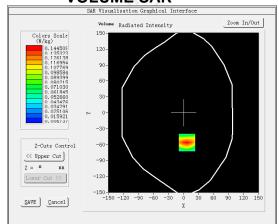


MEASUR	EMENT 3			
Middle Band SAR (Channel 7):	Date: 12/05/2024			
Frequency (MHz)	2437.000000			
Relative permittivity (real part) 39.402207				
Relative permittivity (imaginary part)	13.341321			
Conductivity (S/m)	1.820484			
Variation (%)	-0.200000			
Crest Factor	1.0			
Probe Conversion factor	2.31			
E-Field Probe:	e: SSE2 (SN 25/22 EPGO375)			
Area Scan	dx=12mm dy=12mm, h= 5.00 mm			
ZoomScan	5x5x7,dx=8mm dy=8mm			
	dz=5mm,Complete/ndx=8mm dy=8mm, h=			
	<u>5.00 mm</u>			
Phantom	Validation plane			

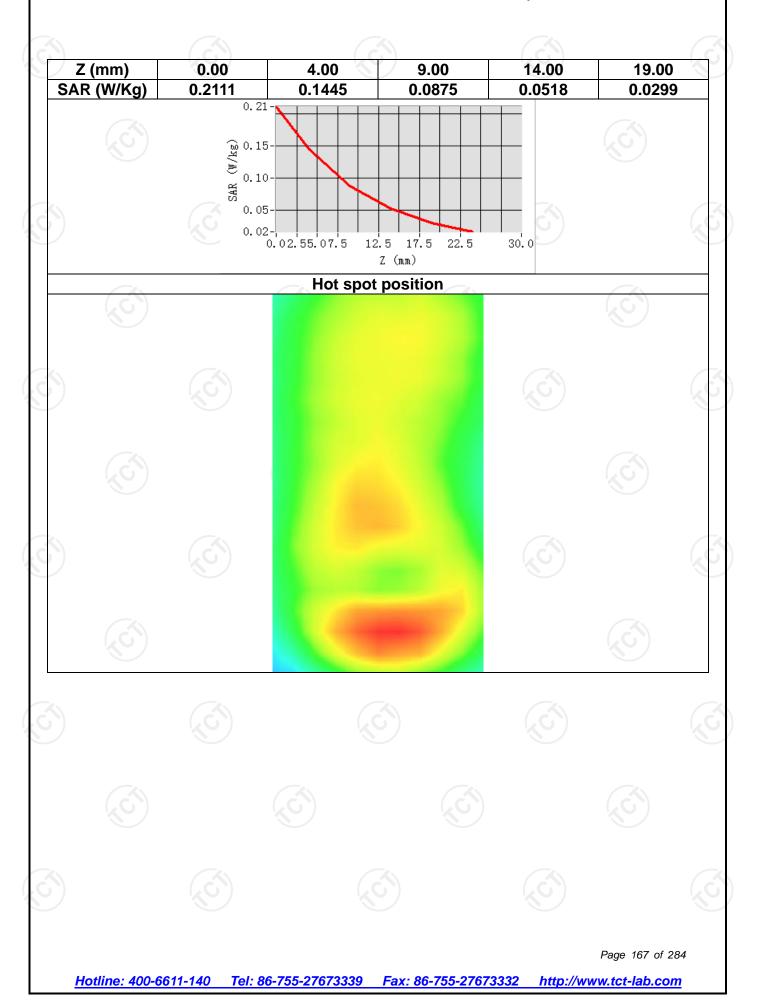
Device Position Body back(10mm)


Band

SURFACE SAR

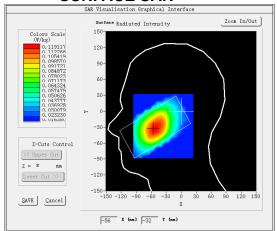
VOLUME SAR

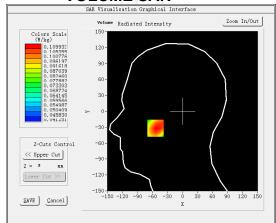
IEEE 802.11b ISM(hotspot)


 Maximum location: X=7.00, Y=-56.00 SAR Peak: 0.21 W/kg

 SAR 10g (W/Kg)
 0.143152

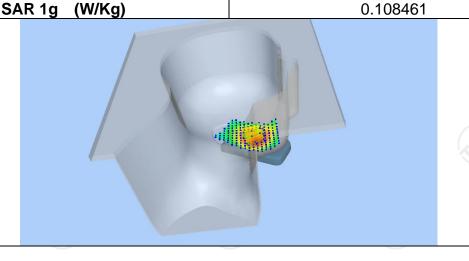
 SAR 1g (W/Kg)
 0.231257




WLAN 5.2G

MEASUREMENT 1 SAR (Channel 36): Date: 12/06/2024 Frequency (MHz) 5180.000000 Relative permittivity (real part) 36.122384 Relative permittivity (imaginary part) 16.223014 Conductivity (S/m) 4.599257 Variation (%) 1.950000 **Crest Factor** 1.0 **Probe Conversion factor** 2.01 **E-Field Probe:** SSE2 (SN 25/22 EPGO375) Area Scan dx=10mm dy=10mm, h= 5.00 mm ZoomScan 7x7x12,dx=4mm dy=4mm dz=2mm,Complete/ndx=4mm dy=4mm, h= 2.00 mm **Phantom** Left head **Device Position** Cheek **Band** IEEE 802.11a ISM

