

Test Report

Prepared for: Alzatex, Inc

Model: SG300A

FCC ID: 2BMBO-ALZASPEED

ISED ID: 33560-ALZASPEED

Serial Number: SG20002

Project No: p24b0007

Test Results: Pass

To

FCC Part 15.245

and

RSS-210: Issue 11 (June25, 2024)

Date of Issue: April 23, 2025

On the behalf of the applicant:

Alzatex, Inc.
6400 SE 82nd Ave
Aloha, OR 97078

Attention of:

Terry Lang
Ph: (503) 642-9693
E-Mail: terryl@alzatex.com

Prepared By:

Compliance Testing, LLC
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com
ANAB Cert#: AT-2901
FCC Site Reg. #US2901
ISED Site Reg. #2044A-2

Reviewed / Authorized By:

**Greg Corbin,
Project Test Engineer**

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested. All samples were selected by the customer.

Test Results Summary

Test Date Range: April 17 – April 23, 2025

Specification		Test Name	Pass, Fail, N/A	Comments
FCC	ISED			
15.245 (b)	RSS-210 Annex F.1(a)	Fundamental Field Strength	Pass	
2.1049	RSS-GEN 6.7	Occupied Bandwidth	N/A	Not applicable to a CW signal
15.245(b), 15.245(b)(1)(i), 15.245(b)(3), 15.209(a), 15.205	Annex F.1(a) Annex F.1(i) Annex F.1(ii) Annex F.1(e) RSS-GEN 8.9 RSS-GEN 8.10	Radiated Spurious`	Pass	
15.207	RSS-GEN 8.8	AC Powerline Conducted Emission	Pass	

Statements of conformity are reported as:

- Pass - the measured value is below the acceptance limit, *acceptance limit = test limit*.
- Fail - the measured value is above the acceptance limit, *acceptance limit = test limit*.

References/Methods	Description
ANSI C63.4-2014	Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz.
ANSI C63.10:2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ISO/IEC 17025:2017	General requirements for the Competence of Testing and Calibrations Laboratories

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	4/23/2025	Greg Corbin	Original Document
2.0	8/11/2025	Greg Corbin	Changed limits from Class A to Class B on pages 26 and 27

Table of Contents

<u>Description</u>	<u>Page</u>
TEST RESULTS SUMMARY	2
EUT DESCRIPTION	7
TEST SETUP AND MODES OF OPERATION	8
FUNDAMENTAL FIELD STRENGTH	9
RADIATED SPURIOUS EMISSIONS	11
AC POWERLINE CONDUCTED EMISSIONS.....	25
TEST EQUIPMENT UTILIZED.....	28
MEASUREMENT UNCERTAINTY.....	29

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to <http://www.compliancetesting.com/labscope.html> for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Authorization Requirements

Intentional Radios may require authorization covered under the following rule parts or standards:

-47 CFR Part 2 Subpart J

-RSS-Gen — General Requirements for Compliance of Radio Apparatus

Standard Engineering Practices

Unless otherwise indicated, the procedures contained in ANSI C63.10 and ANSI C63.4 were observed during testing.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing. Measurement results, unless otherwise noted, are worst case measurement.

Standard Test Conditions and Engineering Practices

Unless otherwise indicated in the specific measurement results, the ambient temperature was maintained within the range of 10° to 40°C (50° to 104°F) and the relative humidity levels were in the range of 10% to 90%.

Environmental Conditions		
Temperature (°C)	Humidity (%)	Barometric Pressure (mbar)
23.3 – 27.4	25.5 – 32.9	963.6 – 975.4

EUT Description

Model:	SG300A
Serial:	SG20002
Firmware:	V0.08H
Software:	N/A
HVIN	SG300A
PMN	alzaSpeed
UPN	alzaSpeed
FVIN	V0.08
Description:	Radar Speed Gun
Additional Information:	Freq Range = 24075 – 24175 GHz Modulation = CW
Receipt of Sample(s):	3/26/2025
EUT Condition:	<p>Visual Damage No</p> <p>State of Development Production/Production Equivalent</p>

15.203: Antenna Requirement:

The antenna is permanently attached to the EUT

The antenna uses a unique coupling

The EUT must be professionally installed

The antenna requirement does not apply

Test Setup and Modes of Operation

For all tests, the EUT was placed in CW mode of operation.

EUT Operation during Tests

The EUT CW transmitter is turned on by depressing the trigger. The transmitter stays on until the trigger is depressed a 2nd time.

The EUT is DC powered. It can be powered with rechargeable batteries or a 15v AC to DC converter.

For AC powerline tests, the unit was tested using the AC to DC converter supplied by the manufacturer, with internal batteries installed.

For all the RF tests, the radar gun was powered by internal batteries with the external display connected.

Accessories:				
Qty	Description	Manufacturer	Model	S/N
1	External Display	Alzatex	DSP-6025A-TOA	N/A
1	AC to DC Power Supply	Triad	WSU150-1600	N/A

Cables:						
Qty	Description	Length (M)	Ferrites (Y/N)	Shielding Y/N	Shielded Hood Y/N	Termination / Connection
1	RS 232 cable	2	N	N	N	External Display to Radar Gun

Modifications:	None
-----------------------	------

Fundamental Field Strength

Engineer: Greg Corbin
 Test Date: 4/17/2025

Test Procedure

The EIRP was measured using the procedures outlined in ANSI C63.10:2013 section 9.

The radiated output power was measured in normal operation with the CW signal transmitting continuously.

The EUT CW output was recorded at 24.120 GHz at a 3 meter distance with the spectrum analyzer. 2 measurements were recorded. 1 with the Average detector and 1 with a peak detector set to max hold.

RBW = 1 MHz

VBW = 3 MHz

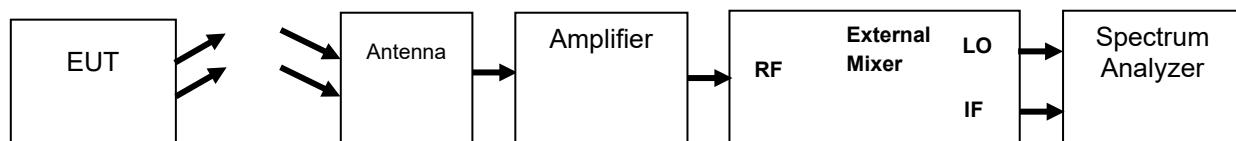
Raw data was recorded with all correction factors added manually in the table below.

The Fundamental Field Strength was calculated using Equation 19 in ANSI C63.10-2020.

