

# PointGuard Energy Inc.

# TEST REPORT

**SCOPE OF WORK**  
FCC TESTING– SCH1\_RFID1

**REPORT NUMBER**  
241008031SZN-001

**ISSUE DATE**  
11 December 2024

**PAGES**  
20

**DOCUMENT CONTROL NUMBER**  
FCC ID 225\_C  
© 2017 INTERTEK



# PointGuard Energy Inc.

## Application for Certification

**FCC ID: 2BMFT-RFIDC20**

**RFID module for EV charger product**

**Model: SCH1\_RFID1**

**13.56MHz Transceiver**

Report No.: 241008031SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-23]

Prepared and Checked by:

Approved by:

*Draven Li*  
Project Engineer

---

*Johnny Wang*  
Project Engineer  
Date: 11 December 2024

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

### Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China  
Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

**MEASUREMENT/TECHNICAL REPORT**

This report concerns (check one):      Original Grant       Class II Change

Equipment Type: DXX - Part 15 Low Power Communication Device Transmitter

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)?      Yes       No

If yes, defer until: \_\_\_\_\_  
date

Company Name agrees to notify the Commission by: \_\_\_\_\_  
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37?      Yes       No

If no, assumed Part 15, Subpart C for intentional radiator – the new 47 CFR [10-1-23 Edition] provision.

Report prepared by:

Draven Li  
Intertek Testing Services Shenzhen Ltd. Longhua Branch  
101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community  
GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of  
China  
Tel / Fax: 86-755-8601 6288/86-755-8601 6751

**Table of Contents**

|                                                        |    |
|--------------------------------------------------------|----|
| <b>1.0 Summary of Test Result</b> .....                | 4  |
| <b>2.0 General Description</b> .....                   | 5  |
| 2.1 Product Description .....                          | 5  |
| 2.2 Related Submittal(s) Grants .....                  | 5  |
| 2.3 Test Methodology .....                             | 5  |
| 2.4 Test Facility.....                                 | 5  |
| <b>3.0 System Test Configuration</b> .....             | 6  |
| 3.1 Justification .....                                | 6  |
| 3.2 EUT Exercising Software .....                      | 6  |
| 3.3 Special Accessories .....                          | 6  |
| 3.4 Equipment Modification.....                        | 6  |
| 3.5 Measurement Uncertainty .....                      | 6  |
| 3.6 Support Equipment List and Description.....        | 7  |
| <b>4.0 Emission Results</b> .....                      | 8  |
| 4.1 Radiated Test Results.....                         | 8  |
| 4.1.1 Field Strength Calculation .....                 | 8  |
| 4.1.2 Radiated Emission Configuration Photograph ..... | 9  |
| 4.1.3 Radiated Emissions .....                         | 9  |
| 4.2 Conducted Emission at Mains Terminal .....         | 12 |
| 4.2.1 Conducted Emission Configuration Photograph..... | 12 |
| 4.2.2 Conducted Emissions .....                        | 12 |
| 4.3 Frequency Stability .....                          | 15 |
| <b>5.0 Equipment Photographs</b> .....                 | 16 |
| <b>6.0 Product Labelling</b> .....                     | 16 |
| <b>7.0 Technical Specifications</b> .....              | 16 |
| <b>8.0 Instruction Manual</b> .....                    | 16 |
| <b>9.0 Miscellaneous Information</b> .....             | 17 |
| 9.1 Bandedge Plot .....                                | 17 |
| 9.2 20dB Bandwidth.....                                | 18 |
| 9.3 Discussion of Pulse Desensitization .....          | 19 |
| 9.4 Emissions Test Procedures.....                     | 19 |
| <b>10.0 Test Equipment List</b> .....                  | 20 |

**1.0 Summary of Test Result**

Applicant: PointGuard Energy Inc.

Applicant Address: 2377 Gold Meadow Way, Gold River, California, United States

Manufacturer: PointGuard Energy Inc.