SURFACE SAR



VOLUME SAR

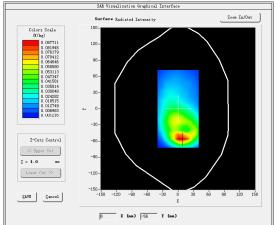
 Maximum location: X=-54.00, Y=-32.00 SAR Peak: 0.12 W/kg

 SAR 10g (W/Kg)
 0.092740

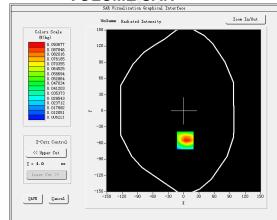
Page 169 of 284

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.1174	0.1099	0.1002	0.0902	0.0801	
	0. 12 0. 11					
	SAR (W/kg)					
	0.08					
	KO		2.5 17.5 22.5 Z(n.n.)	30. 0		
			position			
		9				
		<u> </u>				
		A				

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


MEAC	IDEN	/ ENT	·
NEAS	UREI	/I E IN I	_

SAR (Channel 36):	Date: 12/06/2024


2000
0000
384
014
57
00
PEPGO375)
m, h= 5.00 mm
m dy=4mm
=4mm dy=4mm, h=
<u>ım</u>
plane
10mm)
1a ISM

SURFACE SAR

VOLUME SAR

Maximum location: X=-15.00, Y=40.00 SAR Peak: 0.12 W/kg SAR 10g (W/Kg) 0.030642

SAR 1g (W/Kg) 0.051274

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.1212	0.0515	0.0119	0.0020	0.0012	0
	0. 13 0. 0. 08 0. 0. 0. 04 0. 0. 02 0. 02	3-				
		0.02.55.07.5 12.	Z (mm)	30.0		
		Hot spot	position			
			5			
					Page 171 of 284	4

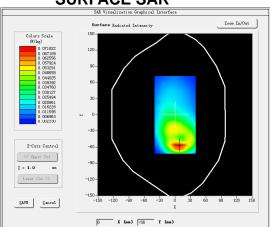
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

,	·-··· •
SAR (Channel 36):	Date: 12/06/2024
Frequency (MHz)	5180.000000
Relative permittivity (real part)	36.122384
Relative permittivity (imaginary part)	16.223014
Conductivity (S/m)	4.599257
Variation (%)	-0.760000
Crest Factor	1.0
Probe Conversion factor	2.01
E-Field Probe:	SSE2 (SN 25/22 EPGO375)
	1 10 1 10 1 500

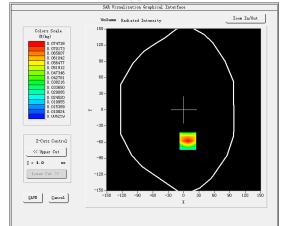
MEASUREMENT 3

 Area Scan
 dx=10mm dy=10mm, h= 5.00 mm

 ZoomScan
 7x7x12,dx=4mm dy=4mm

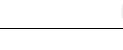

dz=2mm,Complete/ndx=4mm dy=4mm, h= 2.00 mm

PhantomValidation planeDevice PositionBody back(10mm)


IEEE 802.11a ISM(hotspot)

SURFACE SAR

Band



VOLUME SAR

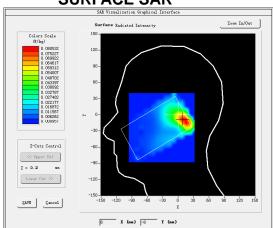
Maximum location: X=8.00, Y=-58.00 SAR Peak: 0.11 W/kg SAR 10g (W/Kg) 0.037217

SAR 1g (W/Kg) 0.064127

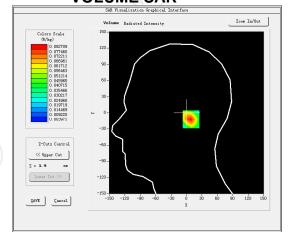
Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.1076	0.0675	0.0374	0.0221	0.0149	
	0.08 M/kg 0.06	-				
	₩ 0.04					
	0.01		.5 17.5 22.5	30. 0		
		Hot spot	Z (mm) position			
					(C)	
(01)					(C)	
					Page 173 of 284	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