C63.10-2020, EQ 19

$$E = 126.8 - 20 \log(\lambda) + P - G$$

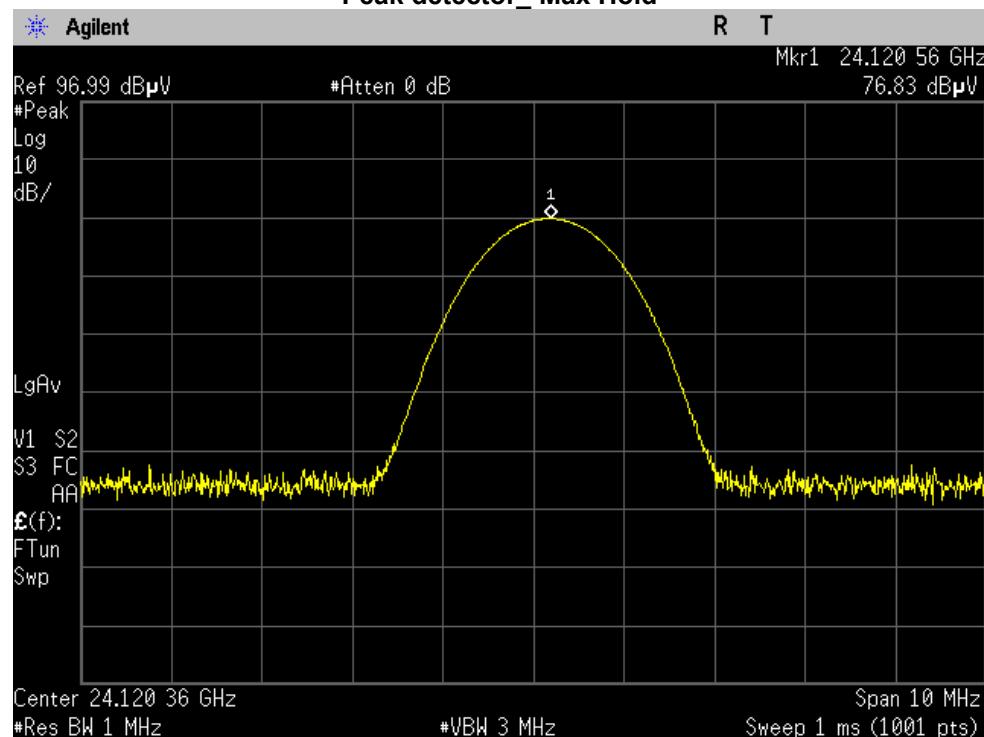
E is the field strength of the emission at the measurement distance, in dB_{uV/m}

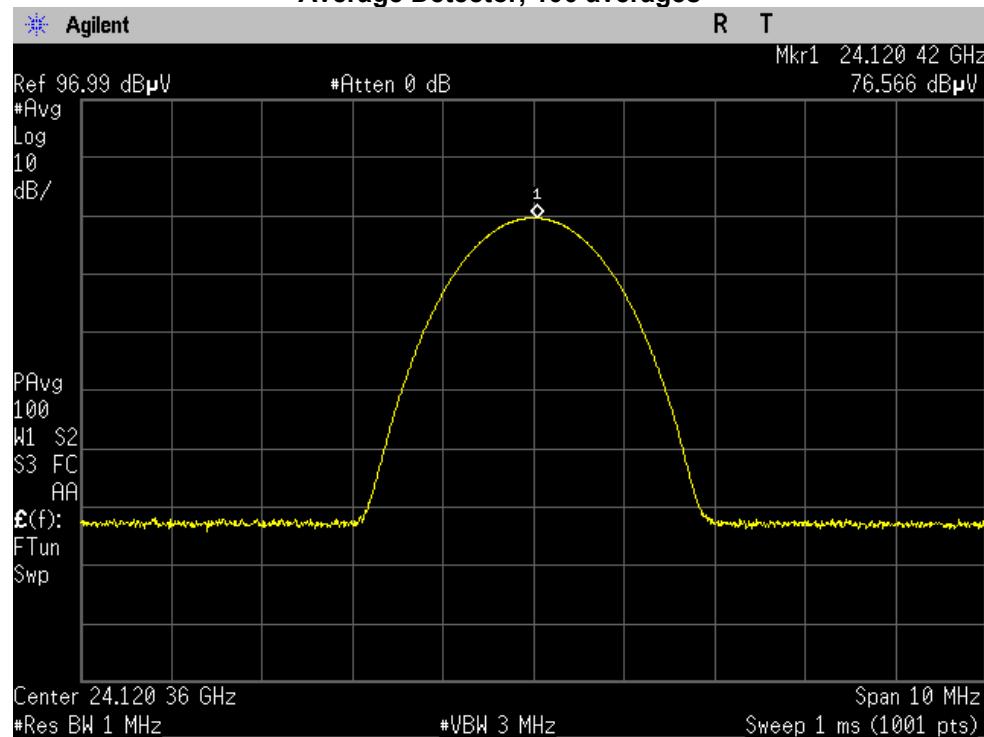

λ is the wavelength of the emission under investigation [300/f(MHz)], in m

P is the power measured at the output of the measurement antenna, in dBm

G is the gain of the measurement antenna, in dBi

NOTE—The measured power P includes all applicable instrument correction factors up to the connection to the measurement antenna


Test Setup


Radiated Output Power Test Results

Freq	Amplitude		Det	λ Wave-length	Part of "P"			G	P	E	Limit	Margin
	Radiated Spurious (raw data)				Cable Insertion Loss	Ext. Amplifier Gain	RX Mixer C/F					
Freq	Amplitude		PK / AVG		dB	dB	dB	RX Ant Gain	dBm	dB _{uV/m}	dB _{uV/m}	
MHz	dB _{uV}	dBm										
24120	76.57	-30.43	Avg	0.012437811	3.29	0	0.00	12.16	-27.14	125.61	128.00	-2.39
24120	76.83	-30.17	Peak	0.012437811	3.29	0	0.00	12.16	-26.88	125.87	148.00	-22.13

Output Power_
24.120 GHz
Peak detector_ Max Hold

Average Detector, 100 averages

Radiated Spurious Emissions

Engineer: Greg Corbin

Test Date: 4/17/25, 4/22/2025

Test Procedure

Radiated spurious emissions were recorded in an anechoic chamber with the EUT at a 3-meter distance for measurements from 30 MHz to 100 GHz.

For 30 MHz to 1 GHz and 1 – 18 GHz an automated program was used to record the spurious emissions. The raw data from those measurements were used in the table below to calculate the final emission levels.

For 18 – 100 GHz raw data was recorded, and the correction factors were added in the spurious emission tables below.

If no spurious signals were observed, the spectrum analyzer noise floor was recorded.

The highest emission was recorded in the table below for each frequency band.

A QP detector was used for 30 – 1000 MHz.

An Average and Peak detector was used for 1 – 100 GHz.

RBW = 100 kHz (30 – 1000 MHz)

RBW = 1 MHz (1 – 200 GHz)

VBW = 3x RBW

Spurious limits fall into 2 categories.

Harmonic Limits are 25 mv/m (88 dBuV Avg, 108 dBuV Peak)

Spurious limits are 50 dBc or 15.209 limits, whichever is less stringent of the 2 values. For this EUT the 50 dBc limit was used.

