

Report No.: TBR-C-202411-0121-6
Page: 1 of 27

Radio Test Report

FCC ID:2BMDF-504482

Original Grant

Report No. : TBR-C-202411-0121-6**Applicant** : Shenzhen Xintengyue Electronic Technology Co.**Equipment Under Test (EUT)****EUT Name** : Auto Tire Pressure Monitor Sensor**Model No.** : AEREL504482IN1**Series Model No.** : ----**Brand Name** : AERMOTOR**Sample ID** : HC-C-202411-0121-01-01#**Receipt Date** : 2024-11-18**Test Date** : 2024-11-18 to 2024-12-02**Issue Date** : 2024-12-02**Standards** : FCC Part 15 Subpart C 15.247**Test Method** : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : **PASS**

In the configuration tested, the EUT complied with the standards specified above.

Tested By : *Rick . chan*Rick ChenCamille LiIvan Su**Reviewed By** : *Camille Li***Approved By** : *Ivan Su*

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONTENTS.....	2
1. GENERAL INFORMATION ABOUT EUT.....	5
1.1 Client Information.....	5
1.2 General Description of EUT (Equipment Under Test)	5
1.3 Block Diagram Showing the Configuration of System Tested.....	6
1.4 Description of Support Units	6
1.6 Description of Test Software Setting	8
1.7 Measurement Uncertainty	8
1.8 Test Facility	9
2. TEST SUMMARY.....	10
3. TEST SOFTWARE.....	10
4. TEST EQUIPMENT AND TEST SITE.....	11
5. CONDUCTED EMISSION.....	13
5.1 Test Standard and Limit.....	13
5.2 Test Setup.....	13
5.3 Test Procedure.....	13
5.4 Deviation From Test Standard.....	14
5.5 EUT Operating Mode	14
5.6 Test Data.....	14
6. RADIATED EMISSIONS EMISSION TEST.....	15
6.1 Test Standard and Limit.....	15
6.2 Test Setup.....	15
6.3 Test Procedure.....	16
6.4 Deviation From Test Standard.....	18
6.5 EUT Operating Mode	18
6.6 Test Data.....	18
7. 99% OCCUPIED AND 20DB BANDWIDTH.....	19
8.1 Test Standard and Limit.....	19
8.2 Test Setup.....	19
8.3 Test Procedure.....	19
8.4 Deviation From Test Standard.....	19
8.5 EUT Operating Mode	19

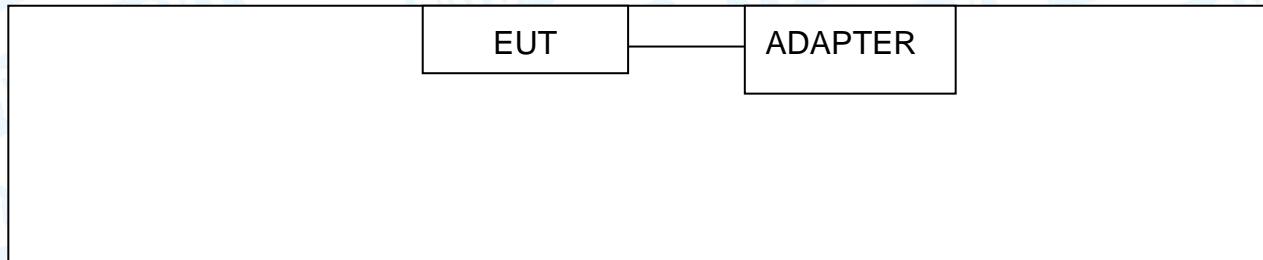
8.6 Test Data.....	19
8. ANTENNA REQUIREMENT.....	20
13.1 Test Standard and Limit	20
13.2 Deviation From Test Standard.....	20
13.3 Antenna Connected Construction	20
13.4 Test Data.....	20
ATTACHMENT A--UNWANTED EMISSIONS DATA	21
ATTACHMENT B-- BANDWIDTH MEASUREMENT DATA.....	27

Revision History

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Xintengyue Electronic Technology Co.
Address	:	1006, 10th Floor, Building D, Bantian International Center, No. 5 Huan Cheng Nan Road, Ma'an Tang Community, Bantian Street, Longgang District, Shenzhen, China
Manufacturer	:	Shenzhen Chengjing Technology Co., Ltd
Address	:	303, Building 5, Midtown Future Industrial Park, Hangcheng Zhigu, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen, China.