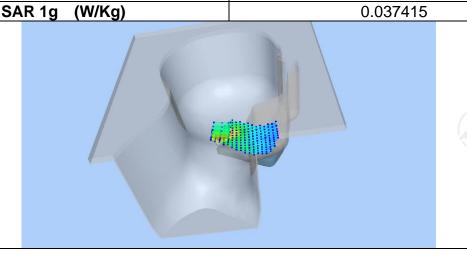
WLAN 5.8G


MEA	١ŚU	REM	IEN	T 1

<u> </u>	2 5000 1 1 2007 20 2 1
Frequency (MHz)	5795.000000
Relative permittivity (real part)	35.079127
Relative permittivity (imaginary part)	16.479305
Conductivity (S/m)	5.503047
Variation (%)	-1.950000
Crest Factor	1.0
Probe Conversion factor	2.06
E-Field Probe:	SSE2 (SN 25/22 EPGO375)
Area Scan	dx=10mm dy=10mm, h= 5.00 mm
ZoomScan	5x5x7,dx=4mm dy=4mm
	dz=2mm,Complete/ndx=4mm dy=4mm, h=
	<u>2.00 mm</u>
Phantom	Left head
Device Position	Chook


Device Position <u>Cheek</u>

IEEE 802.11n ISM **Band**

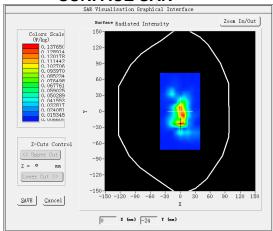

SURFACE SAR

VOLUME SAR

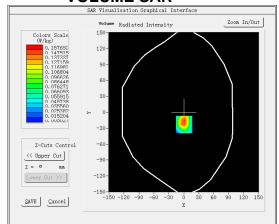
Maximum location: X=18.00, Y=-10.00 SAR Peak: 0.05 W/kg SAR 10g (W/Kg) 0.027541

Hot spot position Hot spot position	Z (mm) SAR (W/Kg)	0.00 0.0515	4.00 0.0388	9.00 0.0280	14.00 0.0215	19.00 0.0180	
0.02.55.07.5 12.5 17.5 22.5 30.0 Hot spot position		SAR (W/kg) 0.03	3-				
)	0. 02 0. 02	2-	Z (mm)	30. 0		
			not spot	position		(C ¹)	
	5						
						(3)	

	ASUREMENT 2
SAR (Channel 159):	Date: 12/06/2024
Frequency (MHz)	5795.000000
Relative permittivity (real part)	35.079127
Relative permittivity (imaginary pa	t) 16.479305
Conductivity (S/m)	5.503047
Variation (%)	-0.910000
Crest Factor	1.0
Probe Conversion factor	2.06
E-Field Probe:	SSE2 (SN 25/22 EPGO375)
Area Scan	<u>dx=10mm dy=10mm, h= 5.00 mm</u>
ZoomScan	5x5x7,dx=4mm dy=4mm
	dz=2mm,Complete/ndx=4mm dy=4mm, h=
	<u>2.00 mm</u>
Phantom	Validation plane
Device Position	Body back(10mm)
Band	<u>IEEE 802.11n ISM</u>
SURFACE SAR SAR Visualisation Graphical Interface	VOLUME SAR SAR Visualisation Graphical Interface
Colors Sale (V/RE) 0. 17601 1 0. 164796 0. 158796 0. 158191 0. 1181936 0. 118777 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 086392 0. 0. 076077 0. 0. 07607	150- 17915 120- 120- 17915 120- 133965 1.17915 1.17915 1.17915 1.17915 1.17915 1.17915 1.11917 1.1191
	.00, Y=-55.00 SAR Peak: 0.34 W/kg
SAR 10g (W/Kg)	0.684521
SAR 1g (W/Kg)	0.168614



Z (mm)	0.00	4.00	9.00	14.00	19.00	7
SAR (W/Kg)	0.3349	0.1792	0.0772	0.0356	0.0218	
	0.33 0.30	-				
	ြည့် 0. 25	$\overline{}$				
(60)	0. 25 0. 20 0. 15 0. 15					
	0.15 % 0.10					
	0.02	_	2.5 17.5 22.5	30.0		
			Z (mm)			
		Hot spot	position			
						6
(60)						
K \						
					Page 177 of 284	

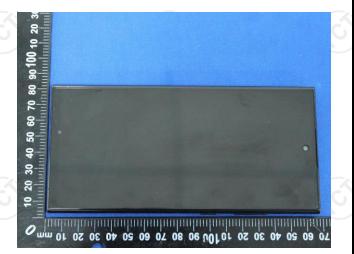


MEASUREMENT 3		
SAR (Channel 159):	Date: 12/06/2024	
Frequency (MHz)	5795.000000	
Relative permittivity (real part)	35.079127	
Relative permittivity (imaginary part)	16.479305	
Conductivity (S/m)	5.503047	
Variation (%)	-1.520000	
Crest Factor	1.0	
Probe Conversion factor	2.06	
E-Field Probe:	SSE2 (SN 25/22 EPGO375)	
Area Scan	dx=10mm dy=10mm, h= 5.00 mm	
ZoomScan	5x5x7,dx=4mm dy=4mm	
	dz=2mm,Complete/ndx=4mm dy=4mm, h=	
	<u>2.00 mm</u>	
Phantom	Validation plane	
Device Position	Body back(10mm)	
Band	IEEE 802.11n ISM(hotspot)	
SURFACE SAR	VOLUME SAR	