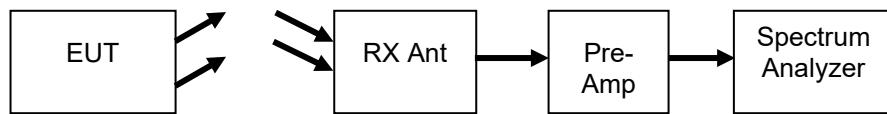
Field Strength limits are calculated using EQ 19 in C63.10-2020

C63.10-2020, EQ 19

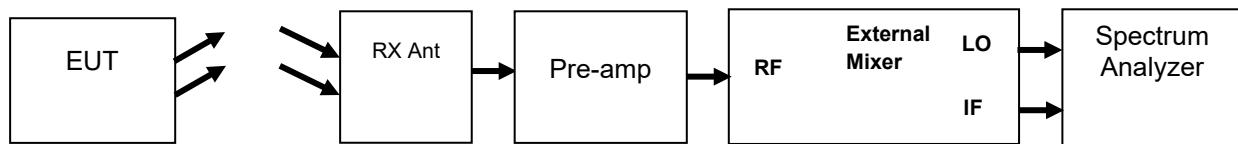
$$E = 126.8 - 20 \log(\lambda) + P - G$$

E is the field strength of the emission at the measurement distance, in dBuV/m

λ is the wavelength of the emission under investigation [300/f(MHz)], in m


P is the power measured at the output of the measurement antenna, in dBm

G is the gain of the measurement antenna, in dBi


NOTE—The measured power P includes all applicable instrument correction factors up to the connection to the measurement antenna

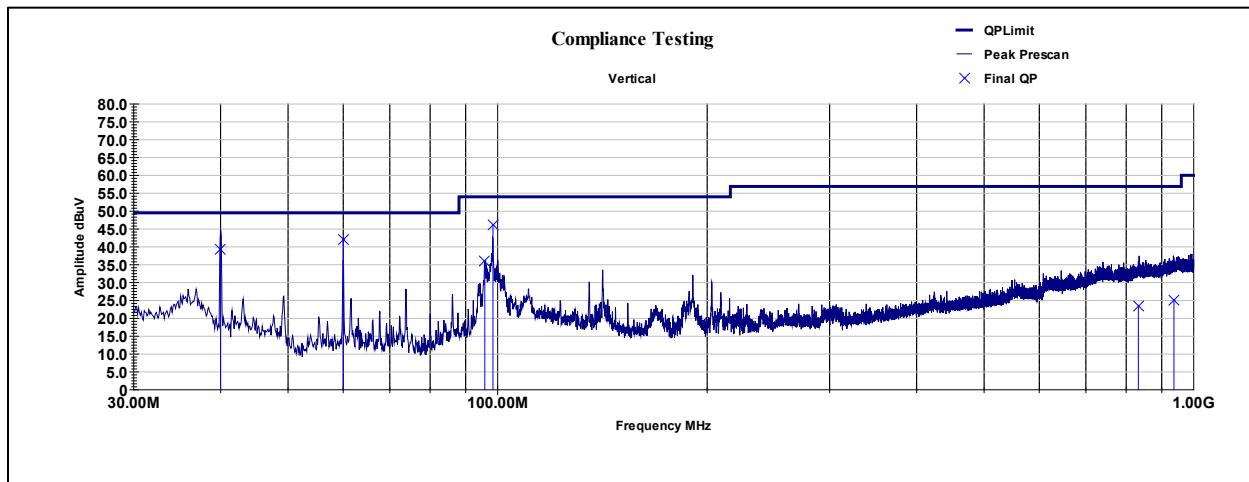
Test Set-ups

30 MHz – 50 GHz

50 – 100 GHz

Radiated Spurious Emissions Test Results

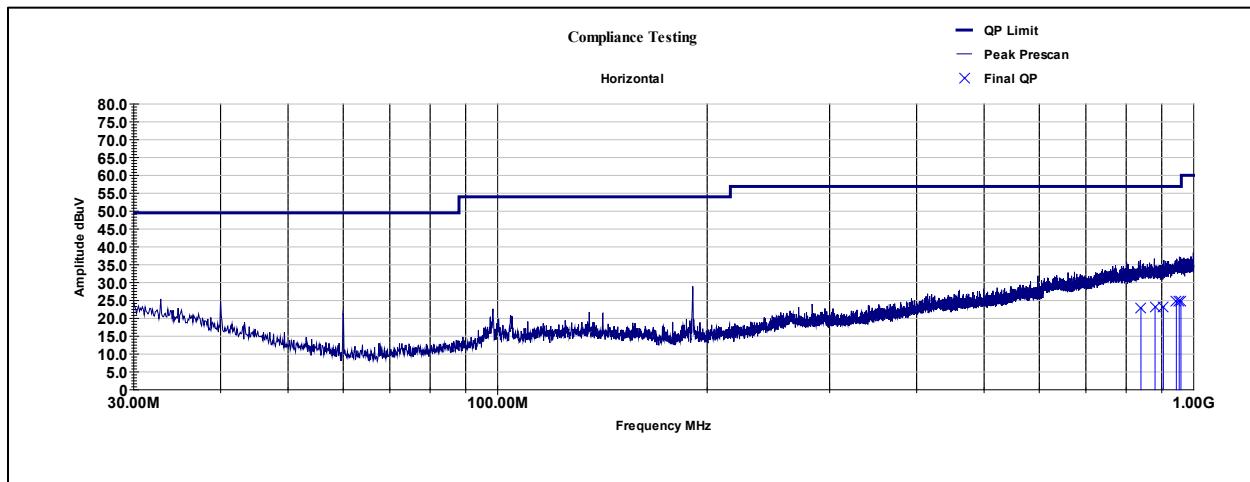
30 MHz to 100 GHz Spurious Emissions


Freq Range	Freq	Amplitude		Det	λ	Part of "P"			G	P	E	-----	Margin
	Radiated Spurious (raw data)					Cable Insertion Loss	Ext. Amp Gain	RX Mixer C/F	RX Ant Gain	RX Power Level	Field Strength Limit FCC and ISED		
	Freq	Amplitude				dB	dB	dB	dB	dBm	dB μ V/m	dB μ V/m	dB
GHz	MHz	dB μ V	dBm	QP PK AVG									
0.30 - 1	60.01	66.64	-40.36	QP	5.00	1.15	36.43	0.00	-4.10	-75.64	41.28	49.50	-8.22
1 - 18	14599.39	32.2	-74.80	Avg	0.02054 8804	14.35	49.88	0.00	8.88	-110.33	41.33	75.61	-34.27
1 - 18	14599.39	45.7	-61.30	Peak	0.02054 8804	14.35	49.88	0.00	8.88	-96.83	54.83	75.87	-21.03
18 - 40	18242	30.12	-76.88	Avg	0.01644 5565	15.33	47.05	0.00	10.56	-108.60	43.32	75.61	-32.29
18 - 40	18238	41.37	-65.63	Peak	0.01644 9172	15.33	47.05	0.00	10.56	-97.35	54.57	75.87	-21.30
40 - 45	40005	44.35	-62.65	Avg	0.00749 9063	7.16	45.89	0.00	23.10	-101.38	44.82	75.61	-30.79
40 - 45	40235	55.37	-51.63	Peak	0.00745 6195	7.28	45.82	0.00	23.12	-90.17	56.06	75.87	-19.81
45 - 50	46192	44.43	-62.57	Avg	0.00649 4617	8.31	47.08	0.00	23.39	-101.34	45.82	75.61	-29.79
45 - 50	46047	55.24	-51.76	Peak	0.00651 5082	8.28	47.06	0.00	23.38	-90.54	56.60	75.87	-19.26
50 - 75	55128	5.52	-101.48	Avg	0.00544 1881	0.50	40.58	43.66	22.82	-97.90	51.37	75.61	-24.24
50 - 75	50476	16.85	-90.15	Peak	0.00594 3419	0.50	43.76	42.61	22.44	-90.80	58.08	75.87	-17.79
75 - 100	97656	7.34	-99.66	Avg	0.00307 2008	1.00	36.89	43.67	23.34	-91.88	61.83	75.61	-13.77
75 - 100	99369	18.18	-88.82	Peak	0.00301 9050	1.00	38.23	44.00	23.36	-82.05	71.79	75.87	-4.07