Manufacturer Address: 2377 Gold Meadow Way, Gold River, California, United States

**MODEL: SCH1\_RFID1**

**FCC ID: 2BMFT-RFIDC20**

| <b>Test Specification</b>     | <b>Reference</b> | <b>Results</b> |
|-------------------------------|------------------|----------------|
| Transmitter Radiated Emission | 15.225(a)(b)(c)  | Pass           |
| Band edge                     | &15.209 &15.205  |                |
| Frequency Stability           | 15.225(e)        | Pass           |
| 20dB Bandwidth                | 15.215(c)        | Pass           |
| AC Conducted Emission         | FCC 15.209       | Pass           |

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

## 2.0 General Description

### 2.1 Product Description

The equipment under test (EUT) is a RFID module for EV charger product operating at 13.56 MHz. The EUT can be powered by DC 12V/300mA. For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna

Modulation Type: OOK

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

### 2.2 Related Submittal(s) Grants

This is an application for certification of the RFID module for EV charger product.

### 2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst-case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

### 2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

### 3.0 System Test Configuration

#### 3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 12V/300mA during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

#### 3.2 EUT Exercising Software

There was no special software to exercise the device.

#### 3.3 Special Accessories

No special accessories used.

#### 3.4 Equipment Modification

Any modifications installed previous to testing by PointGuard Energy Inc. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

#### 3.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

**3.6 Support Equipment List and Description**

| Description                                         | Manufacturer           | Model No.  |
|-----------------------------------------------------|------------------------|------------|
| Control box (SECC board)<br>(Provided by applicant) | PointGuard Energy Inc. | /          |
| NFC card<br>(Provided by applicant)                 | PointGuard Energy Inc. | /          |
| DC Power Supply<br>(Provided by Intertek)           | Guwei                  | GPS-3030DD |

#### 4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

##### 4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

###### 4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where

FS = Field Strength in  $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in  $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Assume a receiver reading of 62.0  $\text{dB}\mu\text{V}$  is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32  $\text{dB}\mu\text{V}/\text{m}$ . This value in  $\text{dB}\mu\text{V}/\text{m}$  was converted to its corresponding level in  $\mu\text{V}/\text{m}$ .

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}/\text{m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(42 \text{ dB}\mu\text{V}/\text{m})/20] = 125.9 \mu\text{V}/\text{m}$$

**4.1.2 Radiated Emission Configuration Photograph**

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

**4.1.3 Radiated Emissions**

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission  
at  
379.685000 MHz