SURFACE SAR

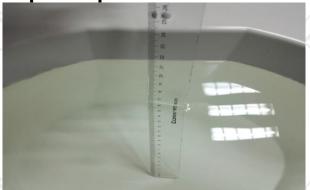
VOLUME SAR

Maximum location: X=1.00, Y=23.00 SAR Peak: 0.34 W/kg SAR 10g (W/Kg) 0.041257 0.145210 SAR 1g (W/Kg)



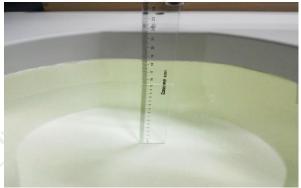
Z (mm)	0.00	4.00	9.00	14.00	19.00	(.E.
SAR (W/Kg)	0.4497	0.1577	0.0368	0.0175	0.0072	
	0.4- 0.4-	$\overline{}$				
(3)	SAR (#/kg)	$\overline{}$				
		$\overline{}$				
	[₹] 0.1-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
	0.00	0.02.55.07.5 12	.5 17.5 22.5	30. 0		66
			Z (mm)			
		Hot spo	t position			
(3)						
				(C)		6
		-				
()			-			(0
(C)						
					Page 179 of 284	1

Appendix A: EUT Photos



Page 180 of 284

Liquid depth



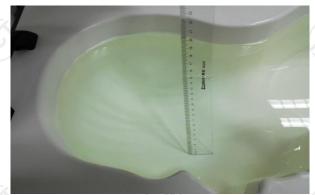
The Body Liquid of 750MHz (16.5cm)


The Body Liquid of 835MHz (15.4cm)

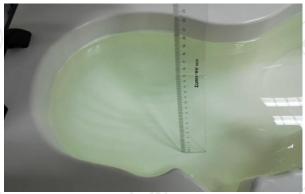
The Body Liquid of 1800MHz (15.2 cm)

The Body Liquid of 1900MHz (16.4 cm)

The Body Liquid of 2450MHz (15.3cm)



The Body Liquid of 2600MHz (16.5cm)



The Body Liquid of 5000-6000MHz (16.5cm)

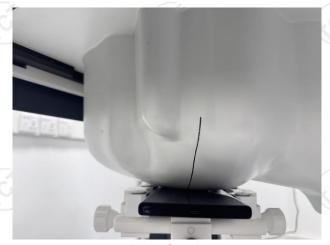
The Head Liquid of 750MHz (15.3cm)

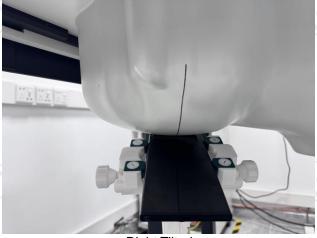
The Head Liquid of 835MHz (15.3cm)

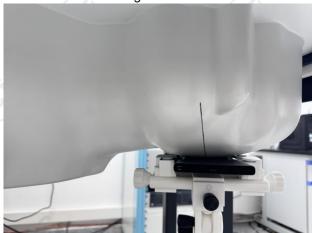
The Head Liquid of 1800MHz (15.2cm)

The Head Liquid of 1900MHz (15.5cm)

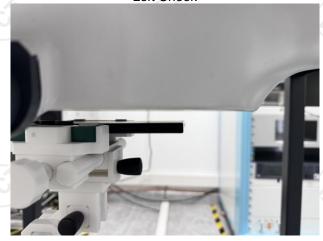
The Head Liquid of 2450MHz (15.6cm)

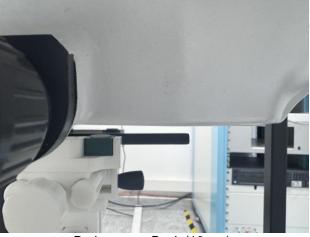

The Head Liquid of 2600MHz (15.1cm)


The Body Liquid of 5000-6000MHz MHz (15.8cm)


Appendix B: Test Setup Photos

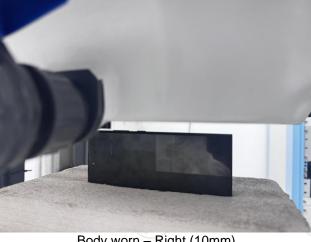
Right Cheek

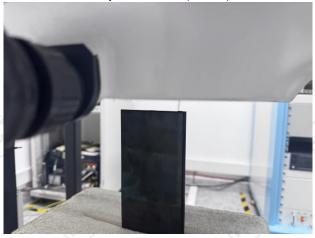

Right Tilted


Left Cheek

Left Tilted

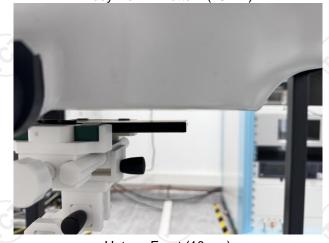
Body worn – Front (10mm)