1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Auto Tire Pressure Monitor Sensor
Model(s) No.	:	AEREL504482IN1
Model Difference	:	----
Product Description	Operation Frequency:	125KHz
	Antenna Gain:	0dBi Coil Antenna
	Modulation Type:	ASK
Power Rating	:	Input:9V
Software Version	:	1.0
Hardware Version	:	1.0
Remark:		
(1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		
(2) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.		

1.3 Block Diagram Showing the Configuration of System Tested

Radiated Test

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
---	---	---	---	---
Cable Information				
Number	Shielded Type	Ferrite Core	Length	Note
---	---	---	---	---

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Radiated Test	
Final Test Mode	Description
Mode 1	TX Mode

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A
Frequency	125KHz

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U_{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	± 3.50 dB ± 3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	± 4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	± 4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	± 4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

FCC Part 15 Subpart C (15.209)				
Standard Section	Test Item	Test Sample(s)	Judgment	Remark
FCC				
15.203	Antenna Requirement	HC-C-202411-0121-01-01#	PASS	N/A
15.207(a)	Conducted Emission	HC-C-202411-0121-01-01#	PASS	N/A
15.209(a)(f)	Radiated emissions	HC-C-202411-0121-01-01#	PASS	N/A
15.215	Bandwidth	HC-C-202411-0121-01-01#	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

4. Test Equipment and Test Site

Test Site					
No.	Test Site	Manufacturer	Specification	Used	
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	√	
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	√	
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	√	
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	√	

Radiation Emission Test (A Site)

Equipment	Equipment	Equipment	Equipment	Equipment	Equipment
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 17, 2024	Jun. 16, 2025
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2024	Feb. 26, 2026
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 27, 2024	Feb. 26, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb. 26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
Pre-amplifier	SONOMA	310N	185903	Feb. 23, 2024	Feb. 22, 2025
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2024	Feb. 22, 2025
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Feb. 27, 2024	Feb. 26, 2026

Antenna Conducted Emission

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 29, 2024	Aug. 28, 2025
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 29, 2024	Aug. 28, 2025
RF Control Unit	Tonscend	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonscend	JS0806-2	21F8060439	Aug. 29, 2024	Aug. 28, 2025
Power Control Box	Tonscend	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio	Rohde & Schwarz	CMW500	144382	Aug. 29, 2024	Aug. 28, 2025

Communication Tester					
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2024	Feb.22, 2025
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 14, 2024	Jun. 13, 2026

5. Conducted Emission

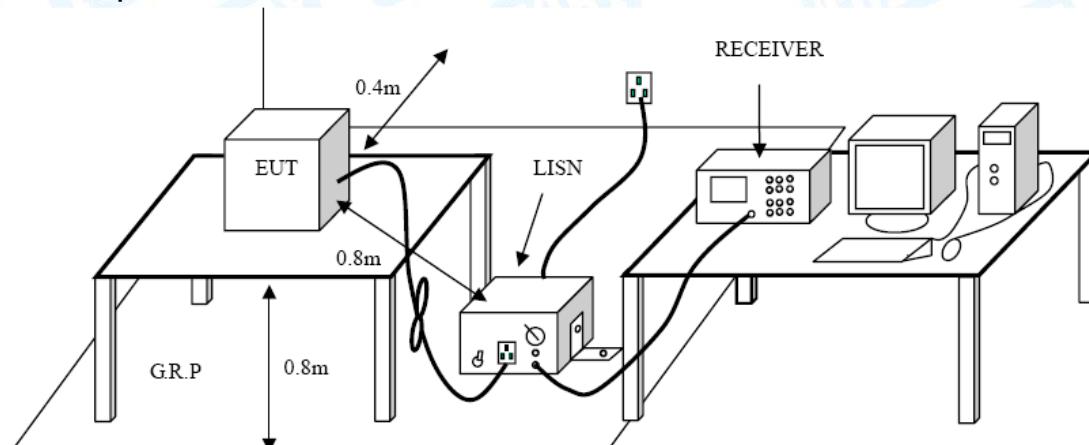
5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207

5.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dB μ V)	
	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.

- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

N/A. The EUT is powered by DC battery, no requirement for this test item.