Judgement: Passed by 6.5 dB

***TEST PERSONNEL:***

*Sign on file*

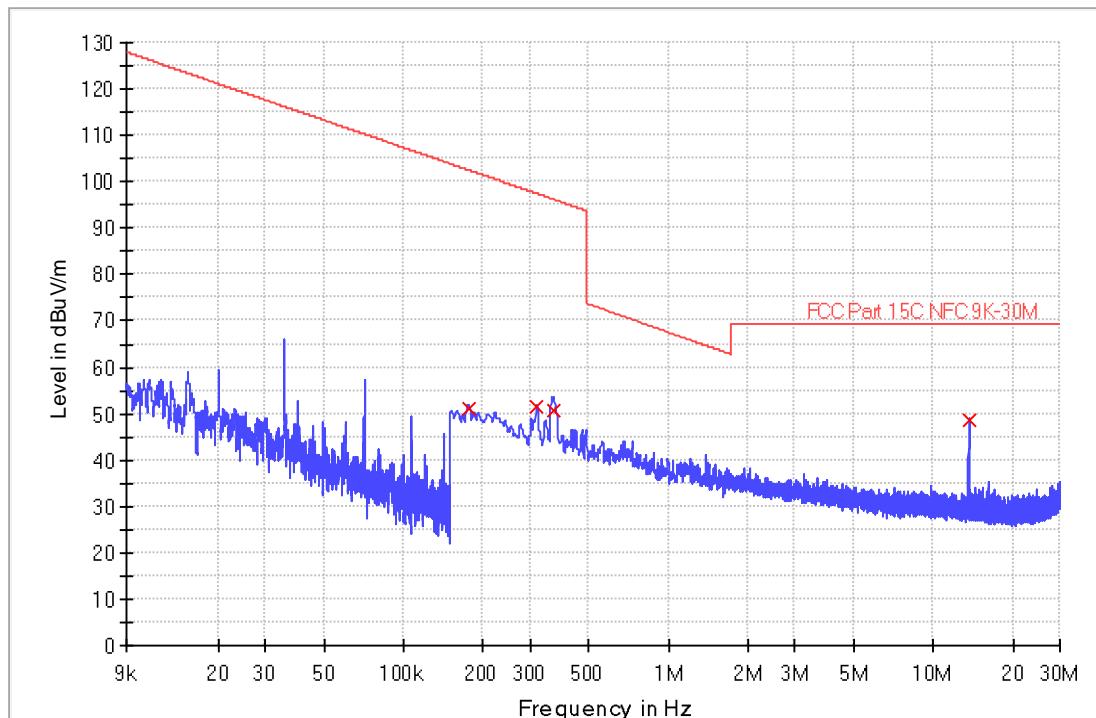
Draven Li, Project Engineer  
*Typed/Printed Name*

20 November 2024

*Date*

Applicant: PointGuard Energy Inc.

Date of Test: 20 November 2024


Worst Case Operating Mode:

Model: SCH1\_RFID1

Transmitting

Table 1  
Fundamental & Spurious Emission Below 30MHz

FCC Part 15C Electric Field Strength 9K-30M(dBuV)



| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB/m) | Net at 3m (dB $\mu$ V/m) | Peak Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|-----------------------|--------------------------|---------------------------------|-------------|
| Horizontal   | 13.560000       | 36.3                 | 0                 | 12.3                  | 48.6                     | 69.5                            | -20.9       |
| Horizontal   | 0.175870        | 36.0                 | 0                 | 15.2                  | 51.2                     | 102.6                           | -51.4       |
| Horizontal   | 0.317160        | 36.2                 | 0                 | 15.1                  | 51.3                     | 97.5                            | -46.2       |
| Horizontal   | 0.365915        | 35.6                 | 0                 | 15.0                  | 50.6                     | 96.3                            | -45.7       |

**Table 2**  
**Spurious emission (30MHz ~ 1GHz)**

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB/m) | Net at 3m (dB $\mu$ V/m) | Peak Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|-----------------------|--------------------------|---------------------------------|-------------|
| Horizontal   | 35.302667       | 32.3                 | 20                | 19.6                  | 31.9                     | 40.0                            | -8.1        |
| Horizontal   | 57.806667       | 37.6                 | 20                | 13.3                  | 30.9                     | 40.0                            | -9.1        |
| Horizontal   | 379.685000      | 35.1                 | 20                | 24.5                  | 39.6                     | 46.0                            | -6.5        |

**NOTES:**

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Loop antenna is used for the emissions below 30 MHz
5. Limits at 3 meter for radiated emissions below 30 MHz is converted from the Limits at 30 meter according to the Formula:  
$$\text{Limits at 3 meter (dB}\mu\text{V/m)} = \text{Limits at 30 meter (dB}\mu\text{V/m)} + 40 \log (30/3)$$

