

4.7. Radiated Spurious Emission Measurement

Test Specification

Frequency Range: 9 Measurement Distance: 3 m	NSI C63.10 (Hz to 25 (): 2013		MIDIE				
Measurement Distance: 3 r	10.							
	TESTIN TESTIN							
Antonno Polorization	n	TESTING	€ H	JAKTE		TESTING		
Antenna Polarization.	rizontal &	Vertical			0	IUAN		
Operation mode: Tra	ansmitting	mode w	ith modulat	tion				
	Frequency Detector		r RBW	VBW	STIME	Remark		
91	Hz- 150kHz	Quasi-pe	ak 200Hz	1kHz	Quas	i-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-pe	ak 9kHz	30kHz	Quas	i-peak Value		
3	0MHz-1GHz	Quasi-pe	ak 120KHz	300KHz	Quas	i-peak Value		
	bove 1GHz	Peak	1MHz	3MHz	Pe	eak Value		
<u>"v</u>	Above 1G112		1MHz	10Hz	Ave	rage Value		
	Frequency		Field Str (microvolts	s/meter)		Measurement Distance (meters)		
	0.009-0.4	. 15 50	2400/F(300			
_	0.490-1.705		24000/F	(KHz)	30			
_	1.705-30 30-88		30	100		30		
	88-216		150			3		
Limit:	216-96	200		TING	3			
	Above 9	500	11.4		3			
<u> </u>								
	Frequency		eld Strength rovolts/meter)	Measure Distan (mete	ice	Detector		
90,0	AL	TO WORK TE	500	JUAN 3	-/	Average		
	Above 1GHz	200	5000	3		Peak		

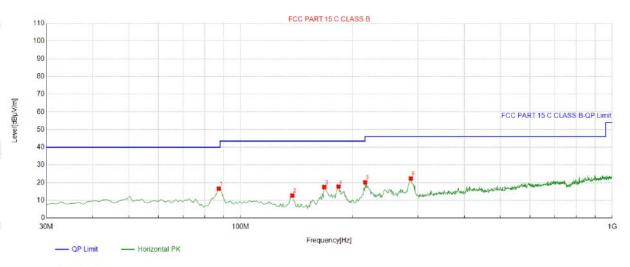
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

100			. 100		
	that vertical measurements of the lower level level measurements of the lower level le	which maxing surement are sions shall and plane. It is a least remain the area will be reported to any hold; and hold; and hold; and hold; and hold; are the surement where the surement was hold; and hold; are the surement where the surement	nizes the entenna elevate restricted above the end of the policable limited. Other orted. Other orted. Spectrum and enough end measure of kHz, VBW ement. Surement: Van 98 percent of than 98 percent of the	ground or real Factor + Cor = Level Hz, If the ender the peak determit, the peak wise, the ender the dusing the ender the fully capted; I GHz; VE function = peak for the ender the end the ender the end the en	ne eximum of heights of ference able Loss + hission level ctor is 3 dB cemission equasi-peak tings: ure the BW ≥RBW; eak; Trace = f > 1 GHz for z, when duty 1/T, when T is the ch the
Test results:	PASS				

FICATION

Test Instruments

	Radiated Em	nission Test Sit	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 19, 2025
Preamplifier	EMCI	EMC051845 S	HKE-006	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 19, 2025
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 19, 2025
6d Attenuator	Pasternack	6db	HKE-184	Feb. 19, 2025
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 19, 2025
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 20, 2026
Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	M. TESTING I MANUTESTING
RSE Test Software	Tonscend	JS36-RSE 5. 0.0	HKE-184	1

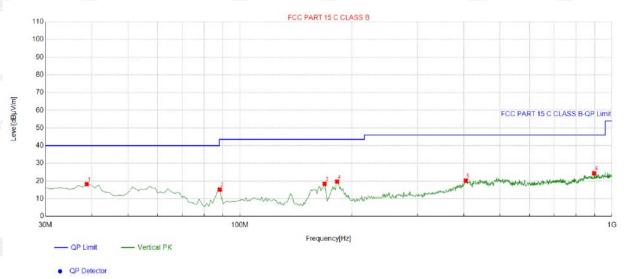

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal


QP Detector

Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	87.287287	-17.18	33.81	16.63	40.00	23.37	100	202	Horizontal			
2	137.77777	-17.87	30.58	12.71	43.50	30.79	100	71	Horizontal			
3	167.87787	-17.31	34.81	17.50	43.50	26.00	100	263	Horizontal			
4	183.41341	-15.63	33.39	17.76	43.50	25.74	100	263	Horizontal			
5	216.42642	-14.69	34.90	20.21	46.00	25.79	100	249	Horizontal			
6	287.30730	-12.28	34.65	22.37	46.00	23.63	100	180	Horizontal			