6. Radiated Emissions Emission Test

6.1 Test Standard and Limit

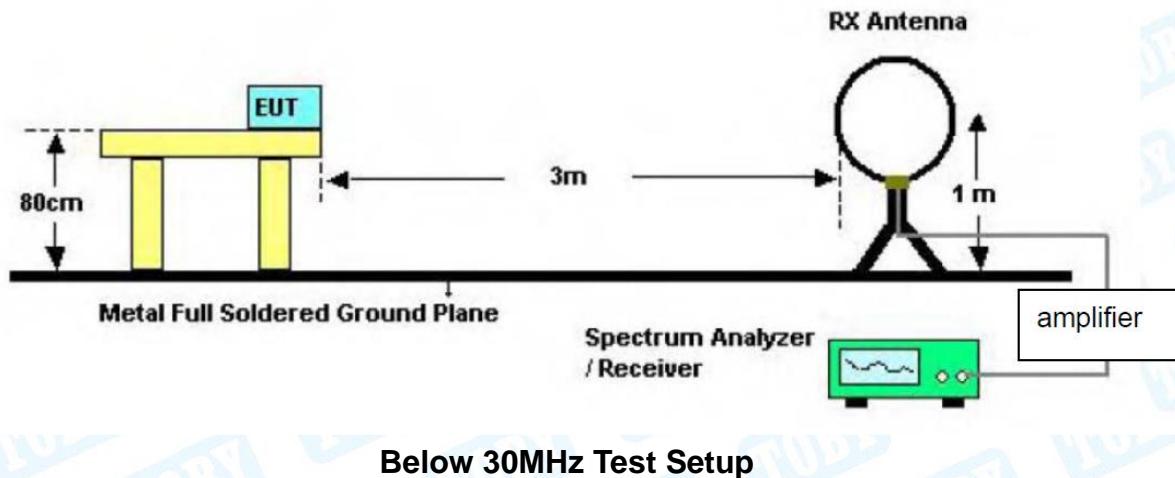
6.1.1 Test Standard

FCC Part 15.209

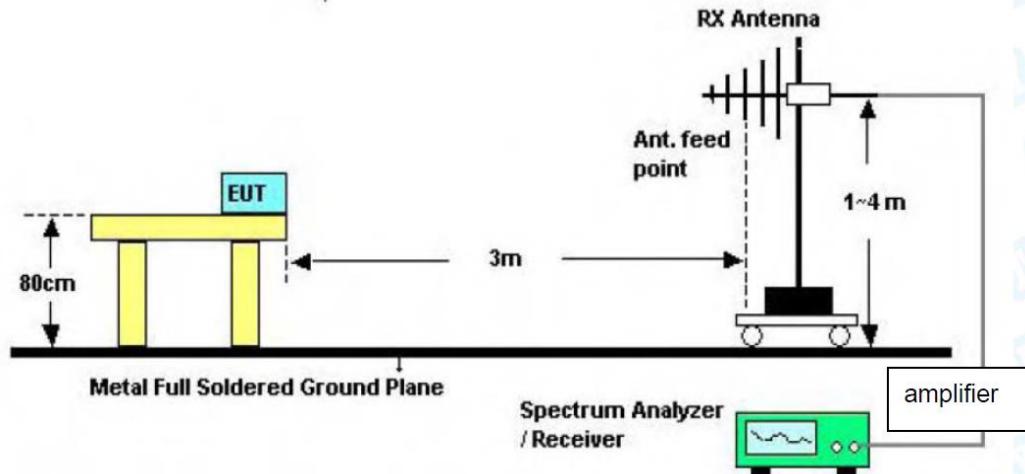
6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz		
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.


General field strength limits at frequencies above 30 MHz		
Frequency (MHz)	Field strength (μ V/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


6.2 Test Setup

Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak

detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

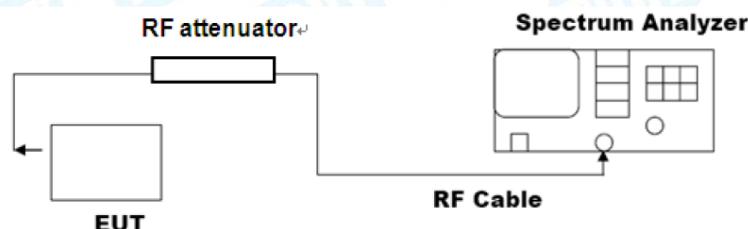
Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

7. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.215

8.1.2 Test Limit

It is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.2 Test Setup

8.3 Test Procedure

1. The transmitter shall be operated at its maximum carrier power measured under normal test conditions;
2. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
3. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix A.