**4.2 Conducted Emission at Mains Terminal****3.2.1 Conducted Emissions Configuration Photograph**

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

**4.2.2 Conducted Emissions**

Worst Case Conducted Configuration

at 1.146 MHz

Judgement: Passed by 14.8 dB margin

***TEST PERSONNEL:***

*Sign on file*

Draven Li, Project Engineer

*Typed/Printed Name*

20 November 2024

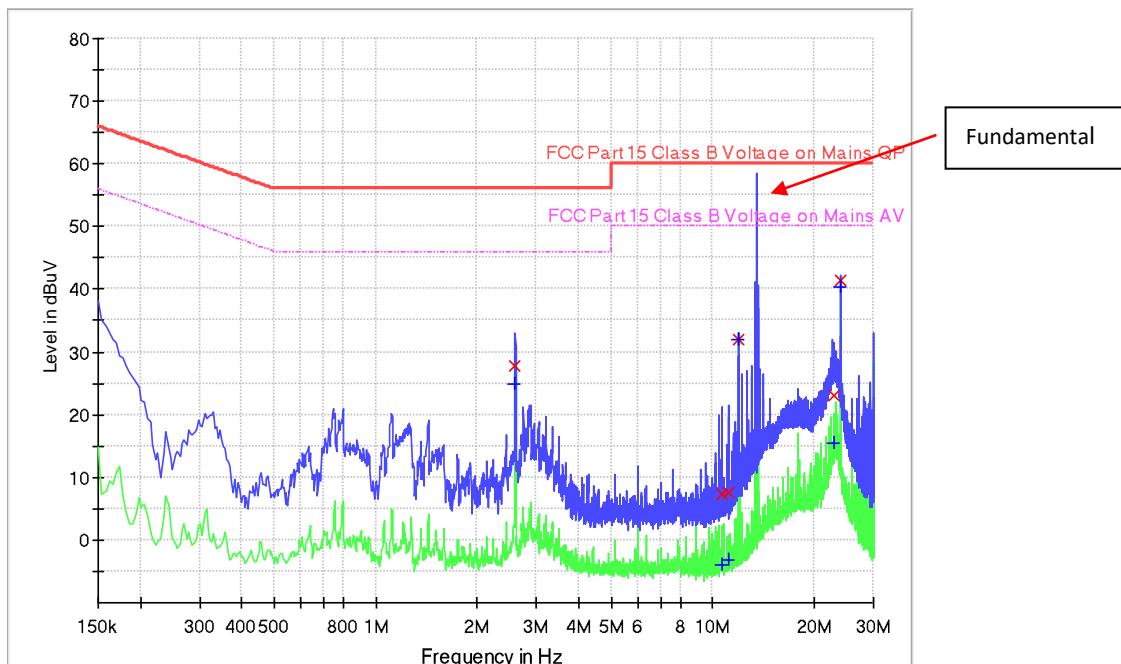
*Date*

Applicant: PointGuard Energy Inc.

Date of Test: 20 November 2024

Worst Case Operating Mode:

Sample: 1/1


Phase: Live

Model: SCH1\_RFID1

Transmitting

### Conducted Emission Test - FCC

Conducted Emission Test FCC Part 15



### Limit and Margin QP

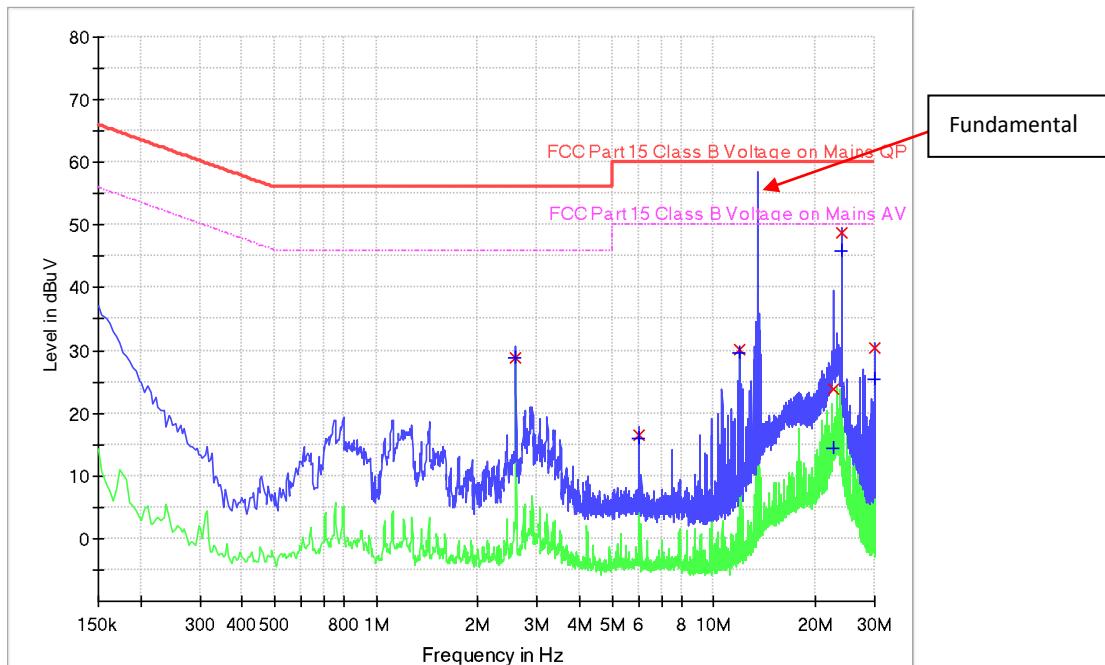
| Frequency (MHz) | QuasiPeak (dBuV) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dBuV) |
|-----------------|------------------|-----------------|------|------------|-------------|--------------|
| 2.594000        | 27.7             | 9.000           | L1   | 9.7        | 28.3        | 56.0         |
| 10.682000       | 7.2              | 9.000           | L1   | 10.0       | 52.8        | 60.0         |
| 11.114000       | 7.6              | 9.000           | L1   | 10.1       | 52.4        | 60.0         |
| 11.974000       | 31.9             | 9.000           | L1   | 10.2       | 28.1        | 60.0         |
| 22.974000       | 23.2             | 9.000           | L1   | 10.5       | 36.8        | 60.0         |
| 23.946000       | 41.5             | 9.000           | L1   | 10.6       | 18.5        | 60.0         |

### Limit and Margin AV

| Frequency (MHz) | Average (dBuV) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dBuV) |
|-----------------|----------------|-----------------|------|------------|-------------|--------------|
| 2.594000        | 24.8           | 9.000           | L1   | 9.7        | 21.2        | 46.0         |
| 10.682000       | -3.9           | 9.000           | L1   | 10.0       | 53.9        | 50.0         |
| 11.114000       | -3.3           | 9.000           | L1   | 10.1       | 53.3        | 50.0         |
| 11.974000       | 32.0           | 9.000           | L1   | 10.2       | 18.0        | 50.0         |
| 22.974000       | 15.3           | 9.000           | L1   | 10.5       | 34.7        | 50.0         |
| 23.946000       | 40.5           | 9.000           | L1   | 10.6       | 9.5         | 50.0         |

#### Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)


2. Margin (dB) = Limit (dBuV) – Level (dBuV)

Applicant: PointGuard Energy Inc.  
 Date of Test: 20 November 2024  
 Worst Case Operating Mode:  
 Sample: 1/1  
 Phase: Neutral

Model: SCH1\_RFID1  
 Transmitting

### Conducted Emission Test - FCC

Conducted Emission Test FOC Part 15



### Limit and Margin QP

| Frequency (MHz) | QuasiPeak (dBuV) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dBuV) |
|-----------------|------------------|-----------------|------|------------|-------------|--------------|
| 2.586000        | 28.9             | 9.000           | N    | 9.7        | 27.1        | 56.0         |
| 5.986000        | 16.5             | 9.000           | N    | 9.8        | 43.5        | 60.0         |
| 11.974000       | 30.1             | 9.000           | N    | 10.2       | 29.9        | 60.0         |
| 22.538000       | 23.7             | 9.000           | N    | 10.5       | 36.3        | 60.0         |
| 23.946000       | 48.7             | 9.000           | N    | 10.7       | 11.3        | 60.0         |
| 29.938000       | 30.4             | 9.000           | N    | 11.2       | 29.6        | 60.0         |