2nd and 3rd Harmonic Emissions

Freq Range	Freq	Amplitude		Det	λ	Part of "P"			G	P	E	-----	Margin
	Radiated Spurious (raw data)					Cable Insertion Loss	Ext. Amp Gain	RX Mixer C/F	RX Ant Gain	RX Power Level	Field Strength Limit FCC and ISED		
	Freq	Amplitude				dB	dB	dB	dB	dBm	dB μ V/m	dB μ V/m	dB
GHz	MHz	dB μ V	dBm	QP PK AVG									
40 - 50	48237	40.69	-66.31	Avg	0.00649 4617	5.48	0.00	0.00	23.41	-60.83	86.69	88.00	-1.31
40 - 50	48238	45.62	-61.38	Peak	0.00651 5082	5.48	0.00	0.00	23.41	-55.90	91.62	108.00	-16.38
50 - 75	72355	18.15	-88.85	Avg	0.00544 1881	0.50	33.65	48.95	23.40	-73.05	78.00	88.00	-10.00
50 - 75	72355	18.63	-88.37	Peak	0.00594 3419	0.50	33.65	48.95	23.40	-72.57	78.48	108.00	-29.52

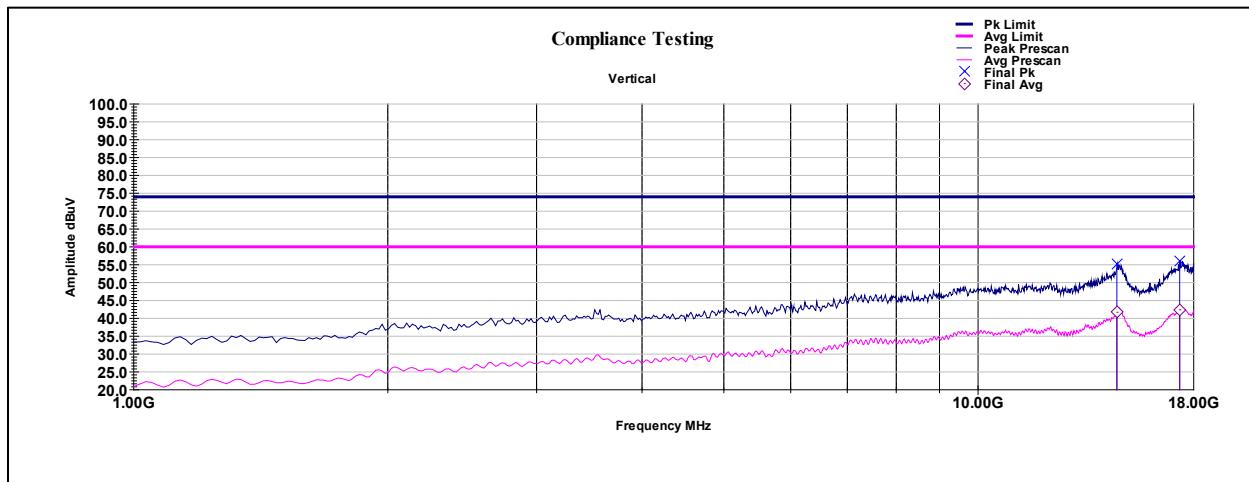
Radiated Spurious Emissions Plots


30 – 1000 MHz Vertical

30 – 1000 MHz Vertical

Note: Used Raw data from this table for the Field Strength calculations

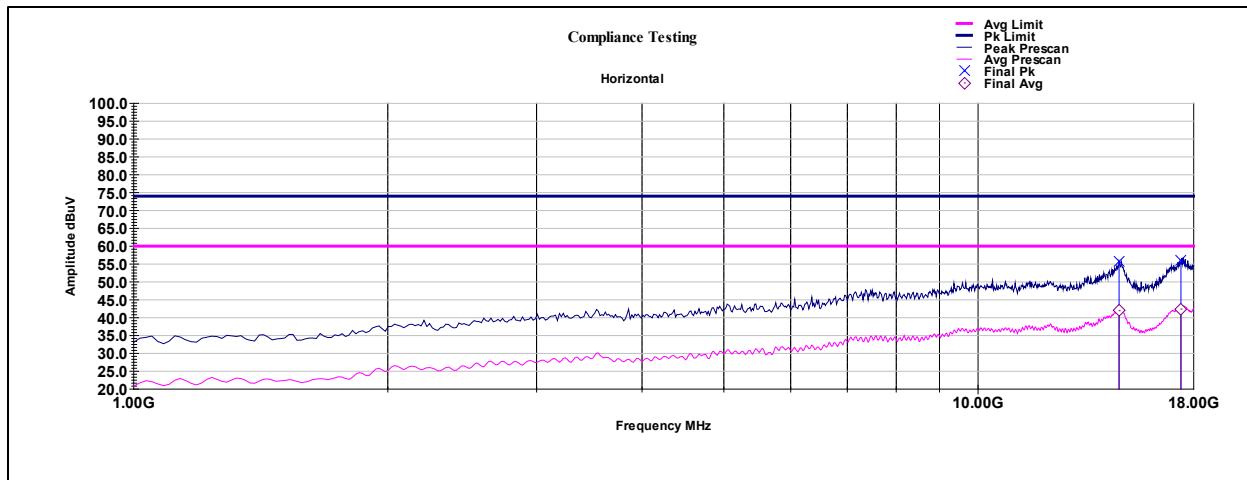
Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
39.984	101.00	175.00	57.58	-18.18	39.40	49.50	-10.10
60.01	228.00	175.00	66.64	-24.56	42.10	49.50	-7.40
95.851	228.00	208.00	56.27	-20.22	36.00	54.00	-18.00
98.458	65.00	221.00	65.75	-19.65	46.10	54.00	-7.90
832.87	59.00	395.00	25.56	-2.20	23.40	56.90	-33.50
936.902	173.00	293.00	25.27	-0.26	25.00	56.90	-31.90
Final = Raw + Path Loss							
Margin = Final - Limit							


30 – 1000 MHz
 Horizontal

 30 – 1000 MHz
 Horizontal

Note: Used Raw data from this table for the Field Strength calculations

Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
840.076	51.00	325.00	25.53	-2.77	22.80	56.90	-34.10
880.09	65.00	285.00	25.51	-2.31	23.20	56.90	-33.70
904.712	291.00	394.00	25.39	-2.11	23.30	56.90	-33.60
944.364	228.00	117.00	25.29	-0.61	24.70	56.90	-32.20
953.47	240.00	177.00	25.29	-0.54	24.80	56.90	-32.10
953.47	240.00	177.00	25.29	-0.54	24.80	56.90	-32.10
958.85	33.00	400.00	25.21	-0.51	24.70	56.90	-32.20
953.47	240.00	177.00	25.29	-0.54	24.80	56.90	-32.10
Final = Raw + Path Loss							


