

FCC Test Report

Report No: FCS202412401W02

Issued for

Applicant:	METASEE LLC	
Address:	12 GREENWAY PLZ STE 1161A HOUSTON, TX 77046-1203	
Product Name:	Robotic Pool Cleaner	
Brand Name:	Fanttik	
Model Name:	Aero X	
Series Model:	N/A	
FCC ID:	2BMPX-AEROX	

Issued By: Flux Compliance Service Laboratory
Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

TEST RESULT CERTIFICATION

Applicant's Name:	METASEE LLC				
Address	12 GREENWAY PLZ STE 1161A HOUSTON, TX 77046-1203				
Manufacture's Name: Address:	Shenzhen BYD Electronic Technology Co., LTD No. 1 Yan 'an Road, Kwai Yong Community, Kwai Yong Street, Dapeng New District, Shenzhen				
Product Description					
Product Name:	Robotic Pool Cleaner				
Brand Name:	Fanttik				
Model Name:	Aero X				
Series Model:	N/A				
Test Standards:	FCC Rules and Regulations Part 15 Subpart C, Section 247				
Test Procedure:	ANSI C63.10:2020 KDB 558074 D01 15.247 Meas Guidance v05r02				
This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document. Date of Test					
Date (s) of performance of tests:	Dec.14, 2024 ~ Dec.22, 2024				
Date of Issue:	Dec.22, 2024				
Test Result:	Pass				
Tested by	: Scott shen				
	(Scott Shen)				
Reviewed by	: Duke Oran				
	(Duke Qian)				
Approved by	in the way				

(Jack Wang)

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULTS	15
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	22
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
5.1 LIMIT	27
5.2 TEST PROCEDURE	27
5.3 TEST SETUP	27
5.4 EUT OPERATION CONDITIONS	27
5.5 TEST RESULTS	28
6. POWER SPECTRAL DENSITY TEST	29
6.1 LIMIT	29

Table of Contents

6.2 TEST PROCEDURE	29
6.3 TEST SETUP	29
6.4 EUT OPERATION CONDITIONS	29
6.5 TEST RESULTS	29
7. BANDWIDTH TEST	30
7.1 LIMIT	30
7.2 TEST PROCEDURE	30
7.3 TEST SETUP	30
7.4 EUT OPERATION CONDITIONS	30
7.5 TEST RESULTS	30
8. PEAK OUTPUT POWER TEST	31
8.1 LIMIT	31
8.2 TEST PROCEDURE	31
8.3 TEST SETUP	31
8.4 EUT OPERATION CONDITIONS	31
8.5 TEST RESULTS	32
9. ANTENNA REQUIREMENT	33
9.1 STANDARD REQUIREMENT	33
9.2 EUT ANTENNA	33
APPENDIX I:TEST RESULTS	34
1. DUTY CYCLE	34
2. MAXIMUM PEAK CONDUCTED OUTPUT POWER	41
36DB BANDWIDTH	42
4. MAXIMUM POWER SPECTRAL DENSITY LEVEL	49
5. BAND EDGE	56
6. CONDUCTED RF SPURIOUS EMISSION	65

Page 5 of 77

Revision History

Report No.: FCS202412401W02

Rev.	Issue Date	Contents
00	Dec.22, 2024	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247, Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209	Radiated Spurious Emission	PASS		
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.205	Restricted Band Edge Emission	PASS		
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan
Telephone:	+86-769-27280901
Fax:	+86-769-27280901

FCC Test Firm Registration Number: 514908

Designation number: CN0127

A2LA accreditation number: 5545.01

ISED Number: 25801 CAB ID : CN0097

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	±4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz ±5.2 dB	
7	All emissions,radiated 1GHz -18GHz	±4.66 dB
8	All emissions,radiated 18GHz -40GHz	±4.31 dB
9	PSD	±0.70dB
10	Bandwidth	± 2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Robotic Pool Cleaner		
Trade Mark	Fanttik		
Model Name	Aero X		
Series Model	N/A		
Model Difference	N/A		
	Operation Frequency: Modulation Type:	802.11b/g/n 20: 2412~2462 MHz 802.11n(40MHz):2422~2452MHz 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM	
Product Description	Bit Rate of Transmitter:	802.11h(0FDM).BF3K,QF3K,10-QAM,04-QAM 802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n(20MHz): 65/58.5/52/39/26/19.5/13/6.5Mbps 802.11n(40MHz): 135/121.5/108/81/54/40.5/37/13.5Mbps	
	Number of Channel:	802.11b/g/n20: 11CH 802.11n 40: 7CH	
	Antenna Designation: Please refer to the Note 3.		
	Antenna Gain (dBi)	3.37 dBi	
Channel List	Please refer to the Note 2.		
Power Supply	Input: AC 120 -240V, 50/60Hz, 2.0A MAX Output: DC 22 V/2.9A		
Battery	Model: SH21700-5S4P Nominal Voltage: 18.5V Rated Capacity: 16000mAh/296.0 Wh Charging Limited Voltage: 21V		
Hardware version number	V1.0		
Software version number	V1.0		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

^{1.} For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. Operation Frequency of channel 802.11b/g/n(20MHz) Channel List for 802.11n(40MHz) Frequency Frequency Channel Channel

Report No.: FCS202412401W02

3. Table for Filed Antenna

An	t.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1		1	ESP-ANT B	РСВ	N/A	3.37	WIFI ANT

Note: The antenna information refere the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was

Report No.: FCS202412401W02

evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0
Mode 10	TX IEEE 802.11n HT40 CH3	MCS 0
Mode 11	TX IEEE 802.11n HT40 CH6	MCS 0
Mode 12	TX IEEE 802.11n HT40 CH9	MCS 0

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.
- (3) The battery is fully-charged during the radited and RF conducted test.

AC Conducted Emission

· <u>~</u>	Conducted Efficient		
		Test Case	
	AC Conducted Emission	Mode13: Keeping WIFI TX	

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control

the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	Power Class	Software For Testing	
	802.11b	L/M/H	default		
2.4G WiFi	802.11g	L/M/H	default	ESP32	
	802.11n20	L/M/H default		E3F32	
	802.11n40	L/M/H	default		

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

, 10000001100q	Secretaria Education							
Description	Manufacturer	Model	S/N	Rating				
N/A	N/A	N/A	N/A	N/A				

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in Length column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.5 EQUIPMENTS LIST

Radiation Test equipment

Radiation rest equipment							
Kind of Equipment	Kind of Equipment Manufacturer		Company No.	Last calibration	Calibrated until		
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2024.08.28	2025.08.27		
Signal Analyzer	R&S	FSV40-N	FCS-E012	2024.08.28	2025.08.27		
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2024.08.28	2025.08.27		
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2024.08.28	2025.08.27		
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2024.08.28	2025.08.27		
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2024.08.28	2025.08.27		
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2024.08.28	2025.08.27		
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2024.08.28	2025.08.27		
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2024.08.28	2025.08.27		
Temperature & Humidity	HTC-1	victor	FCS-E005	2024.08.28	2025.08.27		
Low frequency cable (9k-1GHz)	Gemma Technology	R03	FCS-E031	2024.08.28	2025.08.27		
Low frequency cable (1-18GHz)	Gemma Technology	R04	FCS-E032	2024.08.28	2025.08.27		
Low frequency cable (18-40GHz)	Gemma Technology	R05	FCS-E033	2024.08.28	2025.08.27		
Testing Software		EZ-EMC(Ver.STSLAB 03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2024.08.28	2025.08.27
LISN	R&S	ENV216	FCS-E007	2024.08.28	2025.08.27
LISN	ETS	3810/2NM	FCS-E009	2024.08.28	2025.08.27
Temperature & Humidity	HTC-1	victor	FCS-E008	2024.08.28	2025.08.27
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)				

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until		
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2024.08.28	2025.08.27		
Spectrum Analyzer	Agilent	E4447A	MY50180039	2024.08.28	2025.08.27		
Spectrum Analyzer	R&S	FSV-40	101499	2024.08.28	2025.08.27		
Power Sensor	Agilent	Agilent UX2021XA FCS-E021 2024.08.28					
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)						

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

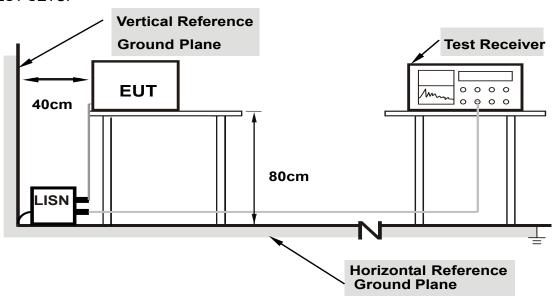
FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.2 TEST PROCEDURE

a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Report No.: FCS202412401W02

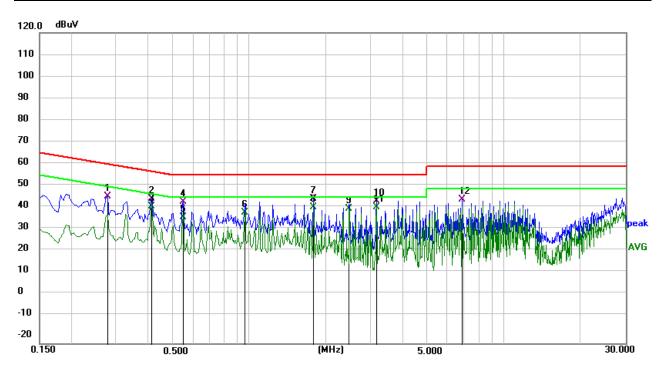
- h Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