### Limit and Margin AV

| Frequency (MHz) | Average (dBuV) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit (dBuV) |
|-----------------|----------------|-----------------|------|------------|-------------|--------------|
| 2.586000        | 28.8           | 9.000           | N    | 9.7        | 17.2        | 46.0         |
| 5.986000        | 15.9           | 9.000           | N    | 9.8        | 34.1        | 50.0         |
| 11.974000       | 29.7           | 9.000           | N    | 10.2       | 20.3        | 50.0         |
| 22.538000       | 14.5           | 9.000           | N    | 10.5       | 35.5        | 50.0         |
| 23.946000       | 46.0           | 9.000           | N    | 10.7       | 4.0         | 50.0         |
| 29.938000       | 25.4           | 9.000           | N    | 11.2       | 24.6        | 50.0         |

#### Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Limit (dBuV) – Level (dBuV)

#### 4.3 Frequency Stability

If required, the operating or transmitting frequency of an intentional radiator should be measured in accordance with the following procedure to ensure that the device operates outside certain precluded frequency bands and within the frequency range. No modulation needs to be supplied to the intentional radiator during these tests, unless modulation is required to produce an output, e.g., single-sideband suppressed carrier transmitters.

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20°C to + 50°C using an environmental chamber.
- b) for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20°C.

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

##### Measurement Result:

| Voltage (%) | Power  | Temperatur e (°C) | Frequency (MHz) | Limit                                   | Result |
|-------------|--------|-------------------|-----------------|-----------------------------------------|--------|
| 100         | 120Vac | -20               | 13.560000       | $\pm 0.01\%$<br>( $\pm 1356\text{Hz}$ ) | Pass   |
|             |        | -10               | 13.560000       |                                         | Pass   |
|             |        | 0                 | 13.560000       |                                         | Pass   |
|             |        | 10                | 13.560000       |                                         | Pass   |
|             |        | 20                | 13.560000       |                                         | Pass   |
|             |        | 30                | 13.560000       |                                         | Pass   |
|             |        | 40                | 13.560000       |                                         | Pass   |
|             |        | 50                | 13.560000       |                                         | Pass   |

| Temperature (°C) | Power  | Voltage (%) | Frequency (MHz) | Limit                                   | Result |
|------------------|--------|-------------|-----------------|-----------------------------------------|--------|
| 20               | 120Vac | 85          | 13.560000       | $\pm 0.01\%$<br>( $\pm 1356\text{Hz}$ ) | Pass   |
|                  |        | 90          | 13.560000       |                                         | Pass   |
|                  |        | 95          | 13.560000       |                                         | Pass   |
|                  |        | 100         | 13.560000       |                                         | Pass   |
|                  |        | 105         | 13.560000       |                                         | Pass   |
|                  |        | 110         | 13.560000       |                                         | Pass   |
|                  |        | 115         | 13.560000       |                                         | Pass   |

Note: The device is deemed to comply with requirement of FCC Part 15.225(e).