8. Antenna Requirement

13.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

13.2 Deviation From Test Standard

No deviation

13.3 Antenna Connected Construction

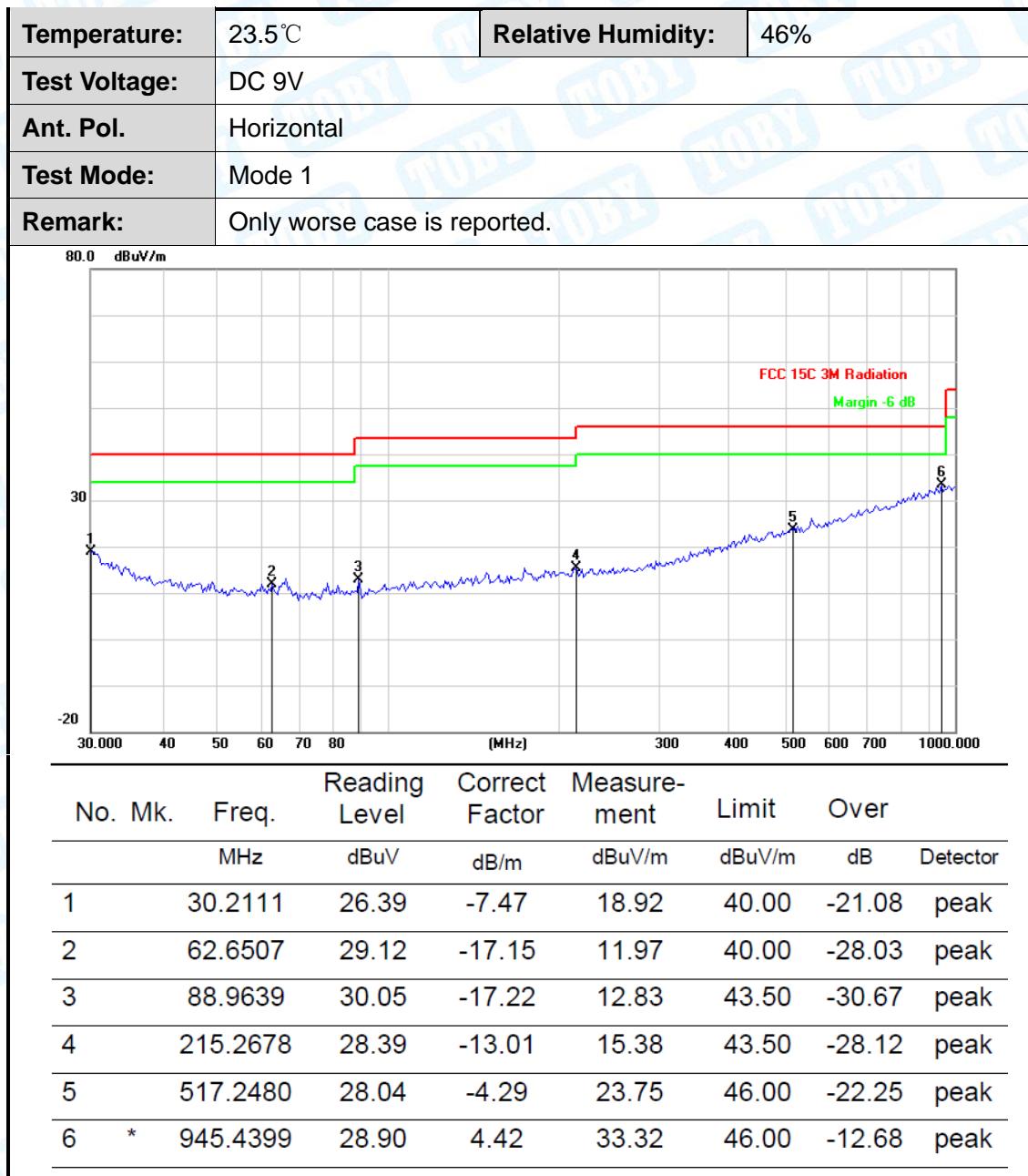
The gains of the antenna used for transmitting is 0dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

13.4 Test Data

The EUT antenna is a Coil Antenna. It complies with the standard requirement.