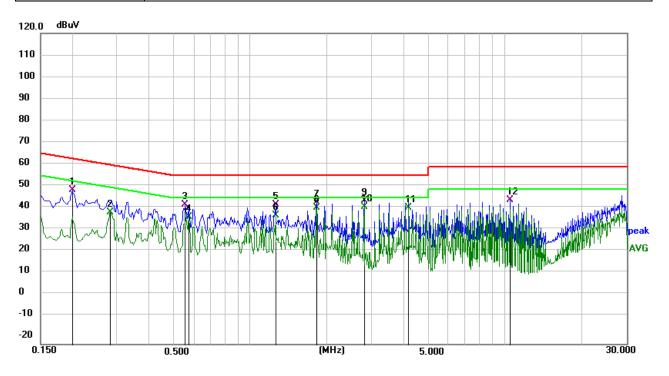
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	25C	Relative Humidity:	56%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 13		


No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)	
1	0.2760	35.79	10.69	46.48	60.94	-14.46	QP
2	0.4110	34.55	10.69	45.24	57.63	-12.39	QP
3	0.4110	31.04	10.69	41.73	47.63	-5.90	AVG
4	0.5505	33.32	10.68	44.00	56.00	-12.00	QP
5	0.5505	26.30	10.68	36.98	46.00	-9.02	AVG
6	0.9600	28.54	10.64	39.18	46.00	-6.82	AVG
7	1.7880	34.67	10.74	45.41	56.00	-10.59	QP
8 *	1.7880	30.90	10.74	41.64	46.00	-4.36	AVG
9	2.4720	29.92	10.78	40.70	46.00	-5.30	AVG
10	3.1605	33.63	10.79	44.42	56.00	-11.58	QP
11	3.1605	30.85	10.79	41.64	46.00	-4.36	AVG
12	6.8730	33.87	11.03	44.90	60.00	-15.10	QP

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

Temperature:	25C	Relative Humidity:	56%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 13		

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)	
1	0.1995	38.73	10.70	49.43	63.63	-14.20	QP
2	0.2805	28.68	10.70	39.38	50.80	-11.42	AVG
3	0.5550	32.07	10.68	42.75	56.00	-13.25	QP
4	0.5730	26.80	10.68	37.48	46.00	-8.52	AVG
5	1.2570	32.06	10.68	42.74	56.00	-13.26	QP
6	1.2570	27.33	10.68	38.01	46.00	-7.99	AVG
7	1.8195	33.19	10.76	43.95	56.00	-12.05	QP
8	1.8195	30.89	10.76	41.65	46.00	-4.35	AVG
9	2.7960	33.69	10.80	44.49	56.00	-11.51	QP
10 *	2.7960	31.19	10.80	41.99	46.00	-4.01	AVG
11	4.1955	30.66	11.00	41.66	46.00	-4.34	AVG
12	10.4730	33.99	11.09	45.08	60.00	-14.92	QP

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	EINITO OT TO TO THE EINITED EINITED TO THE TOUR TENER TO THE TENER TO THE TENER TENER TO THE TENER TENER TO THE TENER TENER TO THE TENER T						
Frequencies (MHz)		Field Strength	Measurement Distance				
		(micorvolts/meter)	(meters)				
	0.009~0.490	2400/F(KHz)	300				
	0.490~1.705	24000/F(KHz)	30				
	1.705~30.0	30	30				
	30~88	100	3				
	88~216	150	3				
216~960 Above 960		200	3				
		500	3				

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
FREQUENCY (MINZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz) FREQUENCY (MH		FREQUENCY (GHz)	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	0.495-0.505 16.69475-16.69525		5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
DP ///P (amission in restricted hand)	9KHz (From 0.15MHz to 30MHz);		
RB / VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted band)	120 KHz / 300 KHz	

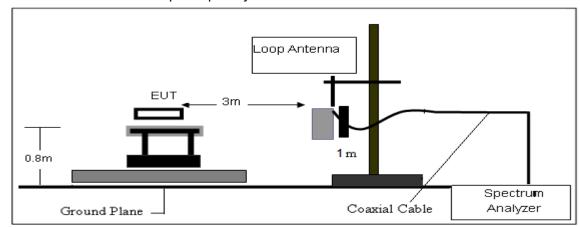
Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted band)	1 MHz / 3 MHz(Peak)		
RD/ VD (ethission intestricted band)	1 MHz/1/T MHz(AVG)		

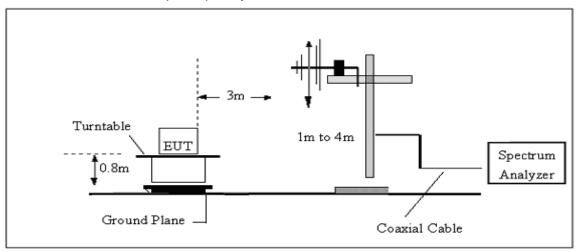
For Restricted band

Spectrum Parameter	Setting	
Detector	Peak/AV	
Start/Stan Fraguenay	Lower Band Edge: 2310 to 2410 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz	
DD /VD	1 MHz / 3 MHz(Peak)	
RB / VB	1 MHz/1/T MHz(AVG)	

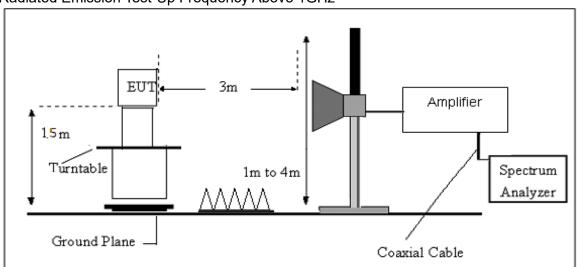
Receiver Parameter	Setting		
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP		
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:
 - Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

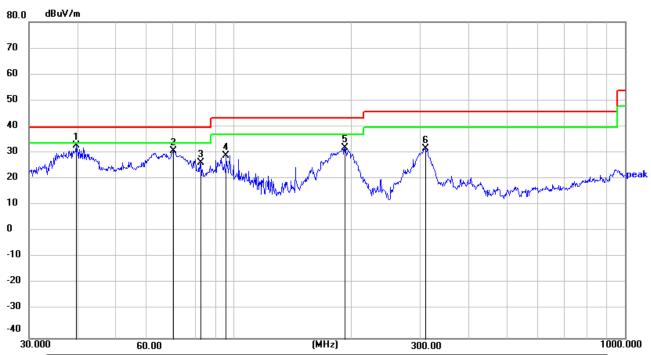
RA = Reading Amplitude

AG = Amplifier Gain

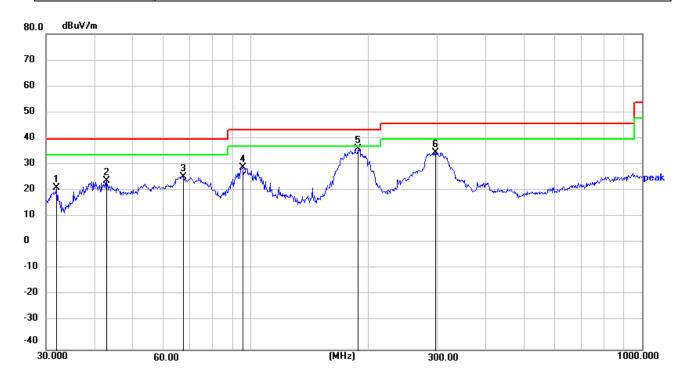
AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1


Factor=AF+CL-AG

4.6 TEST RESULTS


Temperature:	25C	Relative Humidity:	56%		
Test Voltage:	AC 120V/60Hz	Phase:	Н		
Test Mode:	de: Mode 1/2/3/4/5/6/7/8/9/10/11/12 (Mode 1 is the worst case, only show mo				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1 *	39.5756	49.77	-16.50	33.27	40.00	-6.73	peak
2	70.0901	50.12	-18.93	31.19	40.00	-8.81	peak
3	82.6480	47.77	-20.94	26.83	40.00	-13.17	peak
4	95.7622	50.02	-20.60	29.42	43.50	-14.08	peak
5	192.4182	51.90	-19.60	32.30	43.50	-11.20	peak
6	308.9125	48.68	-16.69	31.99	46.00	-14.01	peak

Temperature:	25C	Relative Humidity:	56%
Test Voltage:	AC 120V/60Hz Phase:		Н
Test Mode:	Mode 1/2/3/4/5/6/7/8/9/10/11/1	case, only show mode 1)	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9542	39.11	-17.43	21.68	40.00	-18.32	peak
2	42.8997	40.91	-16.60	24.31	40.00	-15.69	peak
3	67.2021	44.32	-18.45	25.87	40.00	-14.13	peak
4	95.4270	50.09	-20.62	29.47	43.50	-14.03	peak
5 *	188.4122	55.78	-19.28	36.50	43.50	-7.00	peak
6	297.2240	52.06	-17.03	35.03	46.00	-10.97	peak