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

	Suspe	Suspected List											
,		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
	1	38.738739	-14.30	32.49	18.19	40.00	21.81	100	72	Vertical			
	2	88.258258	-17.03	32.16	15.13	43.50	28.37	100	103	Vertical			
3	3	168.84884	-17.23	35.59	18.36	43.50	25.14	100	200	Vertical			
	4	182.44244	-15.91	35.51	19.60	43.50	23.90	100	47	Vertical			
	5	404.79479	-9.83	30.03	20.20	46.00	25.80	100	267	Vertical			
	6	896.10610	-1.09	25.45	24.36	46.00	21.64	100	203	Vertical			

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3n	n (dBµV/m) L	Limit@3m (dBµV/m)		
TECTIVIS	HI PAR	- TESTING HUA	TESTING		
HUPIN	141	Jan-	HUPIN		
<u></u>	-SING	STIN	ic		
JUAN		- WAY			

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.21	-3.64	53.57	74	-20.43	peak
4824	40.93	-3.64	37.29	54	-16.71	AVG
7236	54.94	-0.95	53.99	74	-20.01	peak
7236	40.1	-0.95	39.15	54	-14.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
4824	54.82	-3.64	51.18	74	-22.82	peak	
4824	41.75	-3.64	38.11	54	-15.89	AVG	
7236	56.4	-0.95	55.45	74	-18.55	peak	
7236	39.44	-0.95	38.49	54	-15.51	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.75	-3.51	52.24	74	-21.76	peak
s 4874	40.39	-3.51	36.88	54	-17.12	AVG
7311	55.42	-0.82	54.6	74	-19.4	peak
7311	39.71	-0.82	38.89	54	-15.11	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

The city of the	UV	. 100	and MV		- 100	are VVV
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.77	-3.51	51.26	5 ^{771/6} 74	-22.74	peak
4874	40.58	-3.51	37.07	54	-16.93	AVG
7311	54.4	-0.82	53.58	74	-20.42	peak
7311	37.83	-0.82	37.01	54	-16.99	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.71	-3.43	53.28	74	-20.72	peak
4924	41.81	-3.43	38.38	54	-15.62	AVG
7386	54.32	-0.75	53.57	74	-20.43	peak
7386	37.37	-0.75	36.62	54	-17.38	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

. 0.13	A W	. 0.75	47.17		- 6.75	47.17
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	54.36	-3.43	50.93	74	-23.07	peak
4924	39.59	-3.43	36.16	54	-17.84	AVG
7386	55.87	-0.75	55.12	74	-18.88	peak
7386	38.94	-0.75	38.19	54	-15.81	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.43	-3.64	50.79	74	-23.21	peak
4824	39.82	-3.64	36.18	54	-17.82	AVG
7236	56.25	-0.95	55.3	74	-18.7	peak
7236	38.60	-0.95	37.65	54	-16.35	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.78	-3.64	52.14	74	-21.86	peak
4824	41.57	-3.64	37.93	54	-16.07	AVG
7236	55.70	-0.95	54.75	74	-19.25	peak
7236	39.39	-0.95	38.44	54	-15.56	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.12	-3.51	51.61	74	-22.39	peak
4874	42.20	-3.51	38.69	54	-15.31	AVG
7311	53.98	-0.82	53.16	74	-20.84	peak
7311	39.90	-0.82	39.08	54	-14.92	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 / 100	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.57	-3.51	51.06	74	-22.94	peak
4874	40.65	-3.51	37.14	54	-16.86	AVG
7311	56.29	-0.82	55.47	74	-18.53	peak
7311	38.86	-0.82	38.04	54	-15.96	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	55.77	-3.43	52.34	74	-21.66	peak
4924	40.42	-3.43	36.99	54	-17.01	AVG
7386	54.47	-0.75	53.72	74 HUP	-20.28	peak
7386	37.92	-0.75	37.17	54	-16.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Datastas
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	54.52	-3.43	51.09	74	-22.91	peak
4924	39.99	-3.43	36.56	54	-17.44	AVG
₂₅ ¹⁰ 7386	55.58	-0.75	54.83	74	-19.17	peak
7386	39.38	-0.75	38.63	54	-15.37	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	55.48	-3.64	51.84	74	-22.16	peak
4824	40.22	-3.64	36.58	54	-17.42	AVG
7236	54.62	-0.95	53.67	74	-20.33	peak
7236	39.91	-0.95	38.96	54	-15.04	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.26	-3.64	51.62	<i>§</i> 74	-22.38	peak
4824	41.71	-3.64	38.07	54	-15.93	AVG
7236	54.01	-0.95	53.06	74	-20.94	peak
7236	39.94	-0.95	38.99	54	-15.01	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	54.62	-3.51	51.11	74.00	-22.89	peak
4874	41.52	-3.51	38.01	54.00	-15.99	AVG
7311	56.20	-0.82	55.38	74.00	-18.62	peak
7311	39.51	-0.82	38.69	54.00	-15.31	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