## 5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

## 6.0 Product Labelling

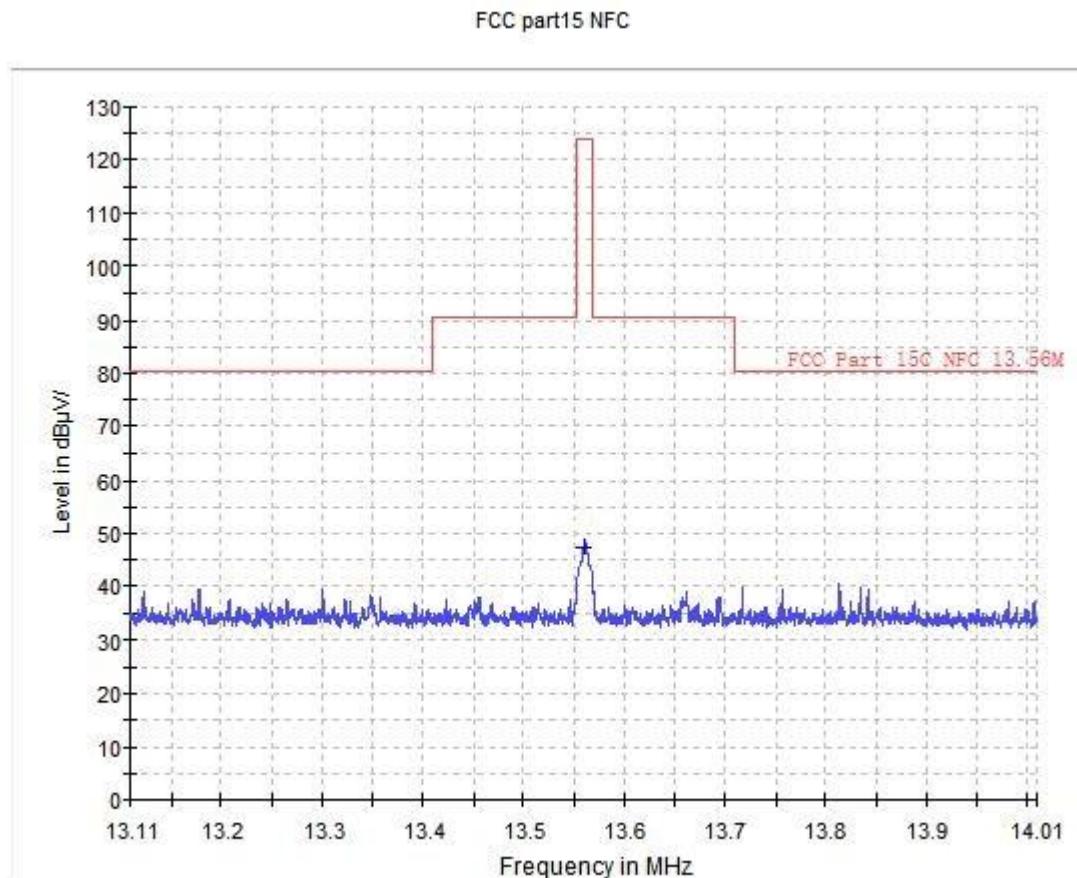
For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

## 7.0 Technical Specifications

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

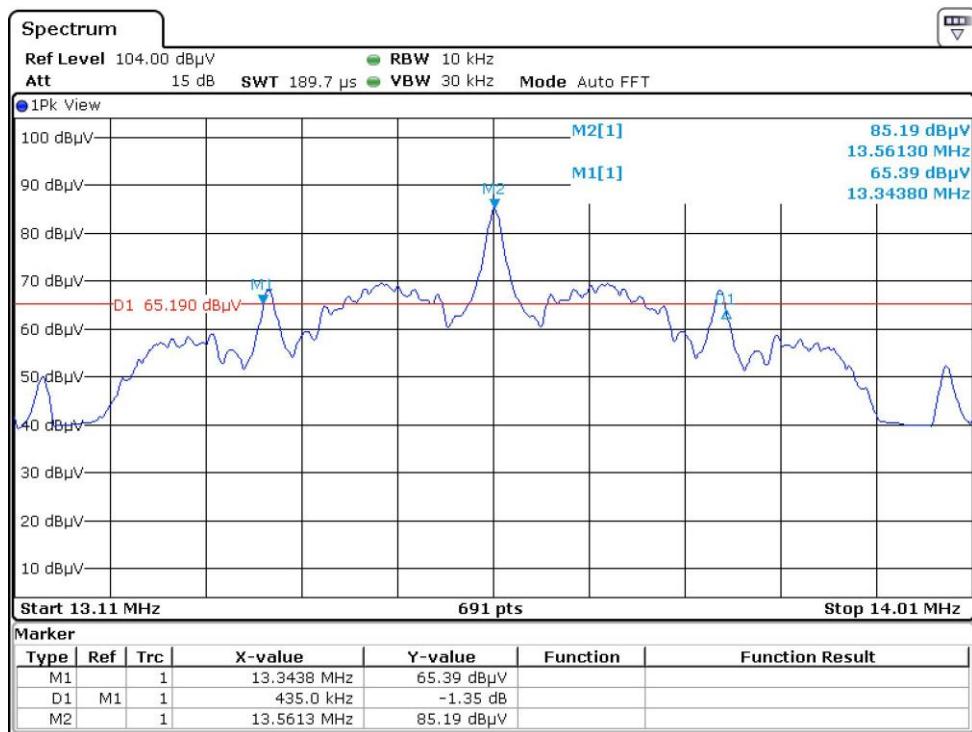
## 8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.


