, AC ports

5 TEST ITEMS

5.1 Emission Tests

5.1.1 Radiated emission

5.1.1.1 Limit

Frequency range (MHz)	Class B (Class A (at 3 m)	
	Field Strength Field Strength		Field Strength
	(μV/m)	(dBµV/m)	(dBµV/m)
30 - 88	100	40	49.5
88 - 216	150	43.5	54
216 - 960	200	46	56.9
Above 960	500	54	60

Note:

- 1) Field Strength ($dB\mu V/m$) = 20*log [Field Strength ($\mu V/m$)].
- 2) In the emission tables above, the tighter limit applies at the band edges.
- 3) The limits using ANSI C63.4-2014.
- 4) For 30-1000 MHz, the CISPR quasi-peak is employed.

For above 1000 MHz, according to the requirements of FCC 15.35, unless otherwise specified, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

		Class B (at 3 m)	Class A (at 3 m)			
Frequency r	ange	Field Strength (μV/m)	Field Strength Average (dBµV/m)	Field Strength Peak (dBµV/m)	Field Strength Average (dBµV/m)	Field Strength Peak (dBµV/m)
1 - F _M		500	54	74	60	80

Note 1: The highest measurement frequency, F_M, in GHz, shall be determined as next Table.

Note 2: Average Class A limit at 3m L_{3m} is determined by the following conversion formula:

 $L_{3m} = L_{10m} + 20*log(d_{10m}/d_{3m})$

Where:

L_{3m} is Average Class A limit at 3m;

L_{10m} is Average Class A limit at 10m;

d_{10m} is Measurement distance in 10m;

d_{3m} is Measurement distance in 3m.

For this case: $L_{3m} = 49.5 + 20*log(10/3)=60 (dB\mu V/m)$.

Highest internal frequency (F _X)	Highest measurement frequency (F _M)
F _X ≤ 108 MHz	1 GHz
108 MHz ≤ F _X ≤ 500 MHz	2 GHz
500 MHz ≤ F _X ≤ 1 GHz	5 GHz
E > 1 CU2	5 *F _X
F _X ≥ 1 GHz	or 40 GHz, whichever is lower.

Note: F_X is Highest frequency generated or used in the device or on which the device operates or tunes.

5.1.1.2 Test setup

Please refer to 4.2 section description of test setup of test setup 1. The photo of test setup please refer to ANNEX B.

5.1.1.3 Test procedure

- 1. The test employing the methods of measurement described in the publication referenced in Section 3(b) (ANSI C63.4);
- 2. All Radiated Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.
- 3. An initial pre-scan was performed in the chamber using the EMI Receiver in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bi-Log antenna with 2 orthogonal polarities.
- 4. The measurement frequency range is from 30 MHz to the 5th harmonic of the maximum frequency of the EUT internal source. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.
- 5. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak for f <1 GHz, peak & RMS Average for f ≥ 1 GHz

Trace = max hold

5.1.1.4 Test result and test equipment list

Please refer to ANNEX A.1.

Note:

1. Results $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

The reading level is calculated by software which is not shown in the sheet

- 2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Amplifier Gain (dB)
- 3. Margin = Limit Results

Report No.: BL-SH2490677-401

5.1.2 Conducted emission

5.1.2.1 Limit

Frequency range (MHz)	Clas	s A	Class B		
	Quasi-peak	Average	Quasi-peak	Average	
(IVITIZ)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	
0.15 - 0.50	79	66	66 to 56	56 to 46	
0.50 - 5	73	60	56	46	
5 - 30	73	60	60	50	

Note:

- 1) The lower limit shall apply at the band edges.
- 2) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50 MHz.
- 3) The limit using ANSI C63.4.

5.1.2.2 Test setup

Please refer to 4.2 section description of test setup of test setup 2. The photo of test setup please refer to ANNEX B.