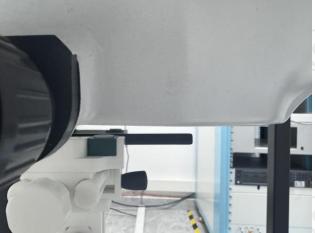


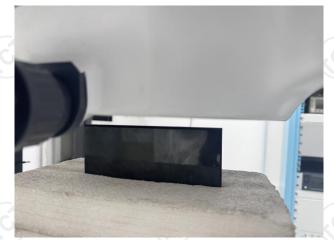

Body worn – Back (10mm)

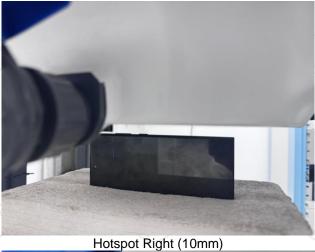
TCT通测检测 testing centre technology

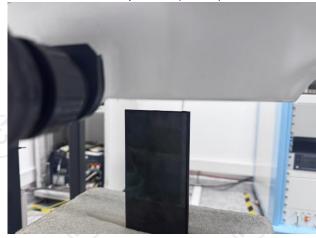
Body worn - Left(10mm)




Body worn – Bottom (10mm)

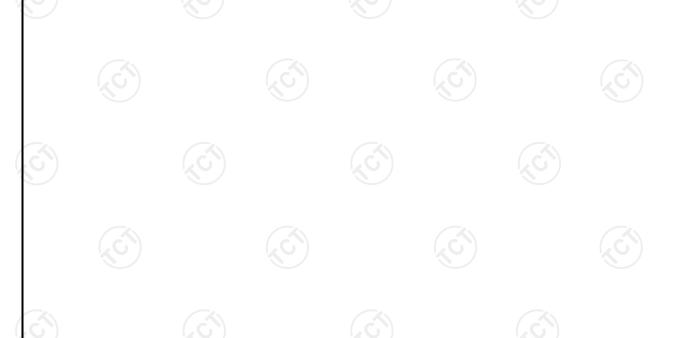

Body worn – Top(10mm)


Hotspo Front (10mm)



Hotspo Back (10mm)

Hotspot Left (10mm)



Hotspot Bottom (10mm)

Hotspot Top (10mm)

Appendix C: Probe Calibration Certificate

COMOSAR E-FIELD Probe

COMOSAR E-Field Probe Calibration Report

Ref: ACR.180.7.22.BES.B

SHENZHEN TONGCE TESTING LAB

2101 & 2201, ZHENCHANG FACTORY RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAO'AN DISTRICT SHENZHEN, GUANGDONG, 518103, PEOPLE'S REPUBLIC OF CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 25/22 EPGO375

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 06/29/2024

Accreditations #2-6789 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	6/30/2024	1
Checked & approved by:	Jérôme Luc	Technical Manager	6/30/2024	Js
Authorized by:	Yann Toutain	Laboratory Director	7/05/2024	Gann TOUTAAN

	Customer Name		
Distribution :	Shenzhen Tongce		
	Testing Lab		

Issue	Name	Date	Modifications
A	Jérôme Le Gall	6/30/2024	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Prod	luct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty6	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment	

Page: 3/11

Template_ACR_DDD.N.YY_MVGB_ISSUE_COMOSAR_Probe_vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 25/22 EPGO375	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.197 MΩ	
	Dipole 2: R2=0.230 MΩ	
	Dipole 3: R3=0.208 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 189 of 284

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

mvG)

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 180.7.22 BES B

Report No.: TCT241125E007

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left[d_{\mathrm{be}} + d_{\mathrm{step}}\right]^2}{2 d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{inf}}(\delta \mathcal{P})}\right)}{\delta / 2} \quad \mathrm{for} \, \left[d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \, \mathrm{mm}$$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{sted} is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SARbe in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref ACR 180 7 22 BES B

Report No.: TCT241125E007

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 SENSITIVITY IN AIR

Normx dipole 1 (μV/(V/m) ²)		
0.64	0.53	0.44

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	108	109

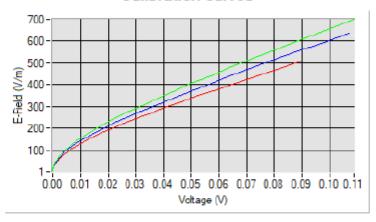
Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/11

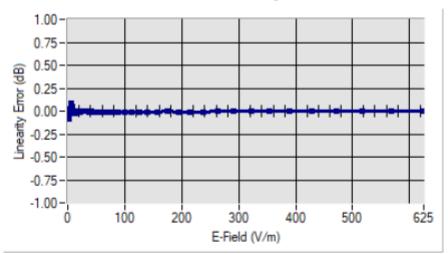
Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B