Antenna Type
<input checked="" type="checkbox"/> Permanent attached antenna
<input type="checkbox"/> Unique connector antenna
<input type="checkbox"/> Professional installation antenna

Attachment A--Unwanted Emissions Data

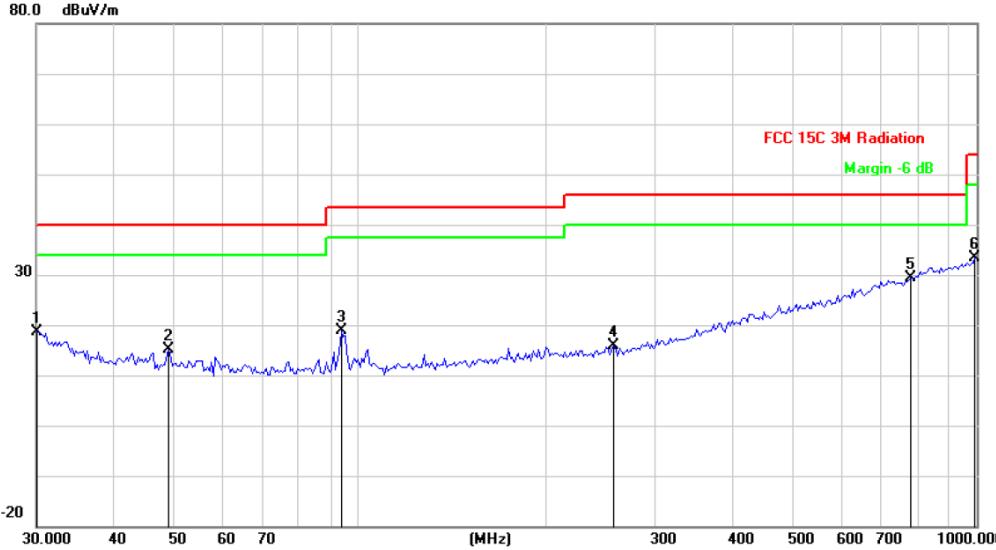

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB
Below the permissible value has no need to be reported.

30MHz~1GHz

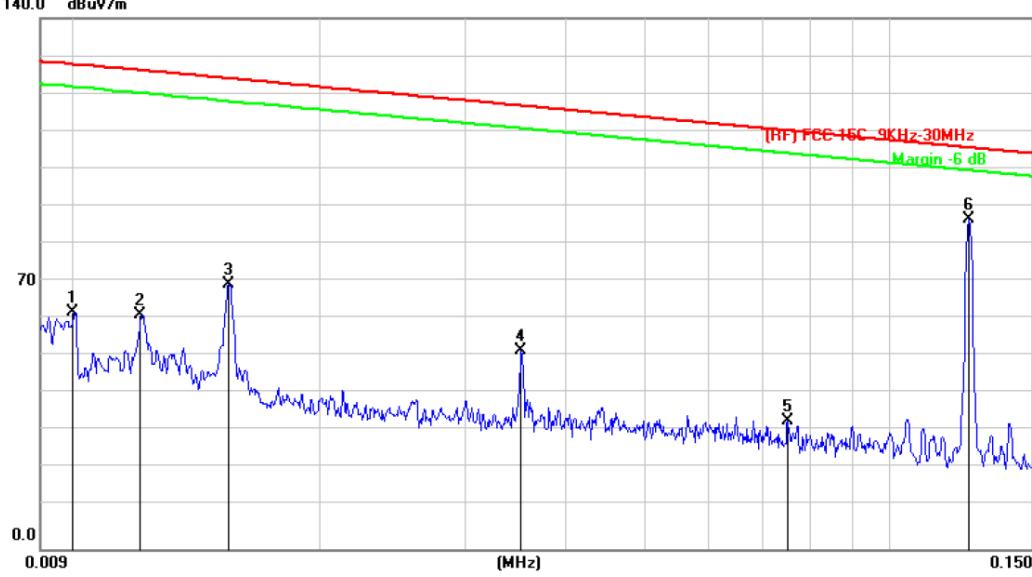


*:Maximum data x:Over limit !:over margin

Remark:

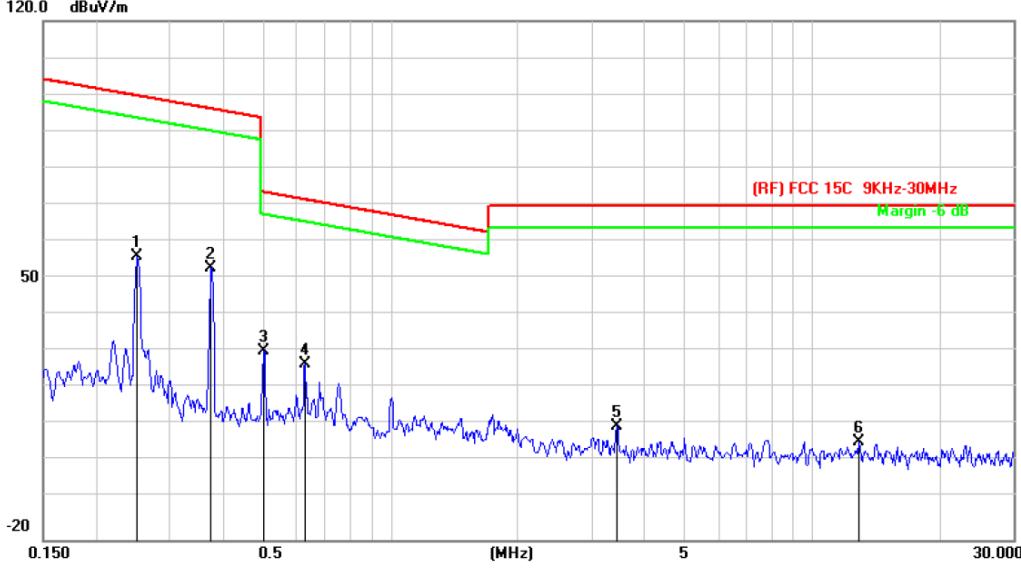
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.5°C	Relative Humidity:	46%				
Test Voltage:	DC 9V						
Ant. Pol.	Vertical						
Test Mode:	Mode 1						
Remark:	Only worse case is reported.						
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over
		MHz	dBuV	dB/m	dBuV/m	dB	Detector
1		30.0000	25.71	-7.08	18.63	40.00	-21.37 peak
2		49.0144	31.51	-16.34	15.17	40.00	-24.83 peak
3		93.4402	35.86	-16.98	18.88	43.50	-24.62 peak
4		258.3263	28.57	-12.72	15.85	46.00	-30.15 peak
5	*	782.3452	28.48	0.92	29.40	46.00	-16.60 peak
6		993.0113	28.03	5.34	33.37	54.00	-20.63 peak