(1GHz-25GHz) Spurious emission Requirements

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
				Low Cha	annel (802.11b	/2412 MHz)				
3264.89	62.18	44.70	6.70	28.20	-9.80	52.38	74.00	-21.62	PK	Vertical
3264.89	50.11	44.70	6.70	28.20	-9.80	40.31	54.00	-13.69	AV	Vertical
3264.66	62.19	44.70	6.70	28.20	-9.80	52.39	74.00	-21.61	PK	Horizontal
3264.66	51.06	44.70	6.70	28.20	-9.80	41.26	54.00	-12.74	AV	Horizontal
4824.29	58.39	44.20	9.04	31.60	-3.56	54.83	74.00	-19.17	PK	Vertical
4824.29	50.49	44.20	9.04	31.60	-3.56	46.93	54.00	-7.07	AV	Vertical
4824.38	58.88	44.20	9.04	31.60	-3.56	55.32	74.00	-18.68	PK	Horizontal
4824.38	50.16	44.20	9.04	31.60	-3.56	46.60	54.00	-7.40	AV	Horizontal
5359.68	48.27	44.20	9.86	32.00	-2.34	45.93	74.00	-28.07	PK	Vertical
5359.68	39.70	44.20	9.86	32.00	-2.34	37.36	54.00	-16.64	AV	Vertical
5359.72	47.15	44.20	9.86	32.00	-2.34	44.81	74.00	-29.19	PK	Horizontal
5359.72	38.98	44.20	9.86	32.00	-2.34	36.64	54.00	-17.36	AV	Horizontal
7235.81	53.66	43.50	11.40	35.50	3.40	57.06	74.00	-16.94	PK	Vertical
7235.81	43.69	43.50	11.40	35.50	3.40	47.09	54.00	-6.91	AV	Vertical
7235.83	53.71	43.50	11.40	35.50	3.40	57.11	74.00	-16.89	PK	Horizontal
7235.83	44.75	43.50	11.40	35.50	3.40	48.15	54.00	-5.85	AV	Horizontal
				Middle Ch	nannel ((802.11	b/2437 MHz)				
3264.74	62.30	44.70	6.70	28.20	-9.80	52.50	74.00	-21.50	PK	Vertical
3264.74	49.92	44.70	6.70	28.20	-9.80	40.12	54.00	-13.88	AV	Vertical
3264.69	60.77	44.70	6.70	28.20	-9.80	50.97	74.00	-23.03	PK	Horizontal
3264.69	51.32	44.70	6.70	28.20	-9.80	41.52	54.00	-12.48	AV	Horizontal
4874.50	58.15	44.20	9.04	31.60	-3.56	54.59	74.00	-19.41	PK	Vertical
4874.50	49.53	44.20	9.04	31.60	-3.56	45.97	54.00	-8.03	AV	Vertical
4874.45	58.34	44.20	9.04	31.60	-3.56	54.78	74.00	-19.22	PK	Horizontal
4874.45	50.46	44.20	9.04	31.60	-3.56	46.90	54.00	-7.10	AV	Horizontal
5359.73	48.01	44.20	9.86	32.00	-2.34	45.67	74.00	-28.33	PK	Vertical
5359.73	40.41	44.20	9.86	32.00	-2.34	38.07	54.00	-15.93	AV	Vertical
5359.63	47.52	44.20	9.86	32.00	-2.34	45.18	74.00	-28.82	PK	Horizontal
5359.63	38.43	44.20	9.86	32.00	-2.34	36.09	54.00	-17.91	AV	Horizontal
7310.92	54.13	43.50	11.40	35.50	3.40	57.53	74.00	-16.47	PK	Vertical
7310.92	43.73	43.50	11.40	35.50	3.40	47.13	54.00	-6.87	AV	Vertical
7310.79	53.96	43.50	11.40	35.50	3.40	57.36	74.00	-16.64	PK	Horizontal
7310.79	43.86	43.50	11.40	35.50	3.40	47.26	54.00	-6.74	AV	Horizontal

				High Chanr	nel ((802.11b	/2462 MHz)				
3264.86	61.03	44.70	6.70	28.20	-9.80	51.23	74.00	-22.77	PK	Vertical
3264.86	50.23	44.70	6.70	28.20	-9.80	40.43	54.00	-13.57	AV	Vertical
3264.77	60.95	44.70	6.70	28.20	-9.80	51.15	74.00	-22.85	PK	Horizontal
3264.77	50.24	44.70	6.70	28.20	-9.80	40.44	54.00	-13.56	AV	Horizontal
4924.39	59.30	44.20	9.04	31.60	-3.56	55.74	74.00	-18.26	PK	Vertical
4924.39	49.41	44.20	9.04	31.60	-3.56	45.85	54.00	-8.15	AV	Vertical
4924.51	59.37	44.20	9.04	31.60	-3.56	55.81	74.00	-18.19	PK	Horizontal
4924.51	49.48	44.20	9.04	31.60	-3.56	45.92	54.00	-8.08	AV	Horizontal
5359.59	48.69	44.20	9.86	32.00	-2.34	46.35	74.00	-27.65	PK	Vertical
5359.59	39.22	44.20	9.86	32.00	-2.34	36.88	54.00	-17.12	AV	Vertical
5359.84	47.61	44.20	9.86	32.00	-2.34	45.27	74.00	-28.73	PK	Horizontal
5359.84	39.08	44.20	9.86	32.00	-2.34	36.74	54.00	-17.26	AV	Horizontal
7385.88	53.96	43.50	11.40	35.50	3.40	57.36	74.00	-16.64	PK	Vertical
7385.88	44.66	43.50	11.40	35.50	3.40	48.06	54.00	-5.94	AV	Vertical
7385.90	54.91	43.50	11.40	35.50	3.40	58.31	74.00	-15.69	PK	Horizontal
7385.90	44.48	43.50	11.40	35.50	3.40	47.88	54.00	-6.12	AV	Horizontal

Note:

- Factor = Antenna Factor + Cable Loss Pre-amplifier.
 Emission Level = Reading + Factor
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.
- 3) All modes has been test, only show the worst case, the worst case is 802.11b.

Restricted Bands Requirements

802.11 b 2412MHz

Н

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth
140.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Det.	(cm)	(deg)
1	2310	41.47	-5.82	35.65	74	-38.35	peak	100	360
2	2390	38.99	-5.72	33.27	74	-40.73	peak	100	360
3	2400	38.34	-5.61	32.73	74	-41.27	peak	100	360

٧

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Det.	(cm)	(deg)
1	2310	44.11	-5.82	38.29	74	-35.71	peak	100	360
2	2390	40.15	-5.94	34.21	74	-39.79	peak	100	360
3	2400	40.87	-5.65	35.22	74	-38.78	peak	100	360

802.11 b 2462MHz

Н

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth
1,00	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Dett	(cm)	(deg)
1	2483.5	35.33	-5.29	30.04	74	-43.96	peak	100	360
2	2500	38.26	-4.83	33.43	74	-40.57	peak	100	360

٧

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.	Height (cm)	Azimuth (deg)
1	2483.5	35.52	-5.29	30.23	74	-43.77	peak	100	360
2	2500	33.48	-4.37	29.11	74	-44.89	peak	100	360

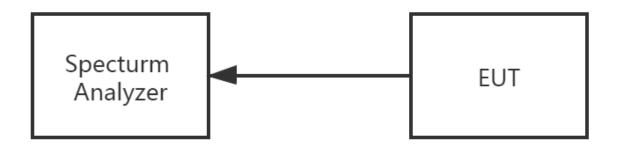
Note:

- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor
- 2) All modes has been test, only show the worst case, the worst case is 802.11b.
- 3) The peak volue is less than AV limit, so AV measure is not need.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stan Fraguency	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

5.3 TEST SETUP

The EUT which is powered by the DC 5V, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

5.5 TEST RESULTS

For the measurement records, refer to the appendix I.

POWER SPECTRAL DENSITY TEST

6.1 LIMIT

	FCC Part 15.247,Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS							

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $100 \text{ kHz} \ge \text{RBW} \ge 3 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

6.5 TEST RESULTS

For the measurement records · refer to the appendix I.

7. BANDWIDTH TEST

7.1 LIMIT


	FCC Part 15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result						
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS						

Report No.: FCS202412401W02

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

7.5 TEST RESULTS

For the measurement records · refer to the appendix I.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS				

Report No.: FCS202412401W02

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

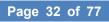
Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW ≥ [3 × RBW].
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

8.5 TEST RESULTS

For the measurement records \cdot refer to the appendix I.

Page 33 of 77

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

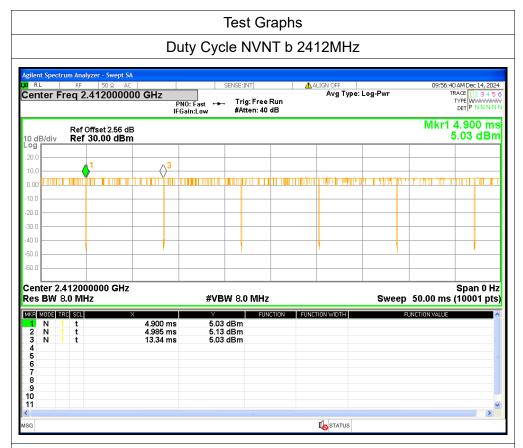
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: FCS202412401W02

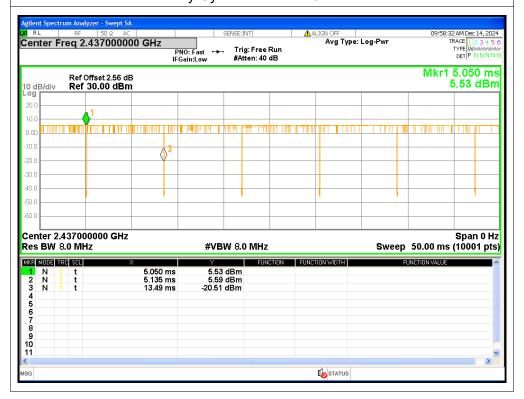
9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