Margin = Final - Limit

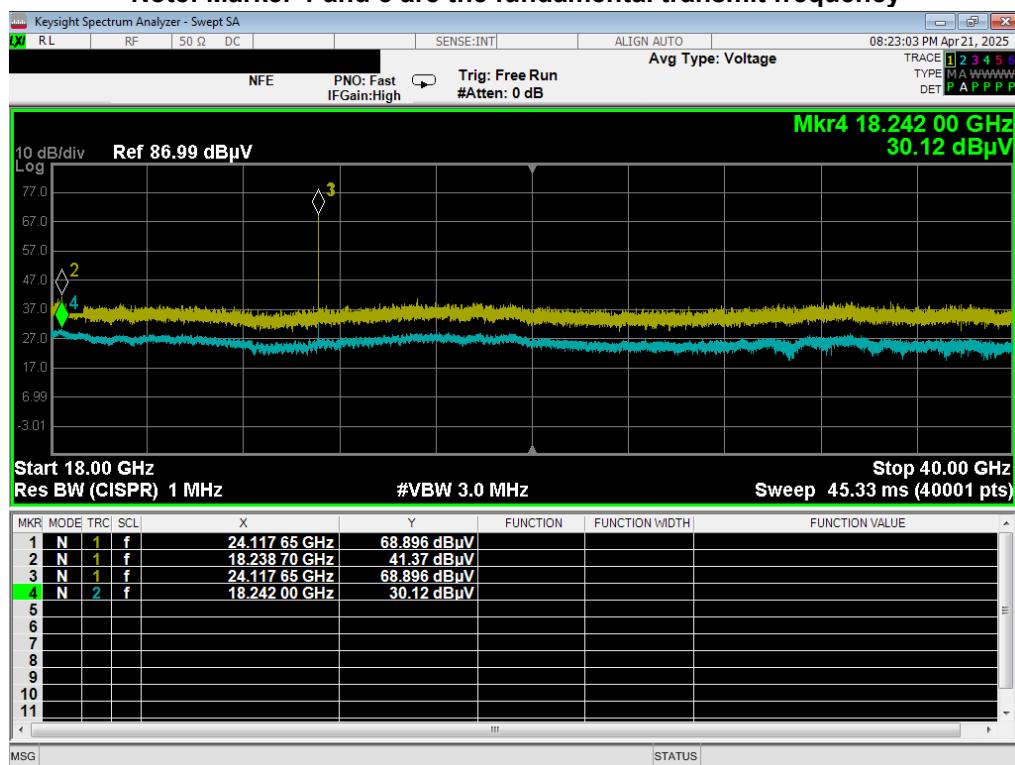
1 - 18 GHz

 1 - 18 GHz
 Vertical

 1 - 18 GHz
 Vertical

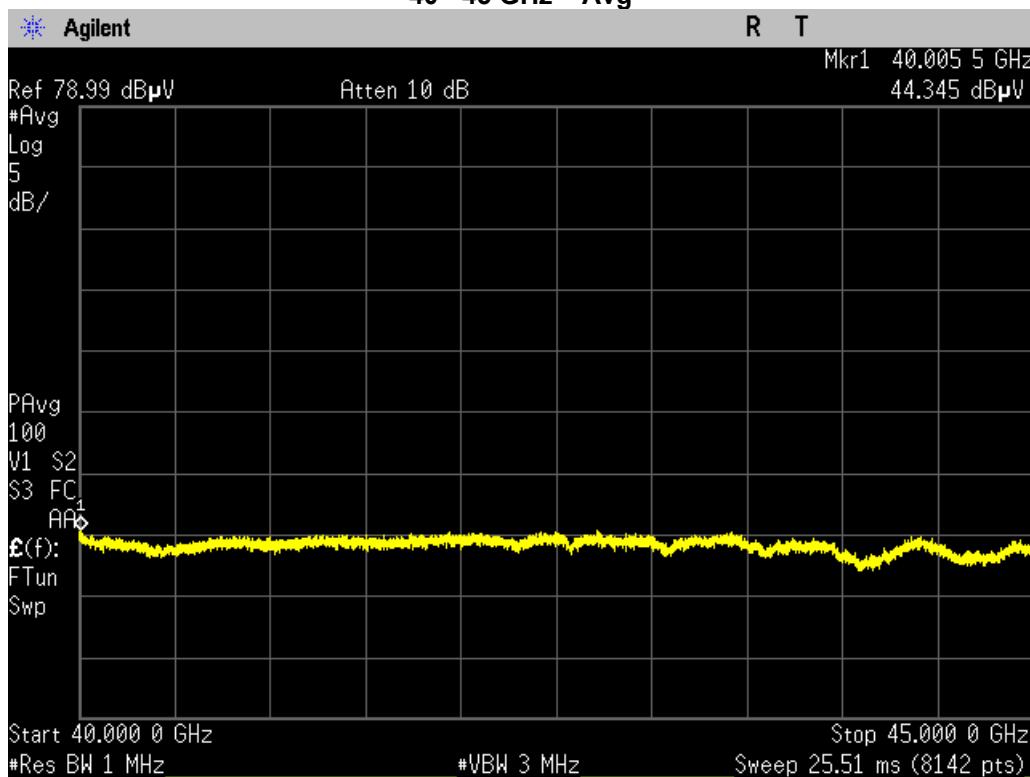
Note: Used Raw data from this table for the Field Strength calculations

Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
14599390000	326.00	121.00	45.70	32.21	9.49	55.19	74.00	-18.81	41.69	60	-18.31
17327230000	233.00	117.00	43.50	29.83	12.55	56.05	74.00	-17.95	42.38	60	-17.62
Final = Raw + Path Loss											
Margin = Final - Limit											