5.1.2.3 Test procedure

- 1. The test employing the methods of measurement described in the publication referenced in Section 3(b) (ANSI C63.4);
- 2. The EUT is connected to the power mains through a LISN which provides 50 Ω/50 μH of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.
- 3. Use the following spectrum analyzer settings:

RBW = 9 kHz

VBW ≥ RBW

Sweep = 10ms

Detector function = Peak & Average

Trace = max hold

5.1.2.4 Test result and test equipment list

Please refer to ANNEX A.2.

Note:

1. Results $(dB\mu V)$ = Reading $(dB\mu V)$ + Factor (dB)

The reading level is calculated by software which is not shown in the sheet

- 2. Factor = Insertion loss + Cable loss
- 3. Margin = Limit Results

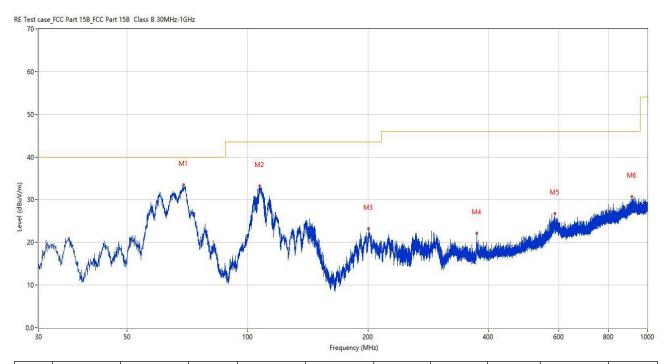
Tel: 86-21-58180736 Web: www.titcgroup.com E-mail: ks_qc@baluntek.com Template No.: TRP4-EC-08 V4.0 Page No. 13 / 26

Page No. 14 / 26

ANNEX A TEST RESULTS AND TEST EQUIPMENT LIST

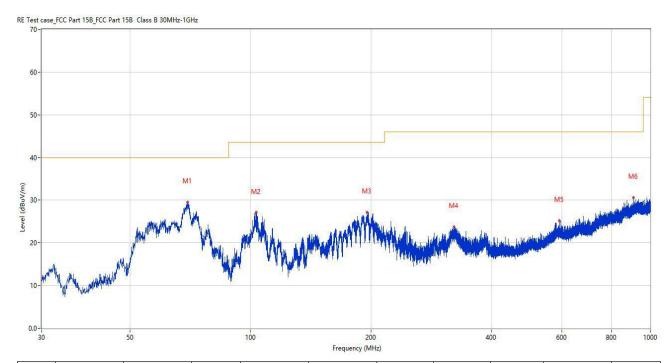
A.1 Radiated emission

Note 1: Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30 MHz to 1000 MHz. To reduce the testing time, a peak measuring receiver may be used instead of a quasi-peak measuring receiver. In case of dispute, measurement with a quasi-peak measuring receiver will take precedence.


Note 2: The Radiated Emission is required to be investigated to the upper frequency of 5th harmonic of the highest internal frequency of EUT or 40 GHz, whichever is lower. The test results above 18GHz are only noise and are not recorded in the report.

Sample No.	SC-SH2490037-S08	Temperature	21.3°C
Humidity	51%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Hao Longda	Test Date	2024.10.22