Dipole 1 Dipole 2 Dipole 3

5.2 LINEARITY

Linearity

Linearity:+/-1.94% (+/-0.09dB)

Page: 7/11

Template_ACR_DDD.N.YY.MVGB_ISSUE_COMOSAR_Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	ConvF
	(MHz +/-	
	100MHz)	
HL750	750	1.71
BL750	750	1.78
HL900	900	1.91
BL900	900	1.96
HL1800	1800	2.08
BL1800	1800	2.16
HL2000	2000	2.03
BL2000	2000	2.10
HL2450	2450	2.31
BL2450	2450	2.37
HL2600	2600	2.16
BL2600	2600	2.23
HL3500	3500	2.21
BL3500	3500	2.28
HL3700	3700	3.45
BL3700	3700	3.15
HL4600	4600	3.30
BL4600	4600	3.70
HL5200	5200	2.01
BL5200	5200	2.08
HL5600	5600	2.07
BL5600	5600	2.12
HL5800	5800	2.06
BL5800	5800	2.13

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11

Template_ACR_DDD.N.YY.MVGB_ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

5.4 ISOTROPY

HL1800 MHz

Page: 9/11

Template_ACR_DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

6 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027				
Network Analyzer	Agilent 8753ES	MY40003210	10/2023	10/2026				
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027				
Multimeter	Keithley 2000	1160271	02/2023	02/2026				
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	NI-USB 5680	170100013	06/2024	06/2027				
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2023	11/2026				
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.				
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.				
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.				
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.				
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.				
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.				
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.				
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.				
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.				
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.				

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

Liquid transition	MVG			Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

Page: 11/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Dielectric Probe Calibration

Report No.: TCT241125E007

Dielectric Probe Calibration Report

Ref: ACR.138.4.33.SATU.A

SHENZHEN TONGCE TESTING LAB
2101&2201, ZHENCHANG FACTORY, RENSHAN
INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN
DISTRICT, SHENZHEN, GUANGDONG, 518103,
PEOPLES REPUBLIC OF CHINA

FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 19/15 OCPG 71

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/05/2024

Summary:

This document presents the method and results from an accredited Dielectric Probe calibration performed in MVG USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions.

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	06/05/2024	JS
Checked by:	Jérôme LUC	Product Manager	06/05/2024	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	06/05/2024	them thethough

	Customer Name
/ DISTITUTION :	SHENZHEN TONGCE TESTING LAB

Issue	Date	Modifications
A	06/05/2024	Initial release

Page: 2/7

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	ice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Liquid Permittivity Measurements	5
5	Mea	surement Uncertainty5	
	5.1	Dielectric Permittivity Measurement	5
6	Cali	bration Measurement Results	
	6.1	Liquid Permittivity Measurement	6
7	List	of Equipment 7	

Page: 3/7

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

1 INTRODUCTION

This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	LIMESAR DIELECTRIC PROBE			
Manufacturer	MVG			
Model	SCLMP			
Serial Number	SN 19/15 OCPG 71			
Product Condition (new / used)	Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only.

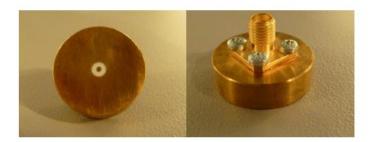


Figure 1 - MVG LIMESAR Dielectric Probe

Page: 4/7

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 200 of 284

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 LIQUID PERMITTIVITY MEASUREMENTS

The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>DIELECTRIC PERMITTIVITY MEASUREMENT</u>

The following uncertainties apply to the Dielectric Permittivity measurement:

Uncertainty analysis of Permittivity Measurement						
ERROR SOURCES	Uncertainty value (+/-%)	Probability Distribution	Divisor	ci	Standard Uncertainty (+/-%)	
Repeatability (n repeats, mid-band)	4.00%	N	1	1	4.000%	
Deviation from reference liquid	5.00%	R	√3	1	2.887%	
Network analyser-drift, linearity	2.00%	R	√3	1	1.155%	
Test-port cable variations	0.000%					
Combined standard uncertainty	5.066%					
Expanded uncertainty (confidence	10.0%					

Uncertainty analysis of Conductivity					
ERROR SOURCES	Uncertainty value (+/-%)	Probability Distribution	Divisor	ci	Standard Uncertainty (+/-%)
Repeatability (n repeats, mid-band)	3.50%	N	1	1	3.500%
Deviation from reference liquid	3.00%	R	√3	1	1.732%
Network analyser-drift, linearity	2.00%	R	√3	1	1.155%
Test-port cable variations	0.00%	U	√2	1	0.000%
Combined standard uncertainty					4.072%
Expanded uncertainty (confidence 1	8.1%				