This manual will be provided to the end-user with each unit sold/leased in the United States.

## 9.0 Miscellaneous Information

This miscellaneous information includes details of the measured band edge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.


### 9.1 Band edge Plot

The test plots are attached as below. From the plot, the field strength of any emissions is below the limit of 90.5dB<sub>uV/m</sub> in the range of outside of (13.410–13.553 MHz and 13.567–13.710 MHz) and the limit of 80.5dB<sub>uV/m</sub> in the frequency range of (13.110–13.410MHz and 13.710–14.010MHz). Therefore, they meet the requirement of Section 15.225(b), (c).



## 9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (13.110-14.010MHz) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.



### 9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device since the transmitter transmits the RF signal continuously.

### 9.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz up to the 1GHz.

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section 9.3).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

**10.0 Test Equipment List**

| Equipment No. | Equipment                      | Manufacturer    | Model No.       | Serial No. | Cal. Date   | Due Date    |
|---------------|--------------------------------|-----------------|-----------------|------------|-------------|-------------|
| SZ061-13      | BiConiLog Antenna              | ETS             | 3142E           | 00166158   | 13-Jul-2022 | 13-Jul-2025 |
| SZ185-03      | EMI Receiver                   | R&S             | ESR7            | 101975     | 23-Apr-2024 | 23-Apr-2025 |
| SZ061-06      | Active Loop Antenna            | Electro-Metrics | EM-6876         | 217        | 05-May-2024 | 05-May-2027 |
| SZ056-03      | Spectrum Analyzer              | R & S           | FSP30           | 101148     | 22-Apr-2024 | 22-Apr-2025 |
| SZ181-08      | Preamplifier                   | Agilent         | 83017A          | MY57280108 | 29-Jul-2024 | 29-Jul-2025 |
| SZ188-01      | Anechoic Chamber               | ETS             | RFD-F/A-100     | 4102       | 12-Dec-2021 | 12-Dec-2024 |
| SZ016-12      | Temperature & Humidity Chamber | Terchy          | MHK-120NK       | AB0105     | 14-Dec-2023 | 14-Dec-2024 |
| SZ062-23      | RF Cable                       | RADIALL         | SF104PE         | --         | 30-Sep-2024 | 30-Sep-2025 |
| SZ062-34      | RF Cable                       | RADIALL         | A50-3.5M3.5M-1M | --         | 30-Sep-2024 | 30-Sep-2025 |
| SZ185-02      | EMI Test Receiver              | R&S             | ESCI            | 100692     | 09-Jul-2024 | 09-Jul-2025 |
| SZ187-01      | Two-Line V-Network             | R&S             | ENV216          | 100072     | 24-Oct-2024 | 24-Oct-2025 |
| SZ188-03      | Shielding Room                 | ETS             | RFD-100         | 4100       | 24-Oct-2024 | 24-Oct-2025 |
| SZ006-05      | DC Power Supply                | Guwei           | GPS-3030DD      | E1811323   | 14-Dec-2023 | 14-Dec-2024 |