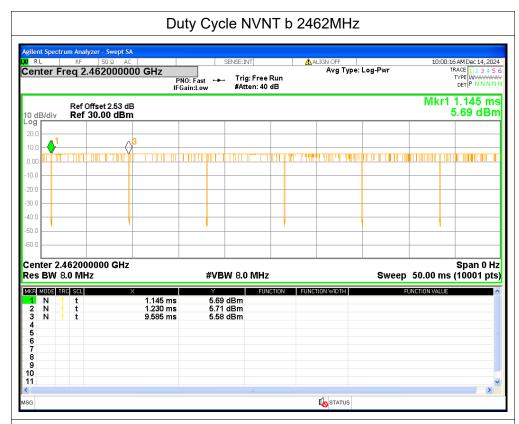
Page 34 of 77


APPENDIX I:TEST RESULTS

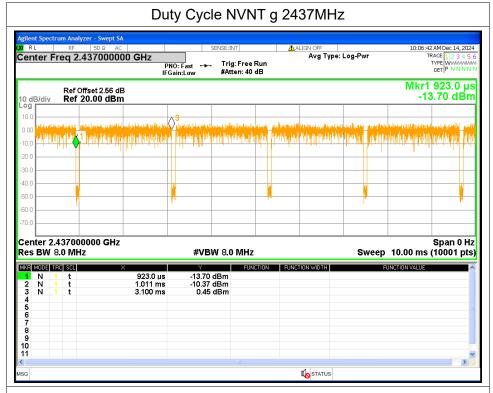
Report No.: FCS202412401W02

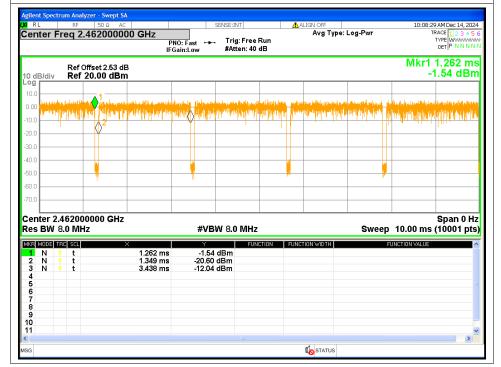

1. Duty Cycle

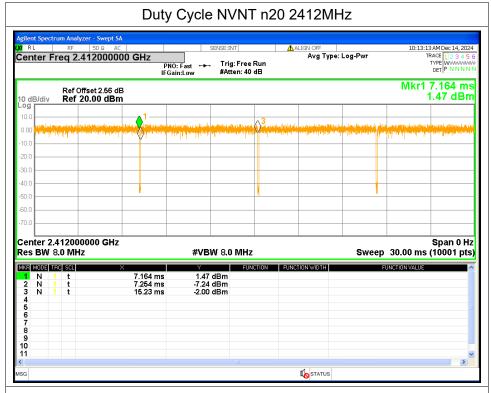
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	98.99	0.04	0.12
NVNT	b	2437	98.99	0.04	0.12
NVNT	b	2462	98.99	0.04	0.12
NVNT	g	2412	96	0.18	0.48
NVNT	g	2437	95.96	0.18	0.48
NVNT	g	2462	96	0.18	0.48
NVNT	n20	2412	98.88	0.05	0.13
NVNT	n20	2437	98.92	0.05	0.13
NVNT	n20	2462	98.91	0.05	0.13
NVNT	n40	2422	98.91	0.05	0.13
NVNT	n40	2437	98.91	0.05	0.13
NVNT	n40	2452	98.91	0.05	0.13

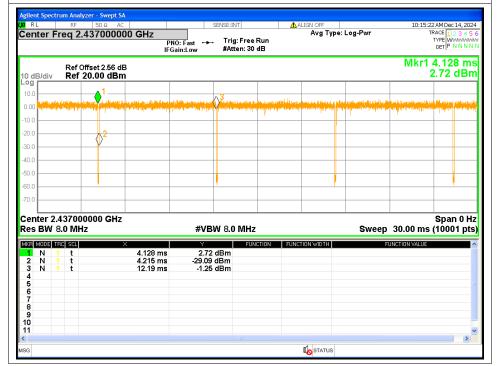


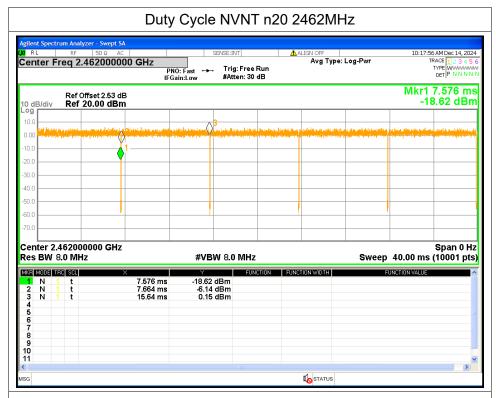
Duty Cycle NVNT b 2437MHz

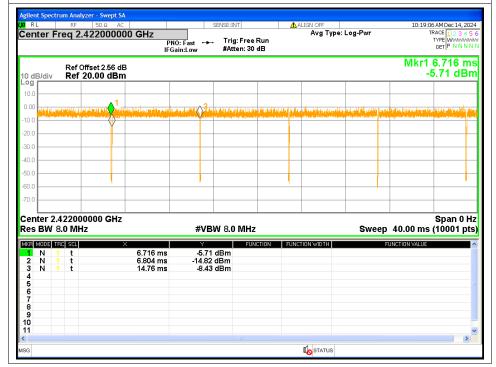


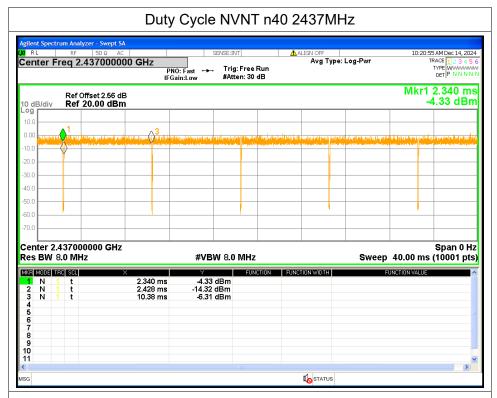

Duty Cycle NVNT g 2412MHz

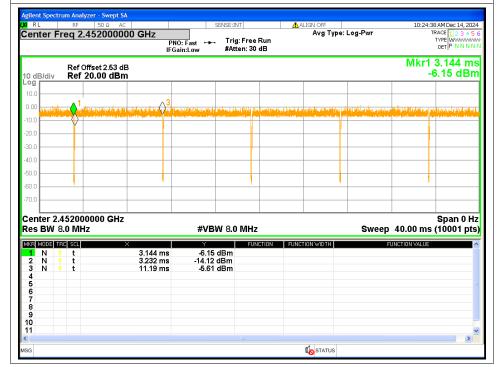







Duty Cycle NVNT n20 2437MHz



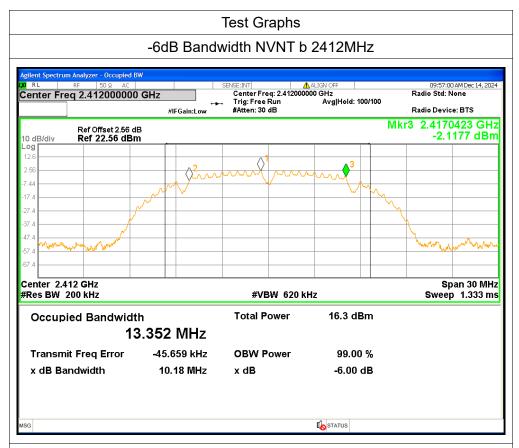

Duty Cycle NVNT n40 2422MHz

Duty Cycle NVNT n40 2452MHz

Report No.: FCS202412401W02

2. Maximum Peak Conducted Output Power

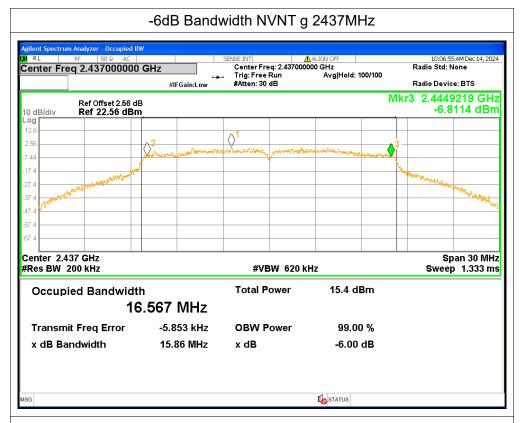
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	14.37	<=30	Pass
NVNT	b	2437	14.86	<=30	Pass
NVNT	b	2462	15.08	<=30	Pass
NVNT	g	2412	16.47	<=30	Pass
NVNT	g	2437	17.02	<=30	Pass
NVNT	g	2462	17.19	<=30	Pass
NVNT	n20	2412	16.46	<=30	Pass
NVNT	n20	2437	16.91	<=30	Pass
NVNT	n20	2462	17.16	<=30	Pass
NVNT	n40	2422	17.37	<=30	Pass
NVNT	n40	2437	17.6	<=30	Pass
NVNT	n40	2452	17.64	<=30	Pass

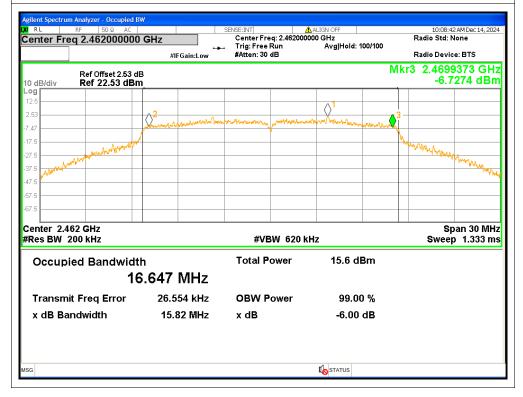

Report No.: FCS202412401W02

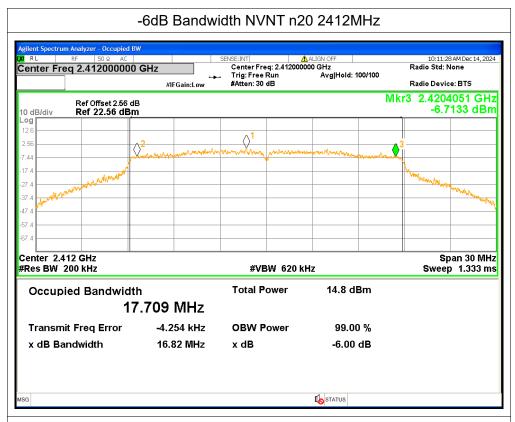

3. -6dB Bandwidth

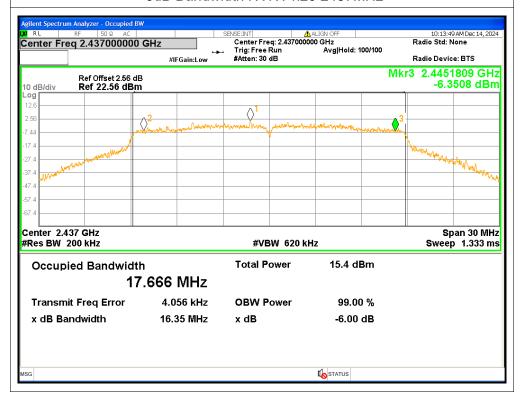
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	10.1759	>=0.5	Pass
NVNT	b	2437	10.1651	>=0.5	Pass
NVNT	b	2462	10.1829	>=0.5	Pass
NVNT	g	2412	16.0922	>=0.5	Pass
NVNT	g	2437	15.8556	>=0.5	Pass
NVNT	g	2462	15.8216	>=0.5	Pass
NVNT	n20	2412	16.8187	>=0.5	Pass
NVNT	n20	2437	16.3537	>=0.5	Pass
NVNT	n20	2462	16.9712	>=0.5	Pass
NVNT	n40	2422	34.7629	>=0.5	Pass
NVNT	n40	2437	35.8373	>=0.5	Pass
NVNT	n40	2452	32.785	>=0.5	Pass