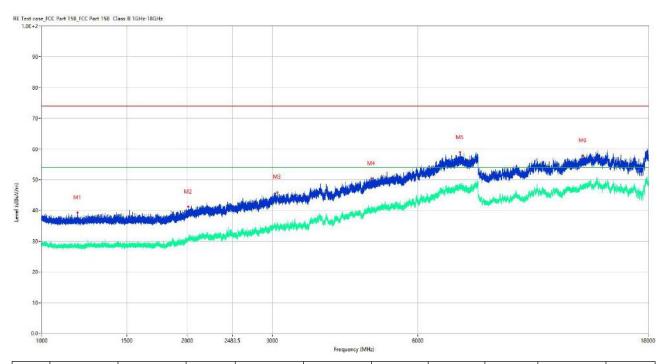
Test Mode 1


A.1.1 Test Antenna Vertical, 30 MHz – 1 GHz

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	69.188	33.52	-29.32	40.0	6.48	Peak	79.00	100	Vertical	Pass
2	107.357	33.22	-27.08	43.5	10.28	Peak	306.00	100	Vertical	Pass
3	200.720	23.24	-26.68	43.5	20.26	Peak	323.00	200	Vertical	Pass
4	374.253	22.15	-21.85	46.0	23.85	Peak	170.00	100	Vertical	Pass
5	587.217	26.82	-15.83	46.0	19.18	Peak	180.00	100	Vertical	Pass
6	914.543	30.73	-9.32	46.0	15.27	Peak	64.00	100	Vertical	Pass

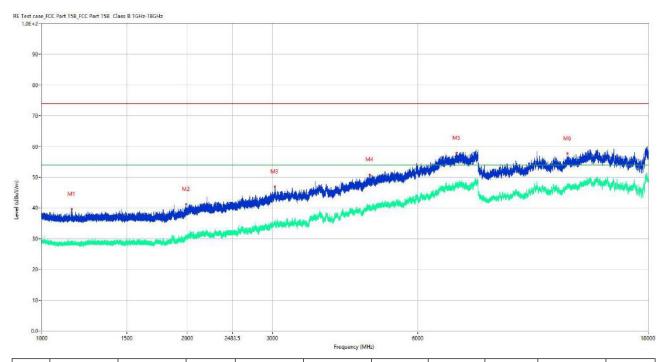
A.1.2 Test Antenna Horizontal, 30 MHz – 1 GHz

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	69.673	29.54	-29.49	40.0	10.46	Peak	207.00	200	Horizontal	Pass
2	103.284	27.10	-26.79	43.5	16.40	Peak	131.00	200	Horizontal	Pass
3	195.385	27.16	-26.43	43.5	16.34	Peak	205.00	100	Horizontal	Pass
4	322.794	23.72	-23.45	46.0	22.28	Peak	240.00	100	Horizontal	Pass
5	592.503	25.23	-15.70	46.0	20.77	Peak	321.00	100	Horizontal	Pass
6	906.298	30.57	-9.61	46.0	15.43	Peak	306.00	100	Horizontal	Pass


Equipment Information							
Equipment Name	Manufacturer	Model	Equipment No.	Cal. Date Cal. Due		Use	
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2024.02.22	2025.02.21		
Test Antenna- Bi-Log	SCHWARZB ECK	VULB 9163	BH-EMC-L132	2024.03.11	2027.03.10	\boxtimes	
Anechoic Chamber	YiHeng	9m*6m*6m	BH-EMC-L117	2024.03.23	2027.02.22		
Description	Manufacturer	Name	Version	İ		Use	
Test Software	BALUN	BL410-E	V21.919	1		\boxtimes	

Sample No.	SC-SH2490037-S08	Temperature	21.3°C
Humidity	51%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Hao Longda	Test Date	2024.10.22

Test Mode 1


A.1.3 Test Antenna Vertical, 1 GHz – 18 GHz

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1184.300	39.29	-15.92	74.0	34.71	Peak	268.00	100	Vertical	Pass
1**	1184.300	28.21	-15.92	54.0	25.79	AV	268.00	100	Vertical	Pass
2	2009.300	41.25	-14.16	74.0	32.75	Peak	302.00	100	Vertical	Pass
2**	2009.300	30.39	-14.16	54.0	23.61	AV	302.00	100	Vertical	Pass
3	3071.250	45.97	-6.99	74.0	28.03	Peak	309.00	100	Vertical	Pass
3**	3071.250	34.84	-6.99	54.0	19.16	AV	309.00	100	Vertical	Pass
4	4811.500	50.41	-1.18	74.0	23.59	Peak	347.00	100	Vertical	Pass
4**	4811.500	39.92	-1.18	54.0	14.08	AV	347.00	100	Vertical	Pass
5	7340.500	58.96	5.55	74.0	15.04	Peak	0.00	100	Vertical	Pass
5**	7340.500	47.33	5.55	54.0	6.67	AV	0.00	100	Vertical	Pass
6	13185.500	57.82	7.91	74.0	16.18	Peak	220.00	100	Vertical	Pass
6**	13185.500	47.29	7.91	54.0	6.71	AV	220.00	100	Vertical	Pass