Page: 5/7

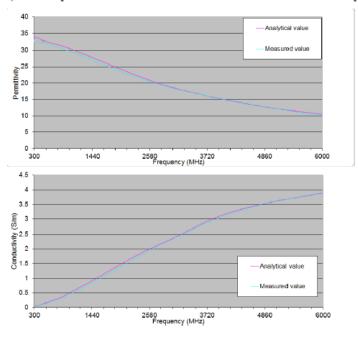
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 201 of 284

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A


6 CALIBRATION MEASUREMENT RESULTS

Measurement Condition

Software	LIMESAR
Liquid Temperature	21°C
Lab Temperature	21°C
Lab Humidity	44%

6.1 LIQUID PERMITTIVITY MEASUREMENT

A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity $\epsilon'+j\epsilon''$) are compared with the well-known theoretical values for this liquid.

Page: 6/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR 138.4.33..SATU.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Manufacturer / Identification No.		Current Calibration Date	Next Calibration Date	
LIMESAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2024	02/2027
Methanol CAS 67-56-1	Alpha Aesar	Lot D13W011	Validated. No cal required.	Validated. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	09/2024	09/2025

Page: 7/7

Appendix D: Dipole Calibration Report

SID 750

SAR Reference Dipole Calibration Report

Ref: ACR.156.3.15.SATU.A

SHENZHEN TONGCE TESTING LAB

2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA

COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ

SERIAL NO.: SN 16/15 DIP 0G750-368

Calibrated at MVG US

2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/05/2024

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	06/05/2024	Jes
Checked by :	Jérôme LUC	Product Manager	06/05/2024	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	06/05/2024	from Puthowski

Distribution : Customer Name

SHENZHEN TONGCE
TESTING LAB

Issue	Date	Modifications
A	06/05/2024	Initial release

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results 6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
0	Liet	of Equipment 11	

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID750	
Serial Number	SN 16/15 DIP 0G750-368	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

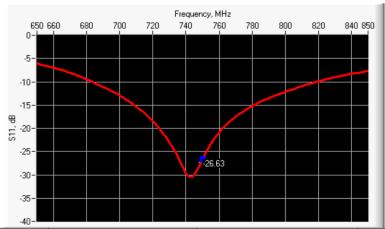
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

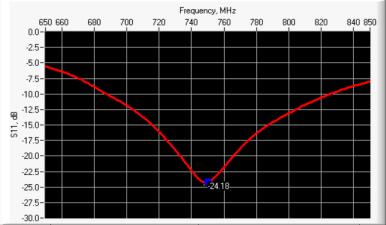
Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-26.63	-20	$54.1 \Omega + 1.4 j\Omega$

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-24.18	-20	$52.4 \Omega + 5.8 i\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.156.3.15.SATU.A

1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

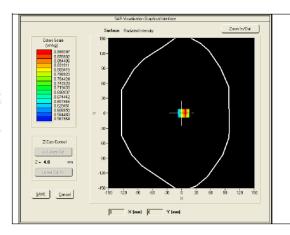
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

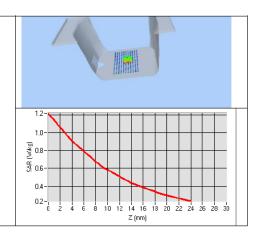
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41.8 sigma: 0.90
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	8.31 (0.73)	5.55	5.71 (0.54)
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11





SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.3.15.SATU.A

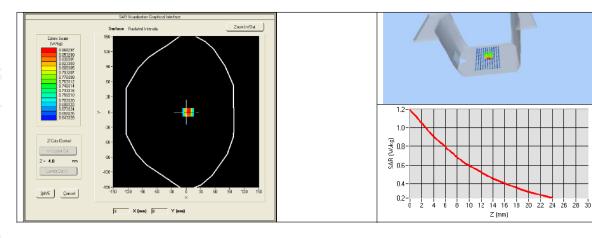
1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ϵ_{r}')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.156.3.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 56.3 sigma: 0.98
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.46 (0.77)	5.81 (0.45)

Page: 10/11

Ref: ACR.156.3.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA		Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2024	02/2027	
Calipers	Carrera	CALIPER-01	02/2024	02/2027	
Reference Probe	MVG	EPG122 SN 18/11	02/2024	02/2025	
Multimeter	Keithley 2000	1188656	02/2024	02/2027	
Signal Generator	Agilent E4438C	MY49070581	02/2024	02/2027	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	02/2024	02/2027	
Power Sensor	HP ECP-E26A	US37181460	02/2024	02/2027	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	02/2024	02/2027	

Page: 11/11

SAR Reference Dipole Calibration Report

Ref: ACR.156.4.15.SATU.A

SHENZHEN TONGCE TESTING LAB

2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ SERIAL NO.: SN 16/15 DIP 0G835-369

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/05/2024

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	06/05/2024	JES
Checked by :	Jérôme LUC	Product Manager	06/05/2024	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	06/05/2024	from Prethowski