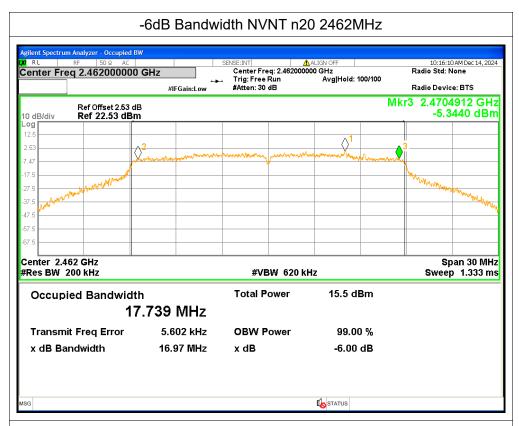

-6dB Bandwidth NVNT b 2437MHz

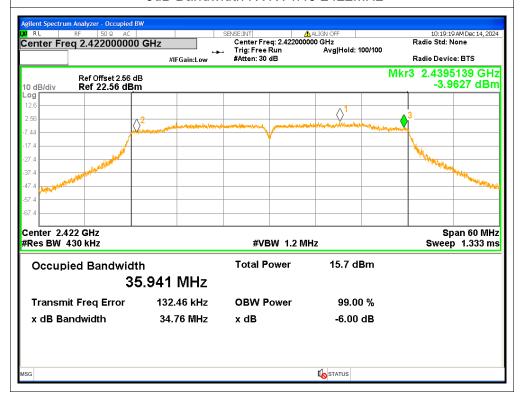


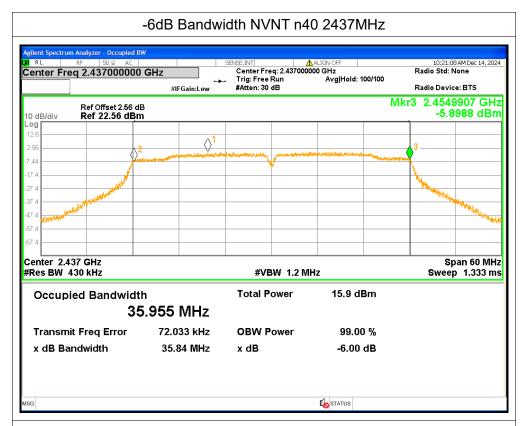

-6dB Bandwidth NVNT g 2412MHz




-6dB Bandwidth NVNT g 2462MHz

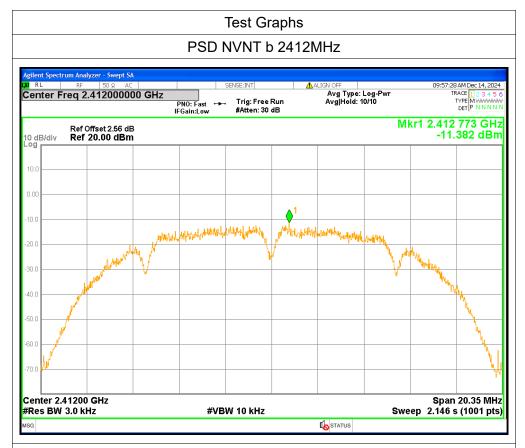



-6dB Bandwidth NVNT n20 2437MHz

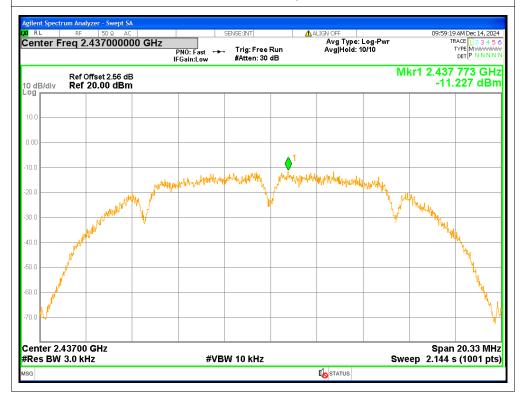



-6dB Bandwidth NVNT n40 2422MHz

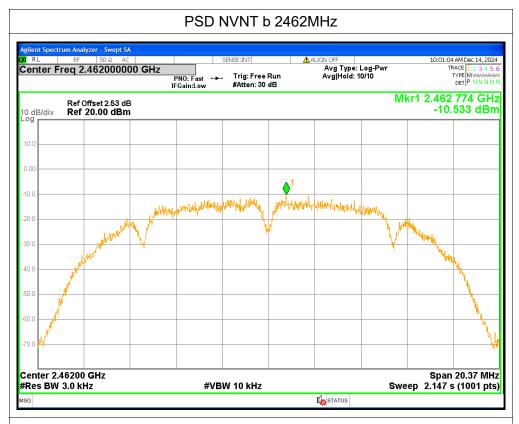
-6dB Bandwidth NVNT n40 2452MHz



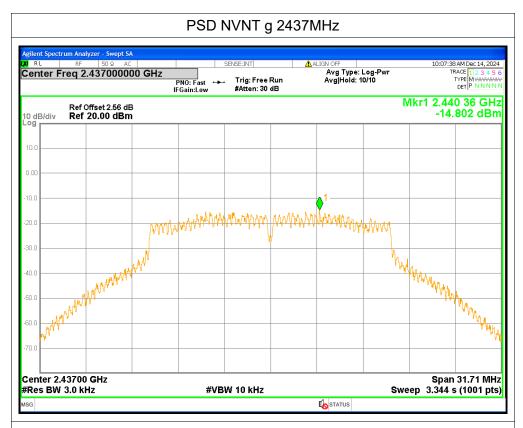
Report No.: FCS202412401W02

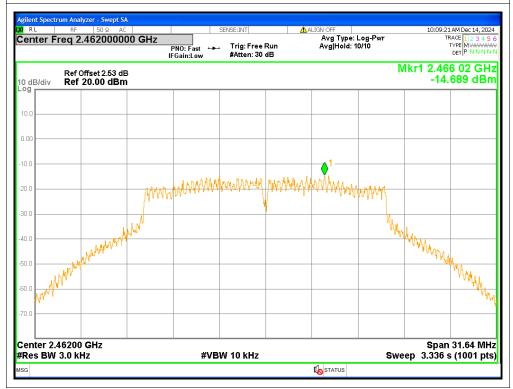

4. Maximum Power Spectral Density Level

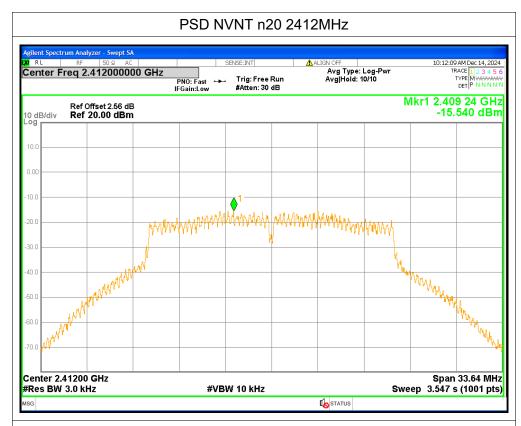
Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-11.38	<=8	Pass
NVNT	b	2437	-11.23	<=8	Pass
NVNT	b	2462	-10.53	<=8	Pass
NVNT	g	2412	-14.77	<=8	Pass
NVNT	g	2437	-14.8	<=8	Pass
NVNT	g	2462	-14.69	<=8	Pass
NVNT	n20	2412	-15.54	<=8	Pass
NVNT	n20	2437	-12.68	<=8	Pass
NVNT	n20	2462	-14.55	<=8	Pass
NVNT	n40	2422	-17.92	<=8	Pass
NVNT	n40	2437	-17.52	<=8	Pass
NVNT	n40	2452	-17.59	<=8	Pass