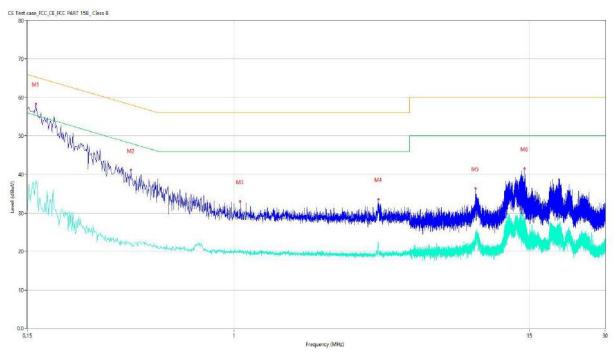
A.1.4 Test Antenna Horizontal, 1 GHz – 18 GHz

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1153.600	39.65	-15.81	74.0	34.35	Peak	260.00	100	Horizontal	Pass
1**	1153.600	29.26	-15.81	54.0	24.74	AV	260.00	100	Horizontal	Pass
2	1990.500	41.26	-14.48	74.0	32.74	Peak	137.00	100	Horizontal	Pass
2**	1990.500	30.34	-14.48	54.0	23.66	AV	137.00	100	Horizontal	Pass
3	3032.500	46.91	-7.33	74.0	27.09	Peak	311.00	100	Horizontal	Pass
3**	3032.500	34.47	-7.33	54.0	19.53	AV	311.00	100	Horizontal	Pass
4	4768.500	50.70	-1.06	74.0	23.30	Peak	175.00	100	Horizontal	Pass
4**	4768.500	39.71	-1.06	54.0	14.29	AV	175.00	100	Horizontal	Pass
5	7225.750	57.93	6.12	74.0	16.07	Peak	32.00	100	Horizontal	Pass
5**	7225.750	47.40	6.12	54.0	6.60	AV	32.00	100	Horizontal	Pass
6	12256.000	57.72	5.12	74.0	16.28	Peak	86.00	100	Horizontal	Pass
6**	12256.000	46.95	5.12	54.0	7.05	AV	86.00	100	Horizontal	Pass

Equipment Information										
Equipment Name	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use				
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2024.02.22	2025.02.21	\boxtimes				
EMI Receiver	KEYSIGHT	N9010B	BH-EMC-L099	2024.02.22	2025.02.21	\boxtimes				
Test Antenna- Horn	SCHWARZB ECK	BBHA 9120D	BH-EMC-L111	2024.03.11	2027.03.10	\boxtimes				
Test Antenna- Horn	A-INFO	LB-180400 -KF	BH-EMC-L061	2024.03.11	2027.03.10	\boxtimes				
Anechoic Chamber	YiHeng	9m*6m*6m	BH-EMC-L117	2024.03.23	2027.02.22	\boxtimes				
Description	Manufacturer	Name	Version	1		Use				
Test Software	BALUN	BL410-E	V21.919	1		\boxtimes				

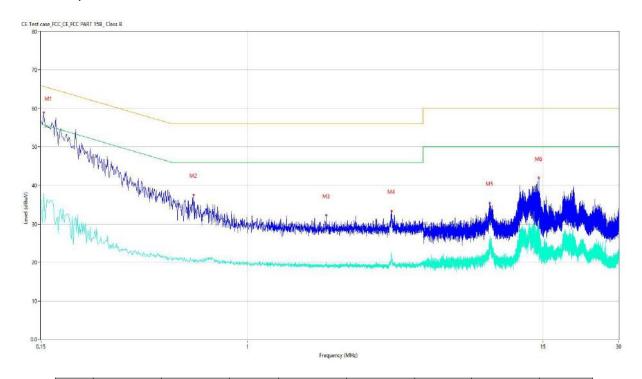
Page No. 21 / 26

A.2 Conducted emission


Note: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Sample No.	SC-SH2490037-S08	Temperature	20.4°C
Humidity	65%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Wu Dejun	Test Date	2024.10.21