 Customer Name
SHENZHEN TONGCE TESTING LAB

Issue	Date 6	Modifications
A	06/05/2024	Initial release
		1

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

TABLE OF CONTENTS

I	Intr	oduction4	
2	Dev	rice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Fauinment 11	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID835	
Serial Number	SN 16/15 DIP 0G835-369	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

Report No.: TCT241125E007

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

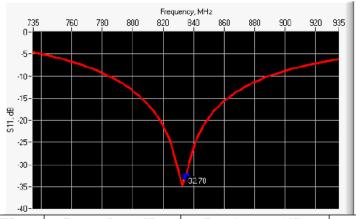
Scan Volume	Expanded Uncertainty		
1 g	20.3 %		

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

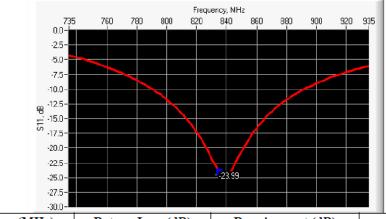
Page 219 of 284

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-32.78	-20	$51.5 \Omega + 1.7 i\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-23.99	-20	$47.3 \Omega + 5.6 i\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h m	m	d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

I						
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,΄)		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

1800	40.0 ±5 %	1.40 ±5 %	
1900	40.0 ±5 %	1.40 ±5 %	
1950	40.0 ±5 %	1.40 ±5 %	
2000	40.0 ±5 %	1.40 ±5 %	
2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

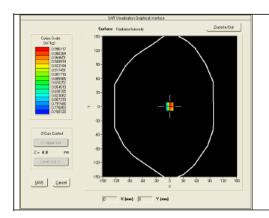
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

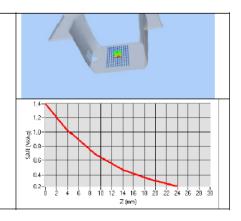
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.53 (0.82)	6.22	6.12 (0.58)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	·
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11





SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.4.15.SATU.A

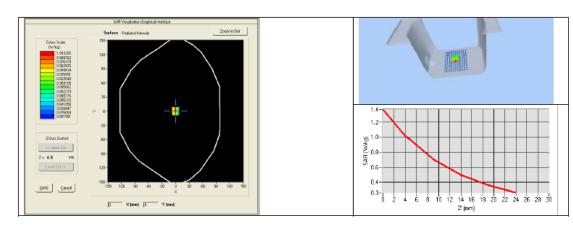
1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,΄)		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.156.4.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.3 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.62 (0.91)	6.44 (0.59)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Report No.: TCT241125E007

Ref: ACR.156.4.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Identification No. Current Calibration Date		Next Calibration Date			
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2024	02/2027		
Calipers	Carrera	CALIPER-01	02/2024 02/2027			
Reference Probe	MVG	EPG122 SN 18/11	02/2024	02/2025		
Multimeter	Keithley 2000	1188656	02/2024	02/2027		
Signal Generator	Agilent E4438C	MY49070581	02/2024 02/2027			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	02/2024	02/2027		
Power Sensor	HP ECP-E26A	US37181460	02/2024	02/2027		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	02/2024	02/2027		

Page: 11/11

SAR Reference Dipole Calibration Report

Ref: ACR.156.6.15.SATU.A

SHENZHEN TONGCE TESTING LAB

2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ SERIAL NO.: SN 16/15 DIP 1G800-371

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/05/2024

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.6.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	06/05/2024	JES
Checked by :	Jérôme LUC	Product Manager	06/05/2024	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	06/05/2024	fum Puthowski

	Customer Name
Distribution :	SSHENZHEN TONGCE TESTING LAB

Issue	Date	Modifications		
A	06/05/2024	Initial release		

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.6.15.SATU.A

TABLE OF CONTENTS

1	intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment 11	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.6.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR 1800 MHz REFERENCE DI				
Manufacturer	MVG			
Model	SID1800			
Serial Number	SN 16/15 DIP 1G800-371			
Product Condition (new / used)	Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.156.6.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

SAR REFERENCE DIPOLE CALIBRATION REPORT

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

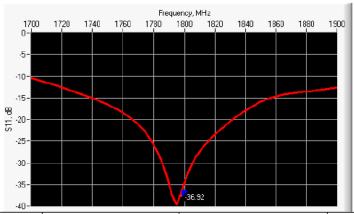
Scan Volume	Expanded Uncertainty	
1 g	20.3 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 230 of 284

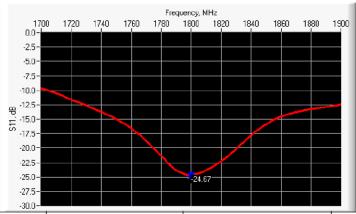
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.156.6.15.SATU.A

10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS


6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

 Frequency (MHz)
 Return Loss (dB)
 Requirement (dB)
 Impedance

 1800
 -36.92
 -20
 48.3 Ω - 0.5 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1800	-24.67	-20	47.6 Ω - 5.1 iΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11