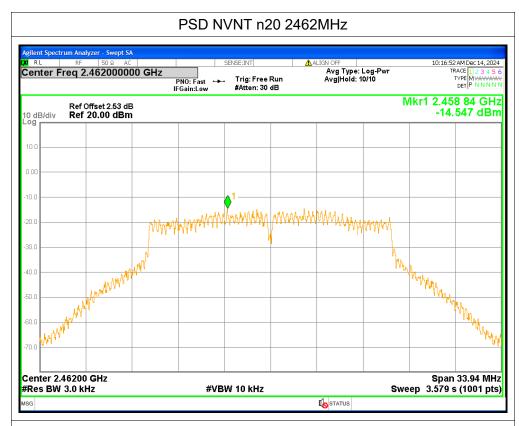
PSD NVNT b 2437MHz

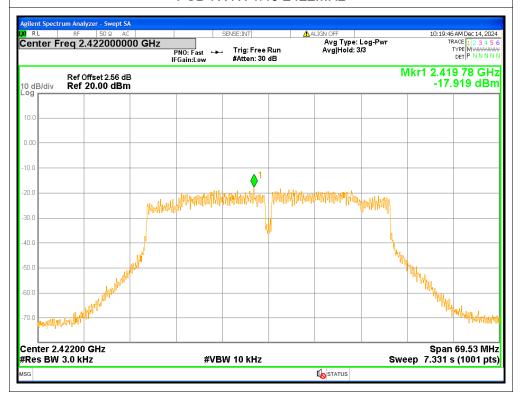


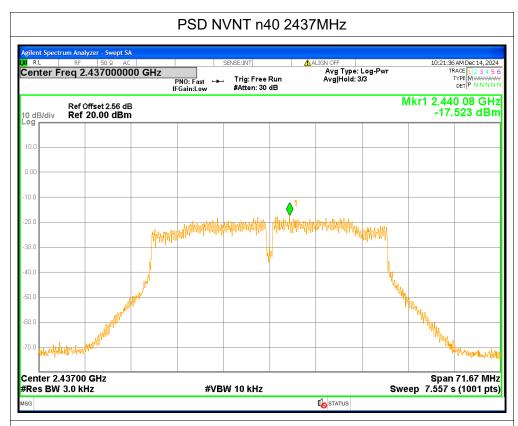

PSD NVNT g 2412MHz

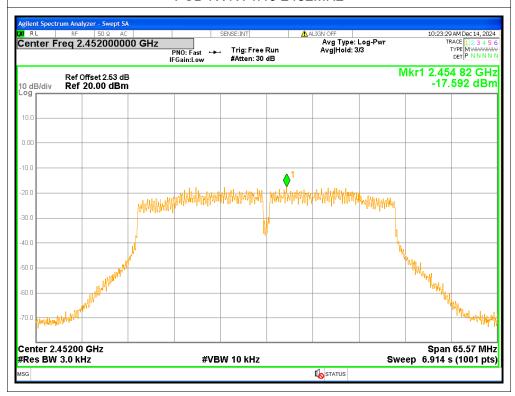


PSD NVNT g 2462MHz

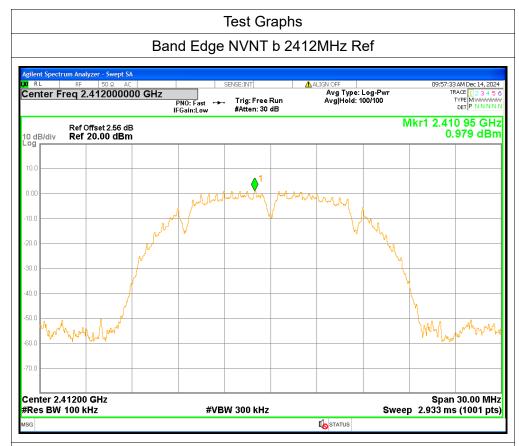


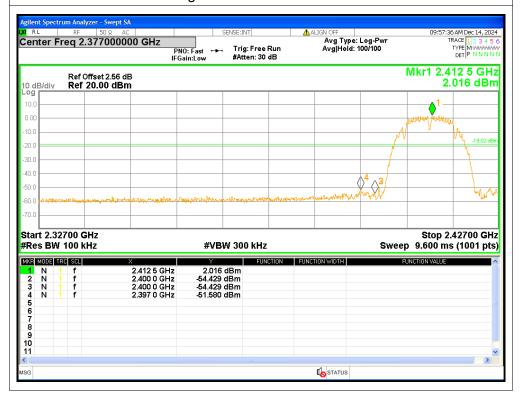

PSD NVNT n20 2437MHz



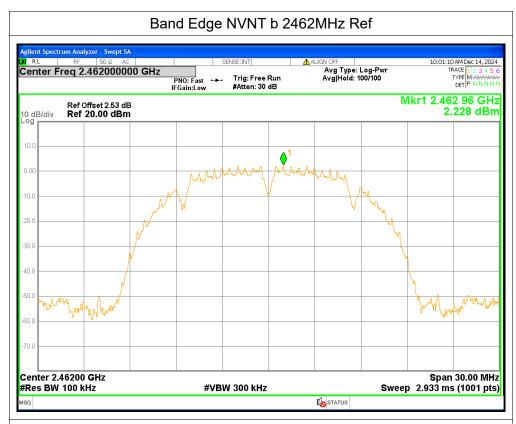

PSD NVNT n40 2422MHz

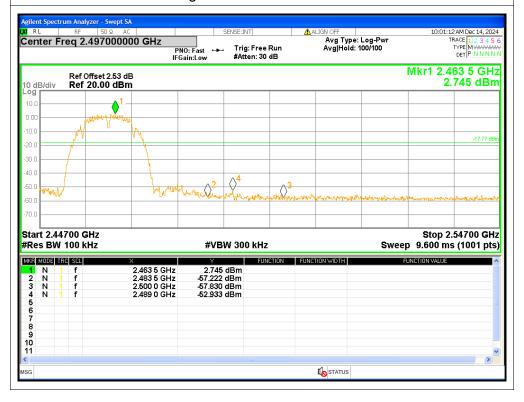
PSD NVNT n40 2452MHz

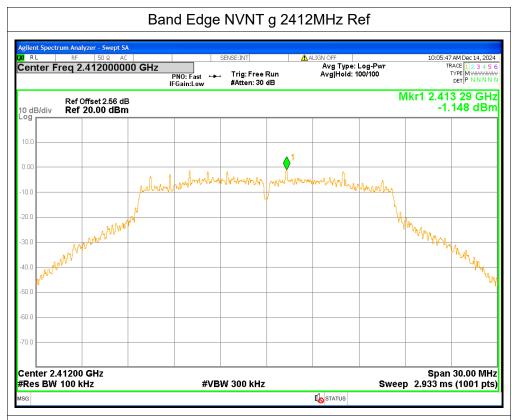

Report No.: FCS202412401W02

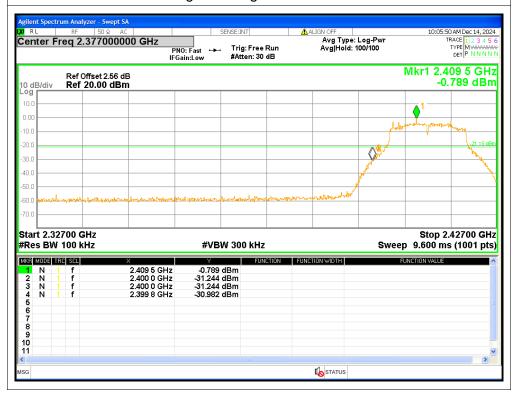

5. Band Edge

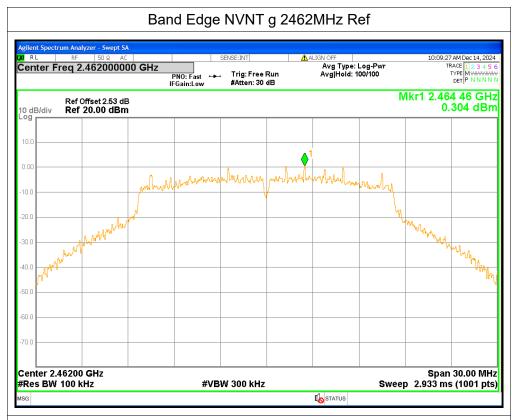
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-52.56	<=-20	Pass
NVNT	b	2462	-55.16	<=-20	Pass
NVNT	g	2412	-29.83	<=-20	Pass
NVNT	g	2462	-53.11	<=-20	Pass
NVNT	n20	2412	-28.4	<=-20	Pass
NVNT	n20	2462	-52.81	<=-20	Pass
NVNT	n40	2422	-33.25	<=-20	Pass
NVNT	n40	2452	-47.72	<=-20	Pass