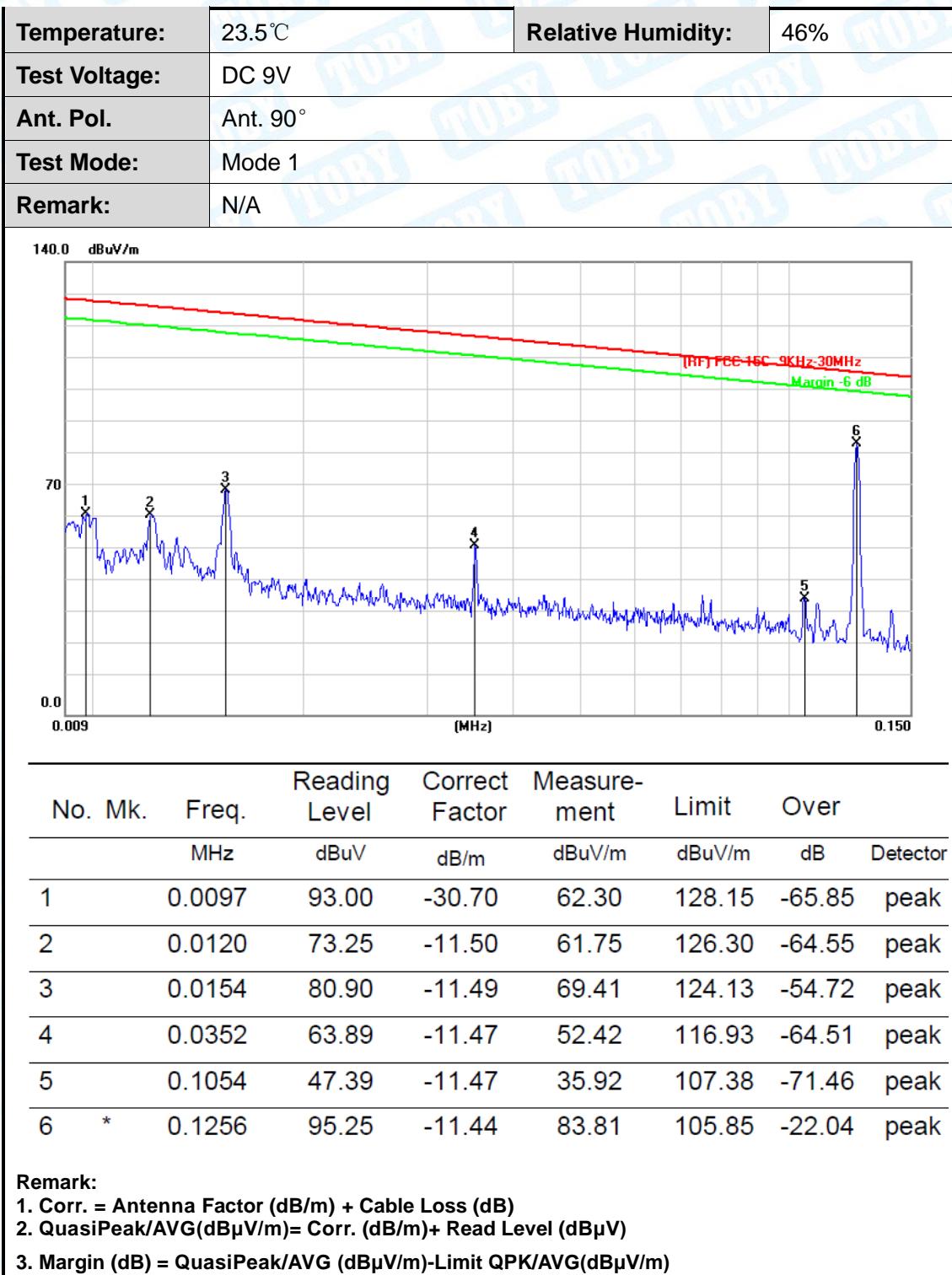

*:Maximum data x:Over limit !:over margin

Remark:

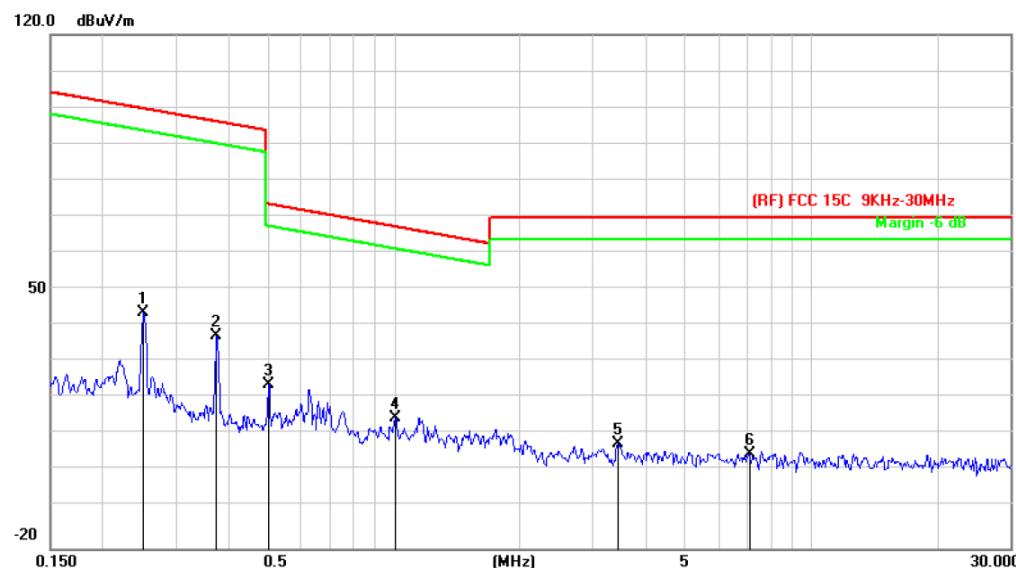
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)


9KHz-30MHz

Temperature:	23.5°C	Relative Humidity:	46%				
Test Voltage:	DC 9V						
Ant. Pol.	Ant. 0°						
Test Mode:	Mode 1						
Remark:	N/A						
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over
		MHz	dBuV	dB/m	dBuV/m	dB	Detector
1		0.0099	93.14	-30.70	62.44	127.97	-65.53
2		0.0120	73.11	-11.50	61.61	126.30	-64.69
3		0.0154	81.28	-11.49	69.79	124.13	-54.34
4		0.0352	63.84	-11.47	52.37	116.93	-64.56
5		0.0751	45.31	-11.45	33.86	110.33	-76.47
6	*	0.1256	98.48	-11.44	87.04	105.85	-18.81