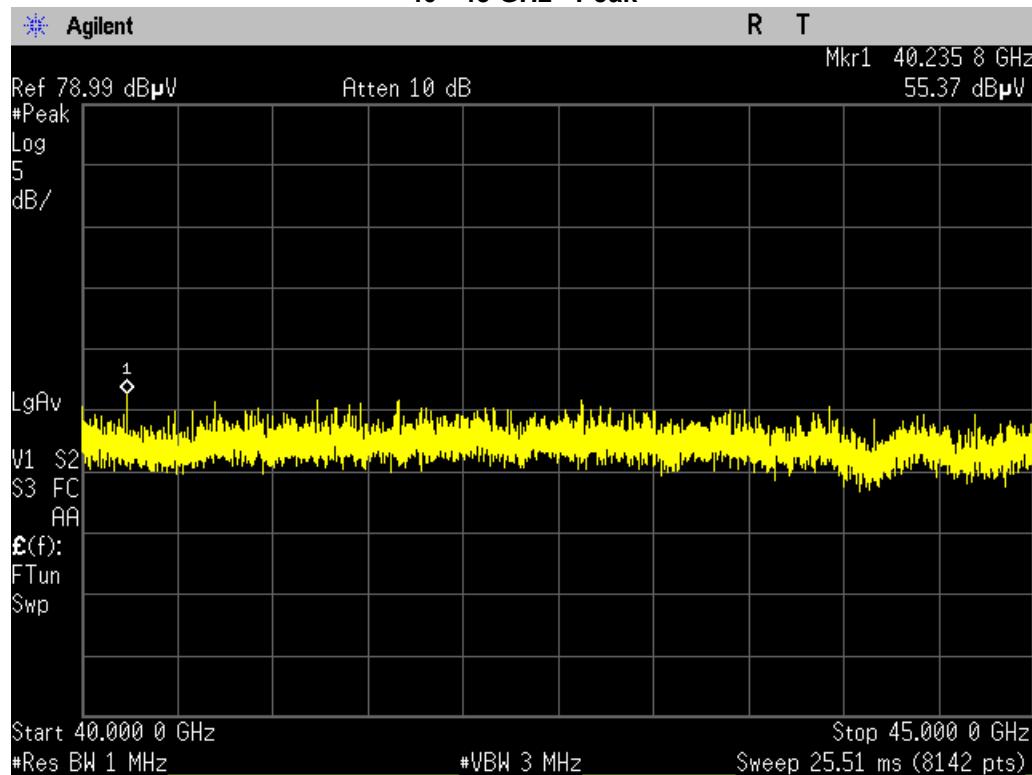

1 – 18 GHz
 Horizontal

 1 – 18 GHz
 Horizontal

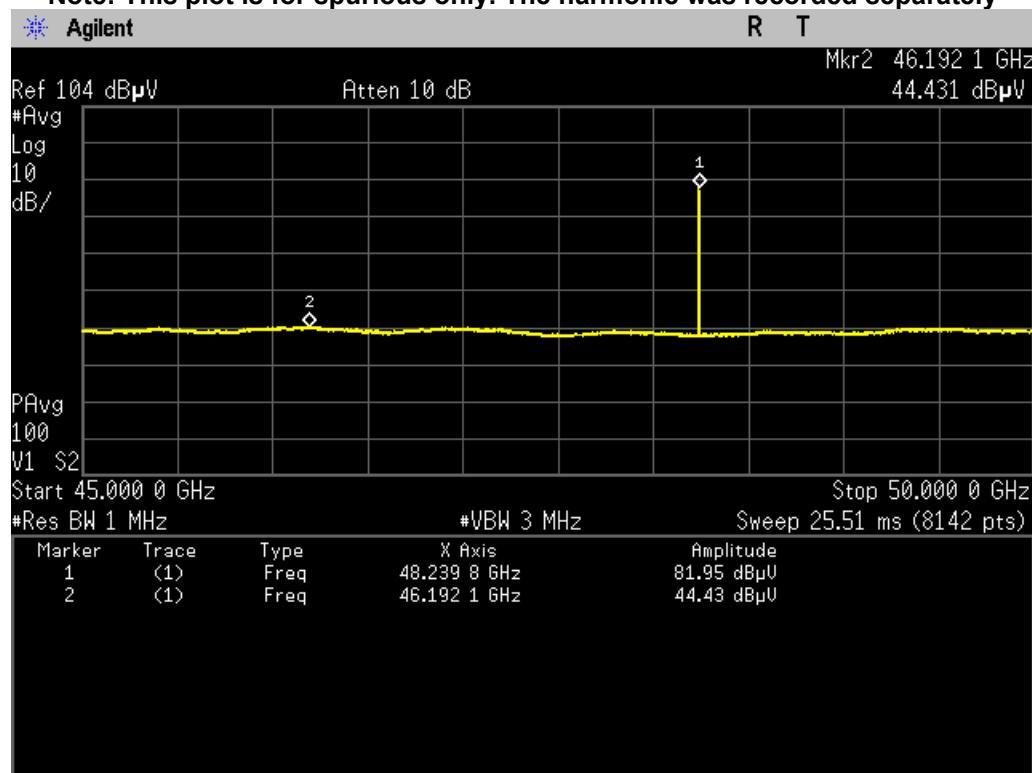
Note: Used Raw data from this table for the Field Strength calculations

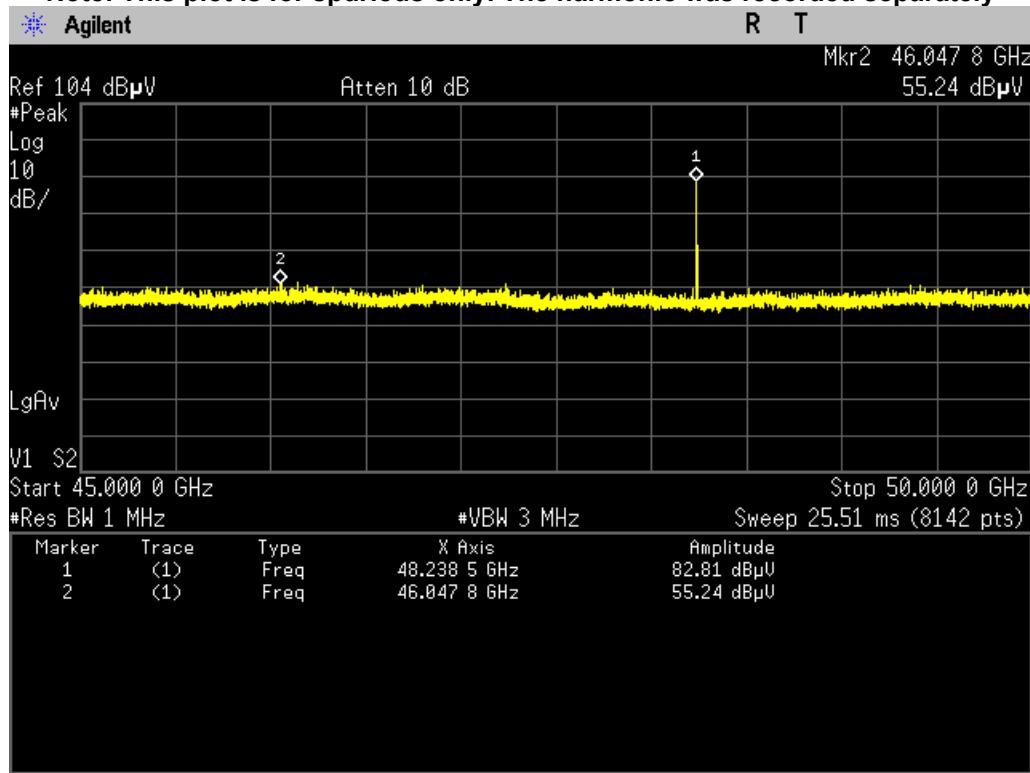
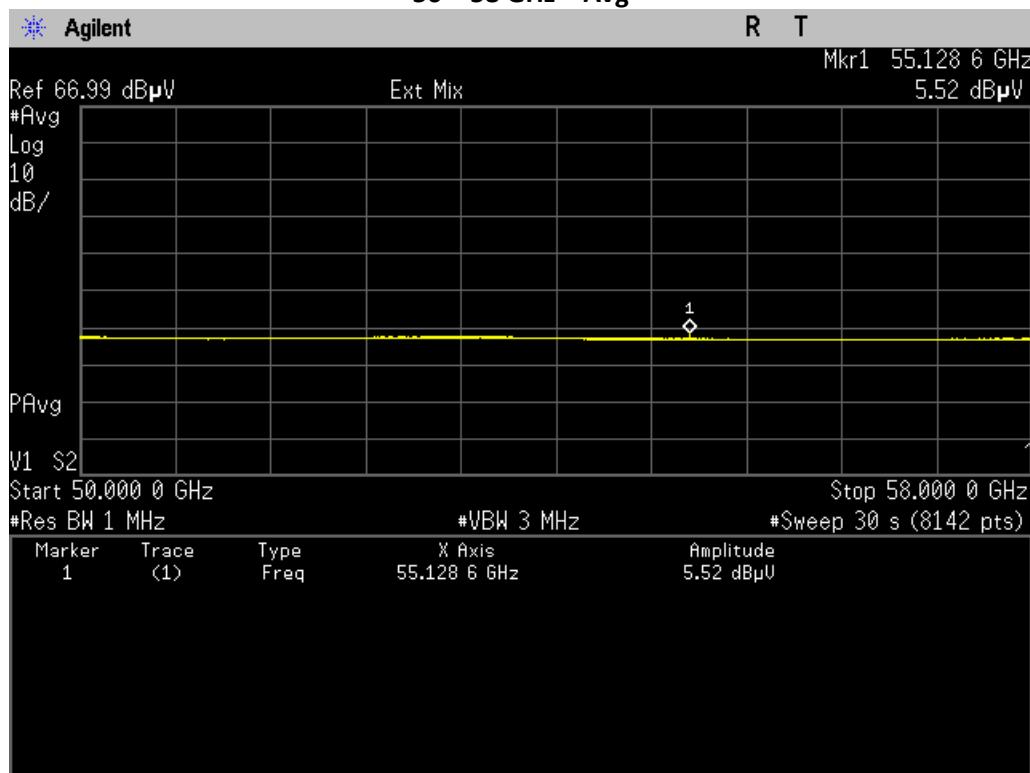

Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
14688630000	275.00	140.00	45.61	31.87	10.07	55.67	74.00	-18.33	41.93	60	-18.07
17385560000	251.00	105.00	42.99	29.44	12.93	55.92	74.00	-18.08	42.37	60	-17.63
Final = Raw + Path Loss											
Margin = Final - Limit											

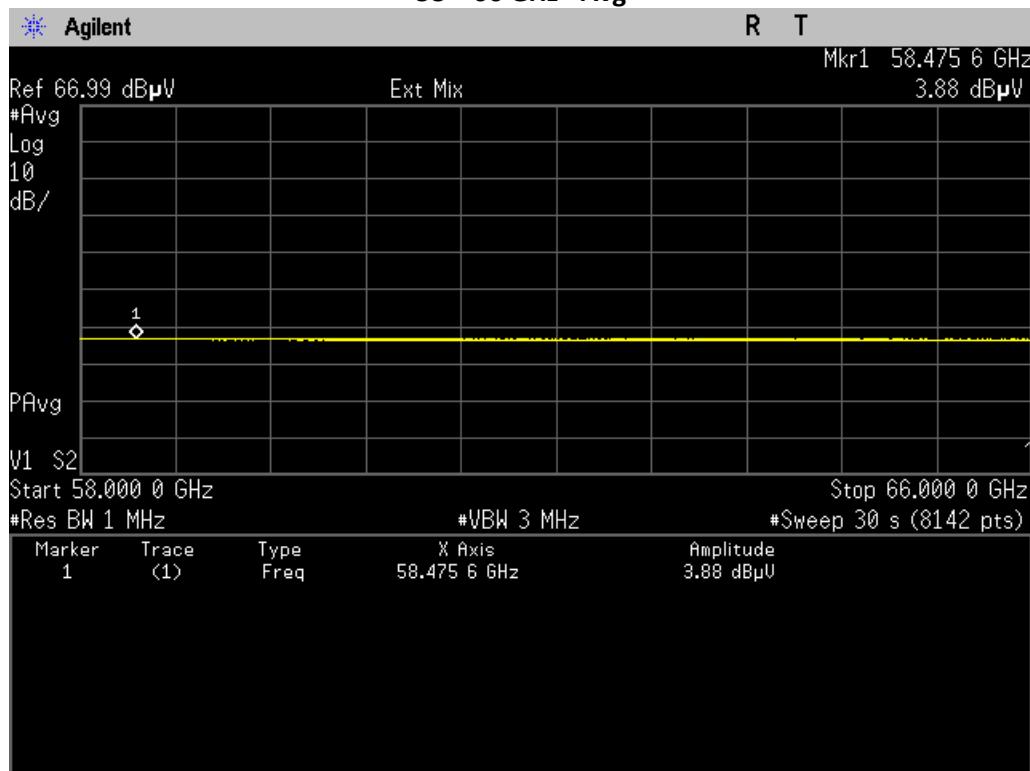
18 – 40 GHz


Note: Marker 1 and 3 are the fundamental transmit frequency

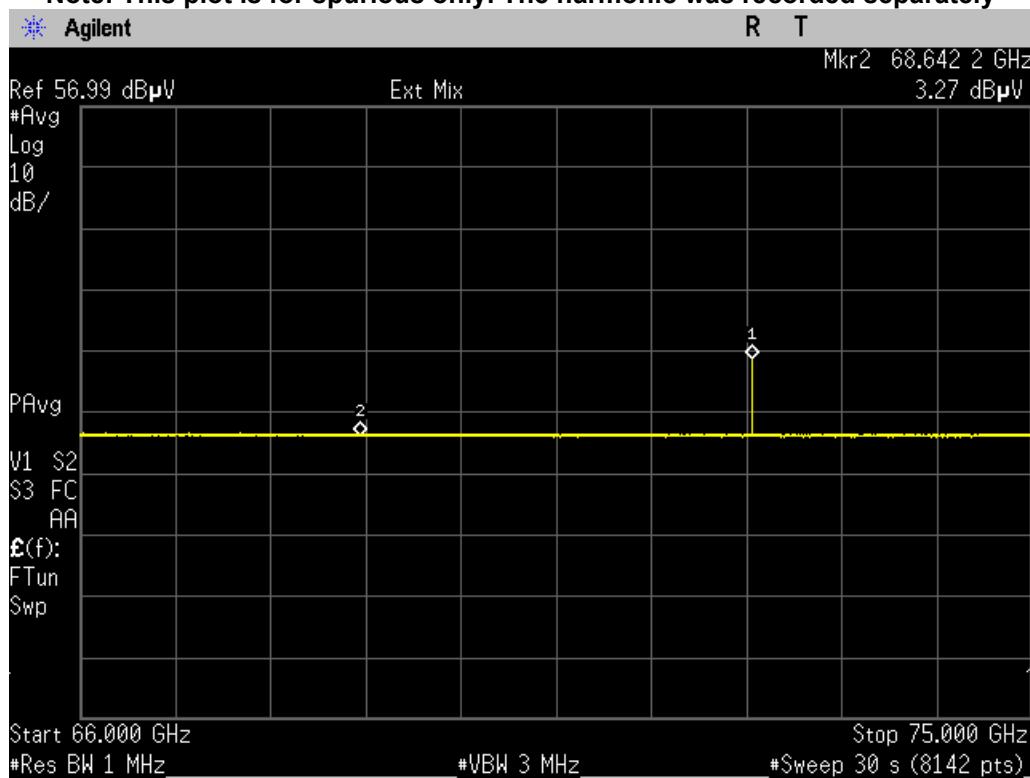