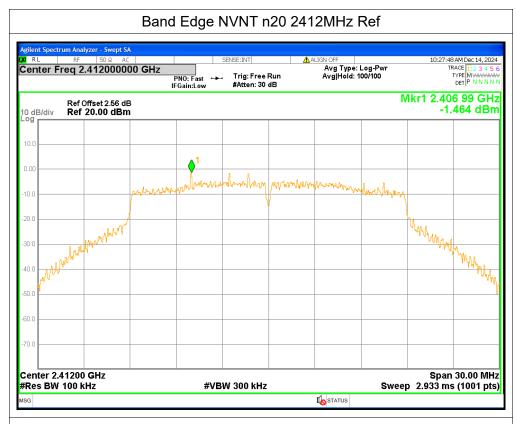

Band Edge NVNT b 2412MHz Emission

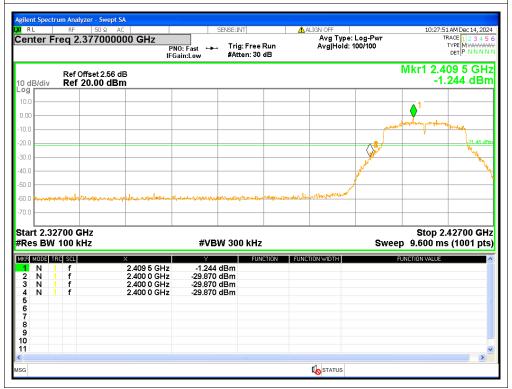


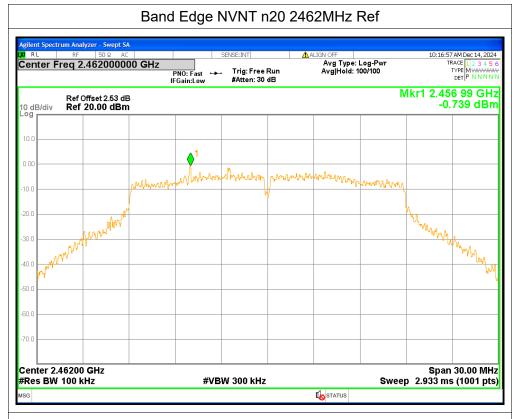

Band Edge NVNT b 2462MHz Emission



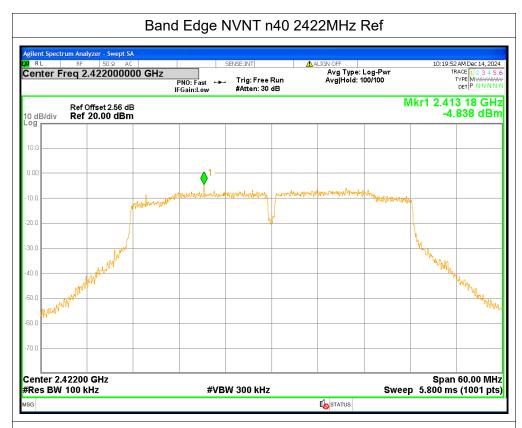
Band Edge NVNT g 2412MHz Emission



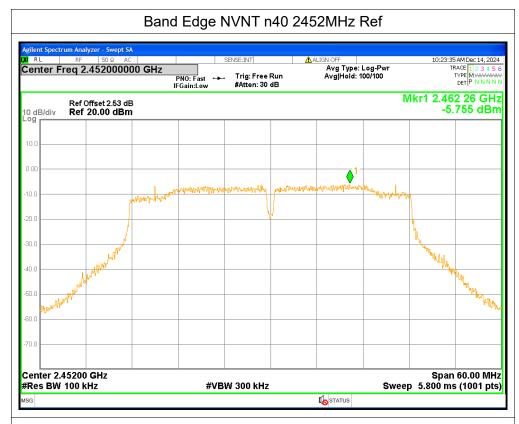

Band Edge NVNT g 2462MHz Emission

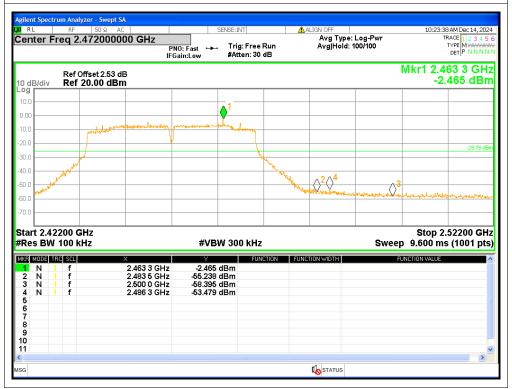



Band Edge NVNT n20 2412MHz Emission

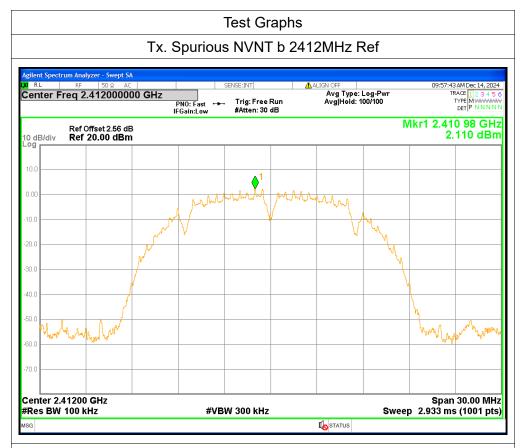


Band Edge NVNT n20 2462MHz Emission



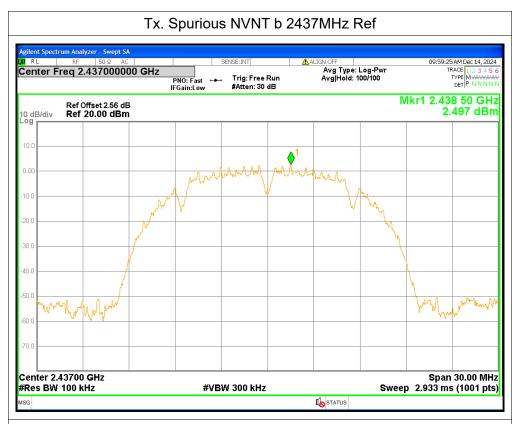

Band Edge NVNT n40 2422MHz Emission

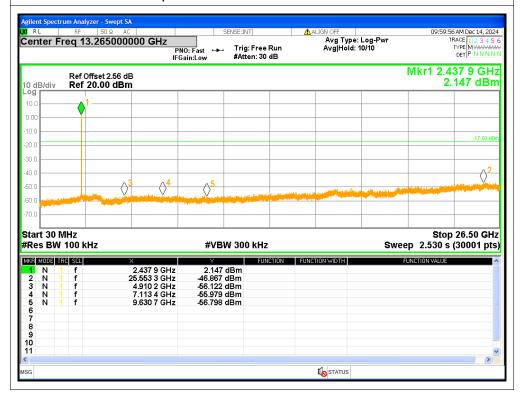
Band Edge NVNT n40 2452MHz Emission

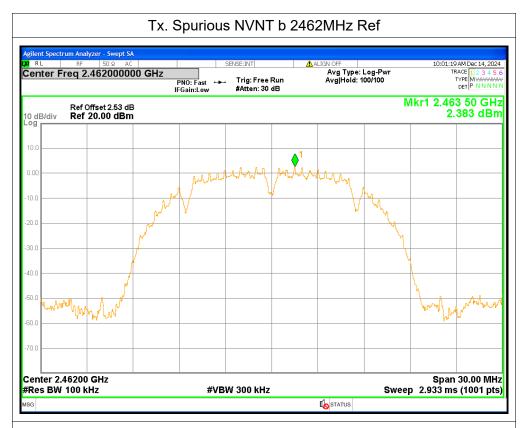

Report No.: FCS202412401W02

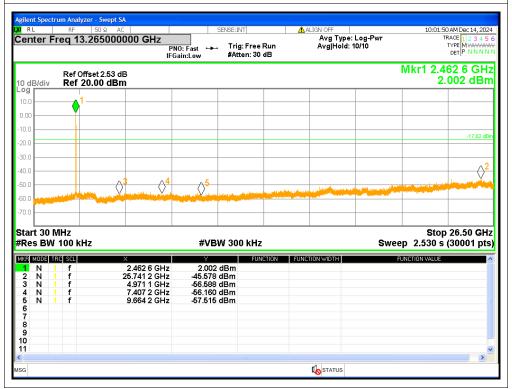
6. Conducted RF Spurious Emission

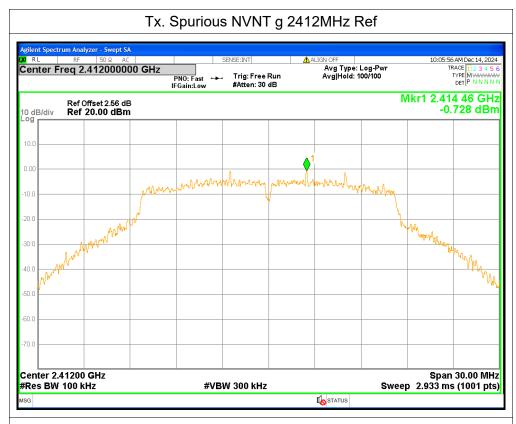
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-48.45	<=-20	Pass
NVNT	b	2437	-49.36	<=-20	Pass
NVNT	b	2462	-47.95	<=-20	Pass
NVNT	g	2412	-45.33	<=-20	Pass
NVNT	g	2437	-45.98	<=-20	Pass
NVNT	g	2462	-45.91	<=-20	Pass
NVNT	n20	2412	-42.95	<=-20	Pass
NVNT	n20	2437	-42.82	<=-20	Pass
NVNT	n20	2462	-45.66	<=-20	Pass
NVNT	n40	2422	-41.42	<=-20	Pass
NVNT	n40	2437	-41.47	<=-20	Pass
NVNT	n40	2452	-39.74	<=-20	Pass