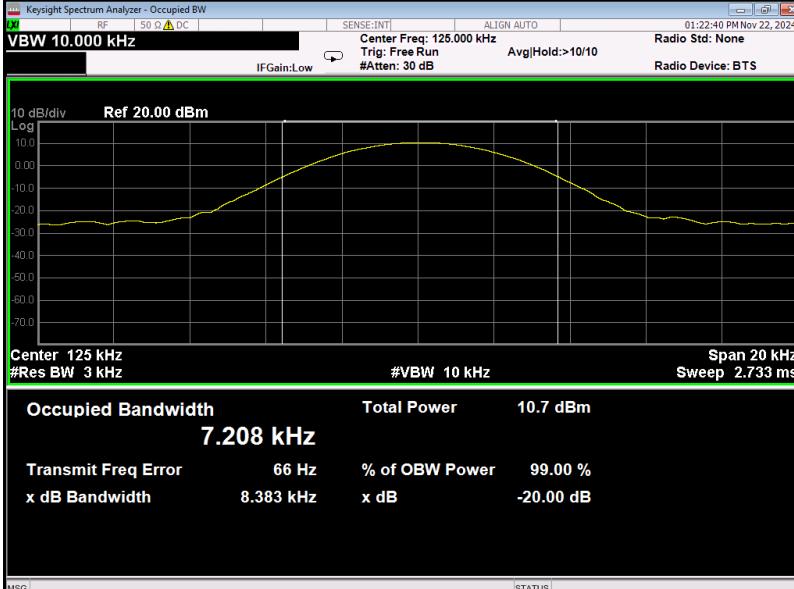

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak/AVG(dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)



Temperature:	23.5 °C	Relative Humidity:	46%				
Test Voltage:	DC 9V						
Ant. Pol.	Ant. 0 °						
Test Mode:	Mode 1						
Remark:	N/A						
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB
1		0.2508	68.20	-11.67	56.53	99.83	-43.30
2		0.3750	65.19	-11.82	53.37	96.33	-42.96
3	*	0.4994	42.93	-11.86	31.07	73.83	-42.76
4		0.6270	39.12	-11.86	27.26	71.83	-44.57
5		3.4355	22.63	-12.10	10.53	70.00	-59.47
6		12.9200	18.96	-12.50	6.46	70.00	-63.54
Remark:							
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)							
2. QuasiPeak/AVG(dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)							
3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)							

Temperature:	23.5 °C	Relative Humidity:	46%
Test Voltage:	DC 9V		
Ant. Pol.	Ant. 90°		
Test Mode:	Mode 1		
Remark:	N/A		


No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB
1		0.2508	56.05	-11.67	44.38	99.83	-55.45
2		0.3751	49.73	-11.82	37.91	96.33	-58.42
3	*	0.4994	36.34	-11.86	24.48	73.83	-49.35
4		1.0048	27.57	-11.90	15.67	67.66	-51.99
5		3.4355	20.69	-12.10	8.59	70.00	-61.41
6		7.0997	18.08	-12.30	5.78	70.00	-64.22

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak/AVG(dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)

Attachment B-- Bandwidth Measurement Data

Frequency (KHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Result
125	8.383	7.208	PASS
<p>Keysight Spectrum Analyzer - Occupied BW</p> <p>RF 50 Ω DC SENSE:INT ALIGN AUTO 01:24:40 PM Nov 22, 2024</p> <p>VBW 10.000 kHz Center Freq: 125.000 kHz Radio Std: None</p> <p>IFGain:Low Trig: Free Run Avg Hold:>10/10 Radio Device: BTS</p> <p>10 dB/div Ref 20.00 dBm</p> <p>Center 125 kHz #Res BW 3 kHz #VBW 10 kHz Span 20 kHz Sweep 2.733 ms</p> <p>Occupied Bandwidth 7.208 kHz Total Power 10.7 dBm</p> <p>Transmit Freq Error 66 Hz % of OBW Power 99.00 %</p> <p>x dB Bandwidth 8.383 kHz x dB -20.00 dB</p>			

-----END OF REPORT-----