	605555	CS(2392)		4055753	(NOS)
Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
55.32	-3.51	51.81	74.00	-22.19	peak
39.42	-3.51	35.91	54.00	-18.09	AVG
54.31	-0.82	53.49	74.00	-20.51	peak
39.97	-0.82	39.15	54.00	-14.85	AVG
	(dBµV) 55.32 39.42 54.31	(dBμV) (dB) 55.32 -3.51 39.42 -3.51 54.31 -0.82	(dBμV) (dB) (dBμV/m) 55.32 -3.51 51.81 39.42 -3.51 35.91 54.31 -0.82 53.49	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.32 -3.51 51.81 74.00 39.42 -3.51 35.91 54.00 54.31 -0.82 53.49 74.00	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.32 -3.51 51.81 74.00 -22.19 39.42 -3.51 35.91 54.00 -18.09 54.31 -0.82 53.49 74.00 -20.51

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	56.07	-3.43	52.64	74	-21.36	peak
4924	39.48	-3.43	36.05	54	-17.95	AVG
7386	55.46	-0.75	54.71	74 min	-19.29	peak
7386	38.34	-0.75	37.59	54	-16.41	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

v Ci tiodi.	a UDI	101	The same of the sa		1010	and ADI
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	55.23	-3.43	51.8	55TMG 74	-22.2	peak
4924	39.86	-3.43	36.43	54	-17.57	AVG
7386	56.03	-0.75	55.28	74	-18.72	peak
7386	38.98	-0.75	38.23	54	-15.77	AVG
			1177	V-100-7		1111

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2310	56.42	-5.81	50.61	74	-23.39	peak
2310	CLING HUAN	-5.81	UG / STING	54	1	AVG
2390	56.49	-5.84	50.65	74	-23.35	peak
2390	I	-5.84	1	54	1	AVG
2400	56.44	-5.84	50.6	₅ 74	-23.4	peak
2400	ALLAK TESS /	-5.84	HUAKTES	54	WAK TEL	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Data ata a Tura
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
54.26	-5.81	48.45	74	-25.55	peak
1	-5.81	9	54	9 1	AVG
55.76	-5.84	49.92	74	-24.08	peak
VAK TESTING	-5.84	/ JAKTEST	54	LAKTESTING	AVG
54.35	-5.84	48.51	74	-25.49	peak
1	-5.84	1	54	ESTING /	AVG
	54.26 / 55.76	54.26 -5.81 / -5.81 55.76 -5.84 / -5.84 54.35 -5.84	54.26 -5.81 48.45 / -5.81 / 55.76 -5.84 49.92 / -5.84 / 54.35 -5.84 48.51	54.26 -5.81 48.45 74 / -5.81 / 54 55.76 -5.84 49.92 74 / -5.84 / 54 54.35 -5.84 48.51 74	54.26 -5.81 48.45 74 -25.55 / -5.81 / 54 / 55.76 -5.84 49.92 74 -24.08 / -5.84 / 54 / 54.35 -5.84 48.51 74 -25.49