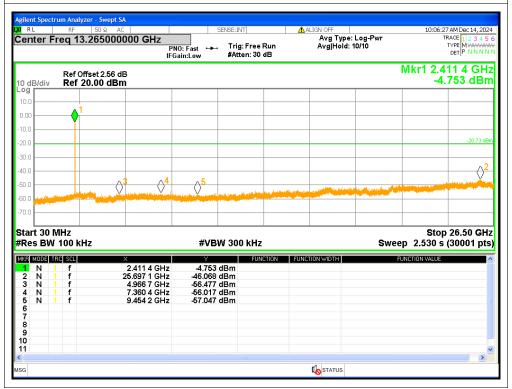


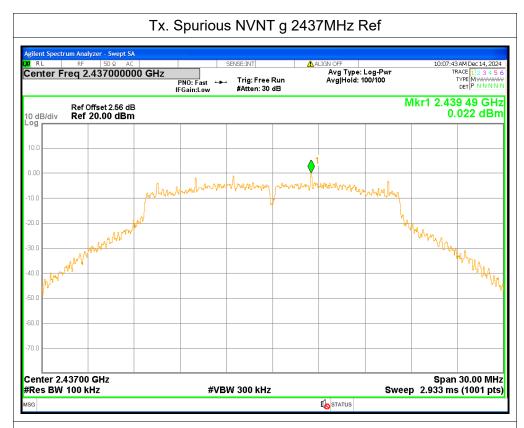

Tx. Spurious NVNT b 2412MHz Emission

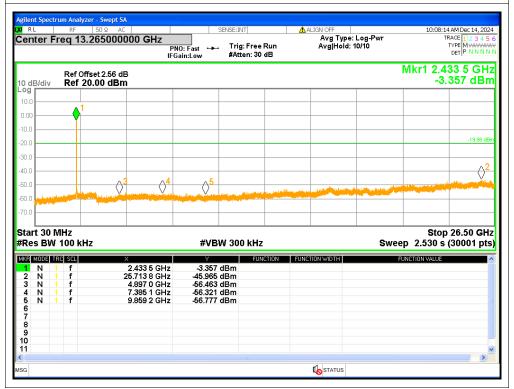


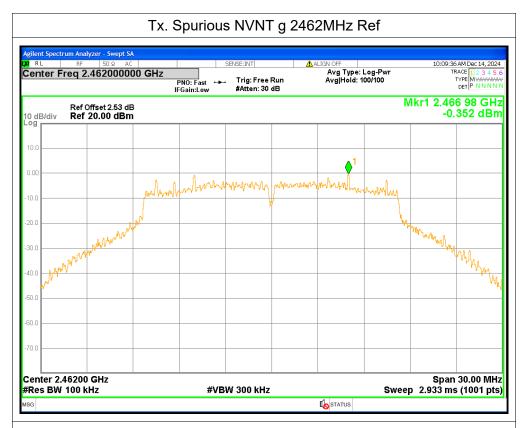

Tx. Spurious NVNT b 2437MHz Emission

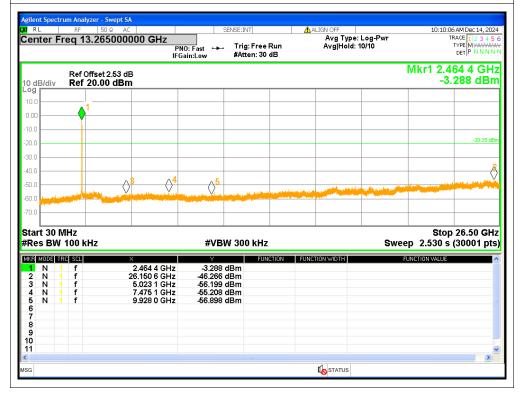


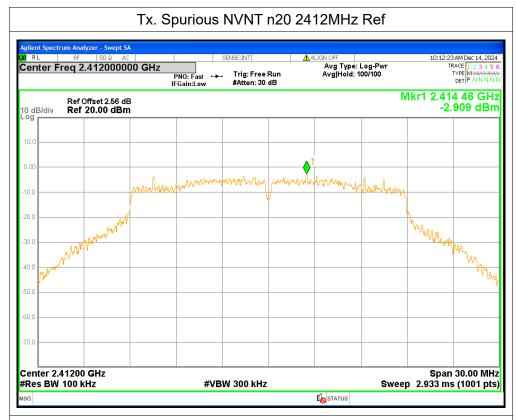

Tx. Spurious NVNT b 2462MHz Emission

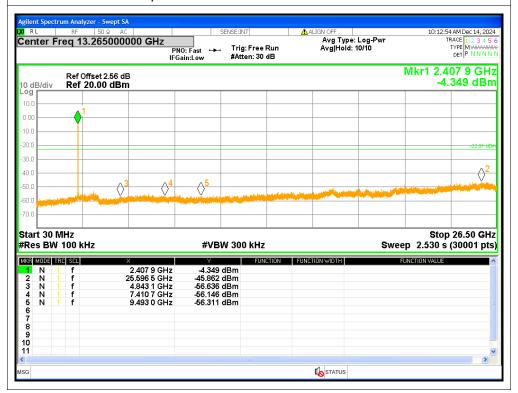


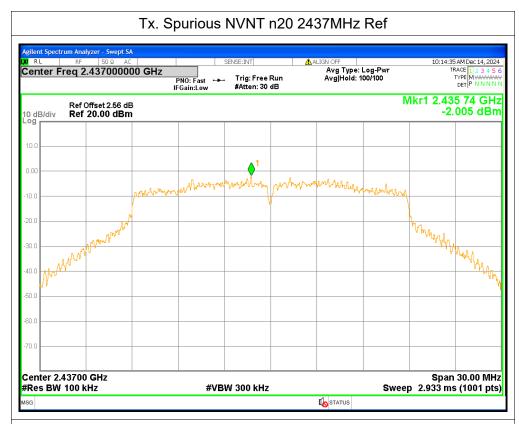

Tx. Spurious NVNT g 2412MHz Emission

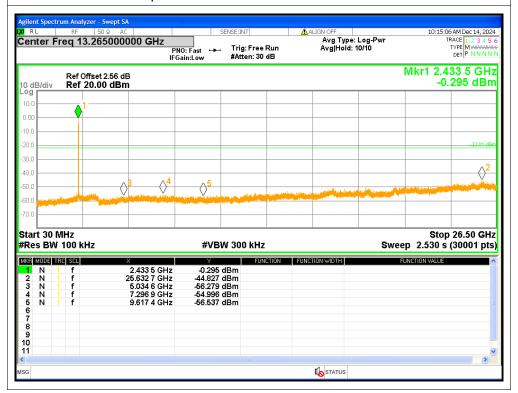


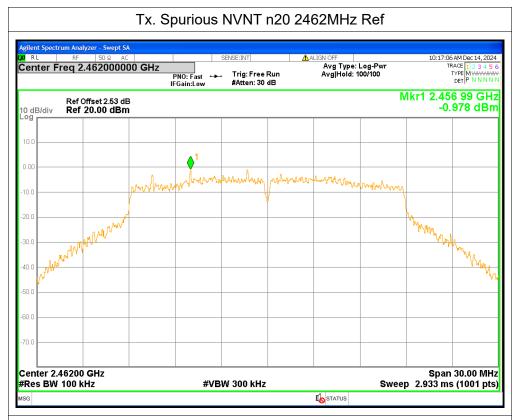

Tx. Spurious NVNT g 2437MHz Emission

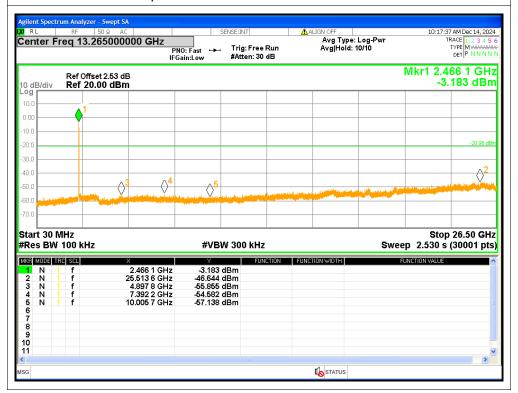


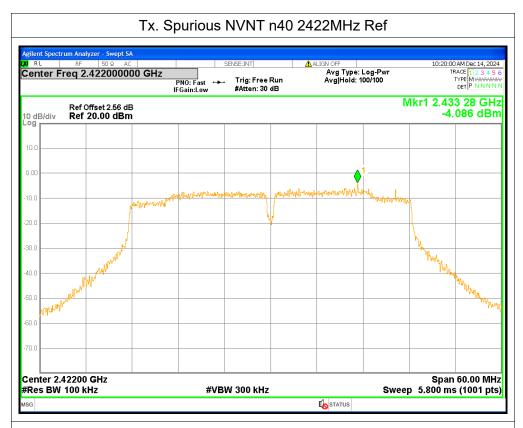

Tx. Spurious NVNT g 2462MHz Emission

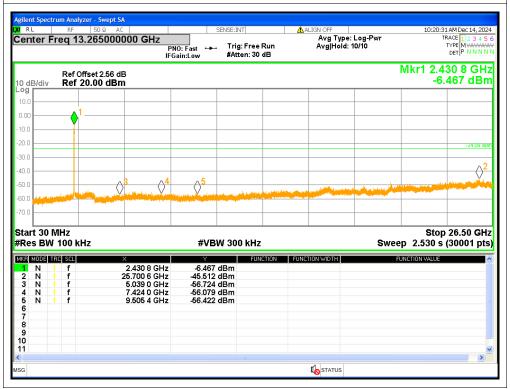


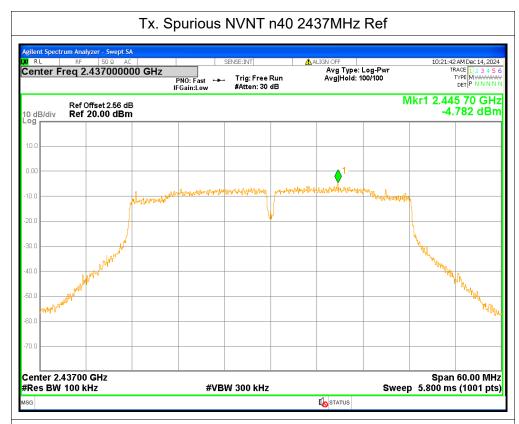

Tx. Spurious NVNT n20 2412MHz Emission

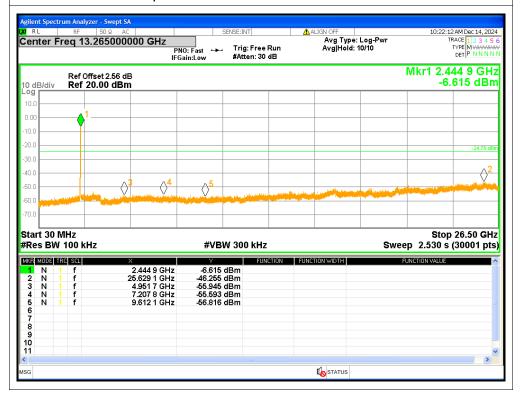


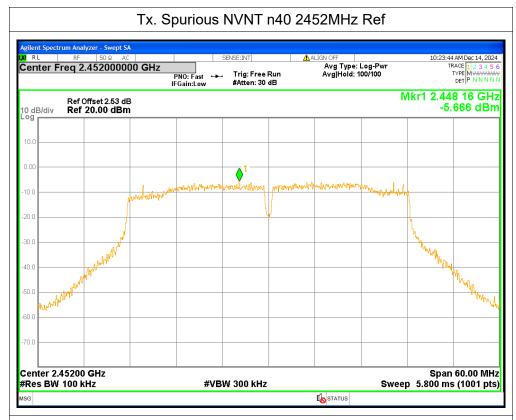

Tx. Spurious NVNT n20 2437MHz Emission

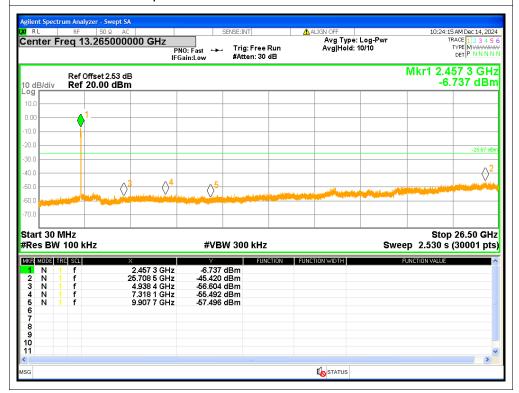



Tx. Spurious NVNT n20 2462MHz Emission




Tx. Spurious NVNT n40 2422MHz Emission




Tx. Spurious NVNT n40 2437MHz Emission

Tx. Spurious NVNT n40 2452MHz Emission

* * * * * END OF THE REPORT * * * * *