Test Mode 1


A.2.1 AC ports - L Phase

No.	Frequency	Results	Factor	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.162	58.38	9.75	65.36	6.98	Peak	L	Pass
1**	0.162	38.47	9.75	55.36	16.89	AV	L	Pass
2	0.388	41.22	9.74	58.11	16.89	Peak	L	Pass
2**	0.388	22.21	9.74	48.11	25.90	AV	L	Pass
3	1.054	32.98	9.70	56.00	23.02	Peak	L	Pass
3**	1.054	20.51	9.70	46.00	25.49	AV	L	Pass
4	3.744	33.56	9.66	56.00	22.44	Peak	L	Pass
4**	3.744	22.24	9.66	46.00	23.76	AV	L	Pass
5	9.132	36.41	9.51	60.00	23.59	Peak	L	Pass
5**	9.132	23.65	9.51	50.00	26.35	AV	L	Pass
6	14.306	41.52	9.28	60.00	18.48	Peak	L	Pass
6**	14.306	28.46	9.28	50.00	21.54	AV	L	Pass

A.2.2 AC ports - N Phase

No.	Frequency	Results	Factor	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.154	58.94	9.70	65.78	6.84	Peak	N	Pass
1**	0.154	37.90	9.70	55.78	17.88	AV	N	Pass
2	0.608	37.53	9.84	56.00	18.47	Peak	N	Pass
2**	0.608	20.80	9.84	46.00	25.20	AV	N	Pass
3	2.060	32.24	9.86	56.00	23.76	Peak	N	Pass
3**	2.060	19.98	9.86	46.00	26.02	AV	N	Pass
4	3.732	33.33	9.84	56.00	22.67	Peak	N	Pass
4**	3.732	21.48	9.84	46.00	24.52	AV	N	Pass
5	9.188	35.49	9.75	60.00	24.51	Peak	N	Pass
5**	9.188	24.87	9.75	50.00	25.13	AV	N	Pass
6	14.436	41.93	9.54	60.00	18.07	Peak	N	Pass
6**	14.436	31.19	9.54	50.00	18.81	AV	N	Pass

Equipment Information										
Equipment Name	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use				
EMI Receiver	KEYSIGHT	N9038A	TJEMC144	2024.04.06	2025.04.05	\boxtimes				
LISN	SCHWARZB ECK	NSLK 8127	BH-EMC-L011	2024.02.25	2025.02.24					
10dB Limiter	SCHWARZB ECK	VTSD 9561-F	BH-EMC-L014	2024.02.19	2025.02.18					
Shielded Room	YiHeng	4.1m*4.0m *3.2m	BH-EMC-L006	2024.02.22	2027.02.21					
Description	Manufacturer	Name	Version	1		Use				
Test Software	BALUN	BL410-E	V21.919	1		\boxtimes				

Page No. 25 / 26

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SH2490677-AE.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SH2490677-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SH2490677-AI.PDF".

Report No.: BL-SH2490677-401

Ti Group

Statement

1. The Testing Center guarantees the scientificity, accuracy and impartiality of the test, and is responsible

for all the information in the report, except the information provided by the customer. The customer is

responsible for the impact of the information provided on the validity of the results.

2. For the report with Accreditation Symbol, the items marked with "☆" are not within the accredited

scope.

3. This report is invalid if it is altered, without the signature of the testing and approval personnel, or

without the test report stamp.

4. The test data and results are only valid for the tested samples provided by the customer.

5. This report shall not be partially reproduced without the written permission of the Testing Center.

6. Any objection shall be raised to the Testing Center within 30 days after receiving the report.

-- END OF REPORT--