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.04	-5.65	51.39	74	-22.61	peak
2483.50	STING /	-5.65	NK ESTING	54	1	AVG
2500.00	53.91	-5.65	48.26	74	-25.74	peak
2500.00	UG WHUA	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

vertiour.				T		T
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.81	-5.65	51.16	74	-22.84	peak
2483.50	STING /	-5.65	TESTING	54	1	AVG
2500.00	55.87	-5.65	50.22	74	-23.78	peak
2500.00	1 411/4	-5.65	1	54	/	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.2	-5.81	49.39	74	-24.61	peak
2310	ESTING /	-5.81	Y ESTING	54	1	AVG
2390	55.37	-5.84	49.53	74	-24.47	peak
2390	A HUAN	-5.84	1	54	1	AVG
2400	55.2	-5.84	49.36	74	-24.64	peak
2400	1	-5.84	1	54	9 1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

v Ci tioui.	4 83	450h T1	400 T	ACADA Y	,	4506. 5
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.77	-5.81	48.96	74	-25.04	peak
2310	/ HUAN	-5.81		54	1	AVG
2390	55.37	-5.84	49.53	74	-24.47	peak
2390	1	-5.84	· /	54	1	AVG
2400	56.65	-5.84	50.81	74	-23.19	peak
2400	NAKTESTI	-5.84	HUAKTEST	54	UAKTESTI	AVG
1000	A [*]	10.0003	103/02	1055211	h	PENG1

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.47	-5.65	48.82	74	-25.18	peak
2483.50	miG I	-5.65	1	54	ESTING /	AVG
2500.00	56.52	-5.65	50.87	74	-23.13	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.26	-5.65	48.61	74	-25.39	peak
2483.50	1	-5.65	1	54	TESTING /	AVG
2500.00	56.39	-5.65	50.74	74	-23.26	peak
2500.00	1	-5.65	/	54	s / ®	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.26	-5.81	50.45	74	-23.55	peak
2310	niG /	-5.81	1	54	ESTING /	AVG
2390	55.22	-5.84	49.38	74	-24.62	peak
2390	1	-5.84	1	54	1	AVG
2400	54.95	-5.84	49.11	74	-24.89	peak
2400	1	-5.84	I Jak	54	HUAKTE	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

vortioai.	1800	. 400	. 1001		. 1000	. 500
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.32	-5.81	49.51	74 HUAK	-24.49	peak
2310	1	-5.81	(a) 1	54	1 🧶	AVG
2390	55.87	-5.84	50.03	74	-23.97	peak
2390	NAKTESTIL /	-5.84	HUAN TESTIN	54	MAK TOTAL	AVG
2400	56.45	-5.84	50.61	74	-23.39	peak
2400	1	-5.84	I	54	I	AVG
		•		11.7	•	-

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2483.50	55.12	-5.65	49.47	74	-24.53	peak
2483.50	nig 1	-5.65	1	54	K TESTING	AVG
2500.00	54.23	-5.65	48.58	74	-25.42	peak
2500.00	1	-5.65	1	54	· /	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

TOI GOOGI.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.16	-5.65	50.51	74	-23.49	peak
2483.50	1	-5.65	1	54	V TESTING	AVG
2500.00	55.81	-5.65	50.16	74	-23.84	peak
2500.00	1	-5.65)	54	₁ 6 1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

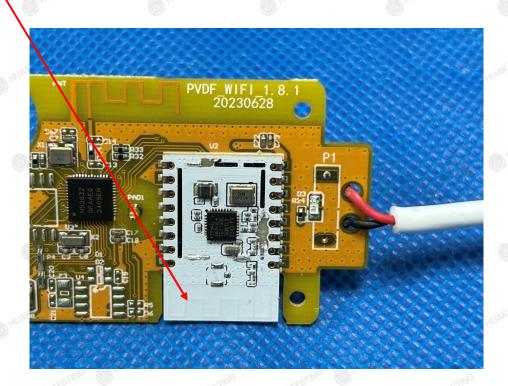
Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.8. Antenna Requirement

Standard Applicable

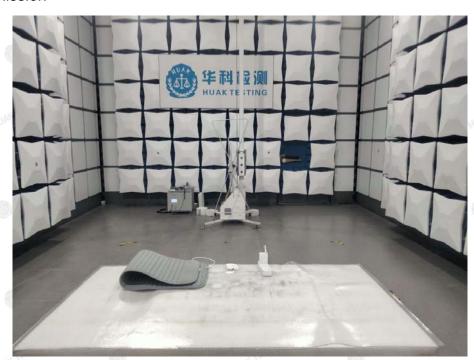
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna. It conforms to the standard requirements. The directional gains of antenna used for transmitting is -0.25dBi.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photograph of Test

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.