40 - 45 GHz – Avg

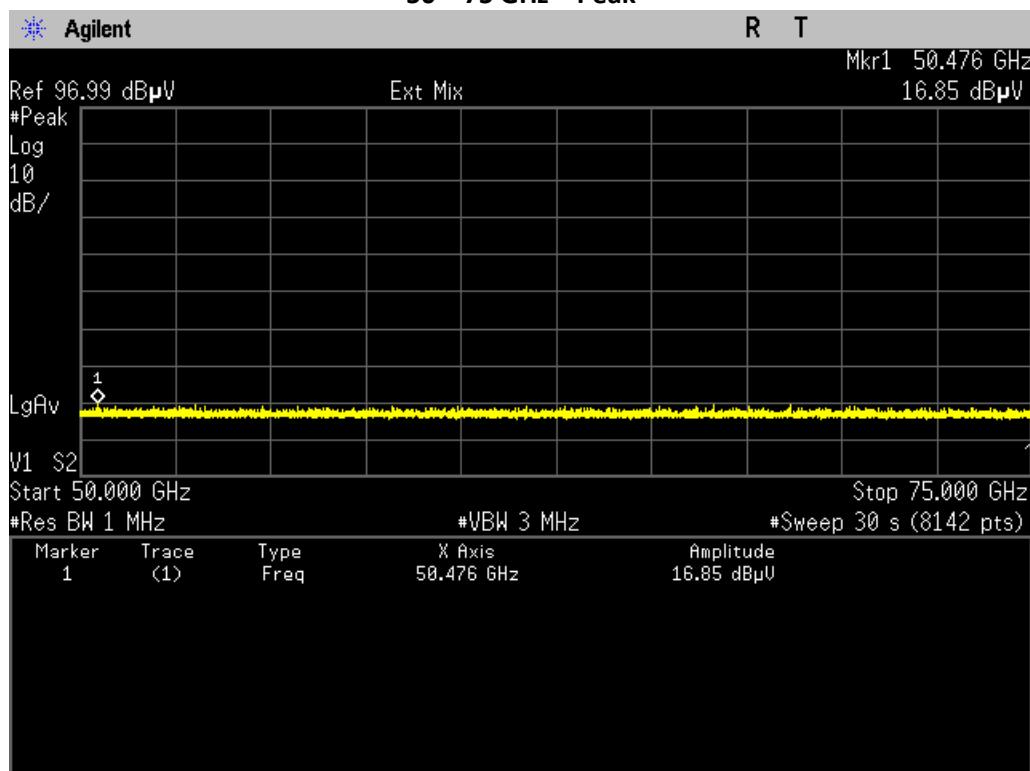

40 - 45 GHz - Peak


45 - 50 GHz - Avg

M1 = Harmonic, M2 = spurious


Note: This plot is for spurious only. The harmonic was recorded separately

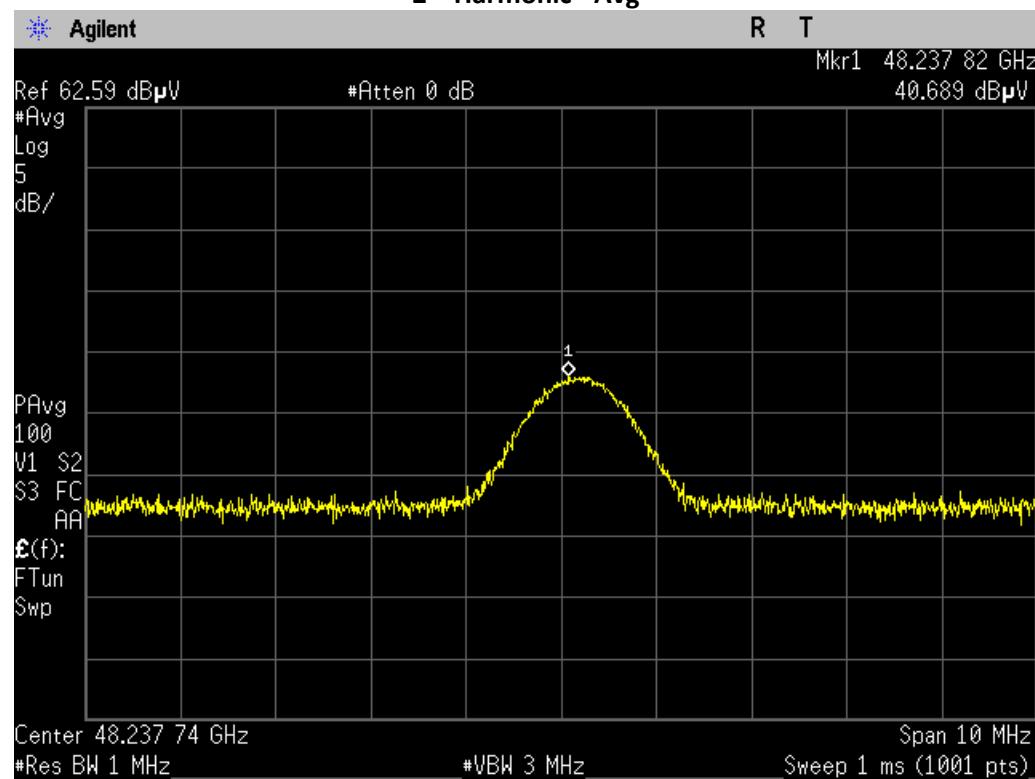
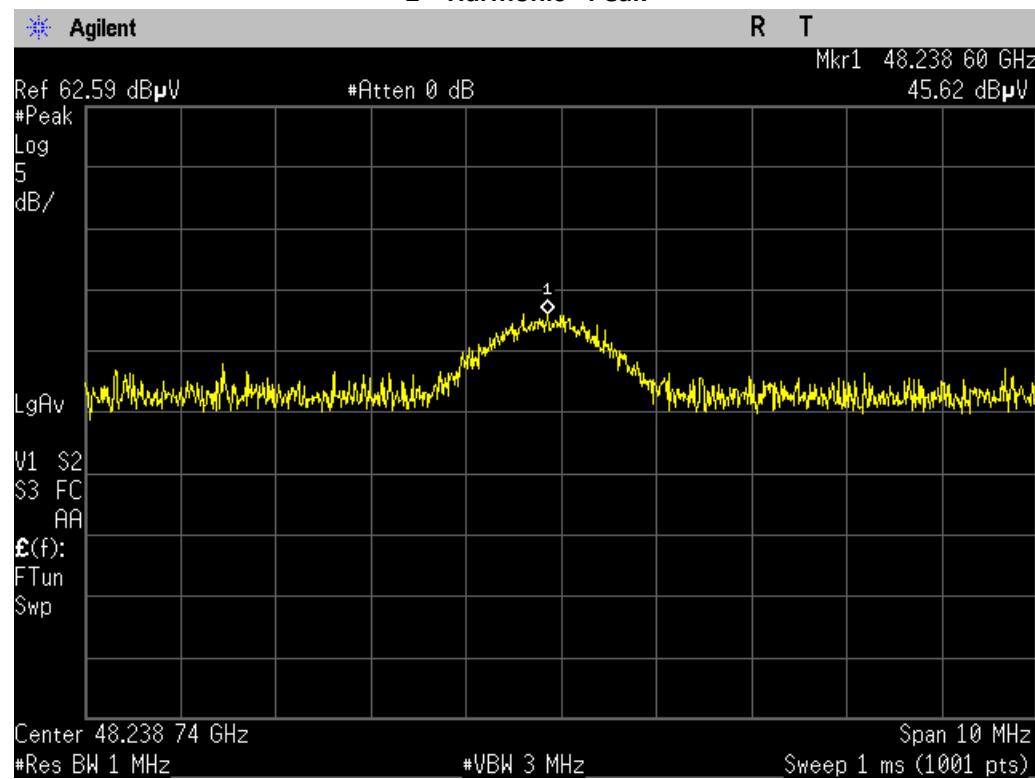

45 – 50 GHz - Peak
M1 = Harmonic, M2 = spurious
Note: This plot is for spurious only. The harmonic was recorded separately

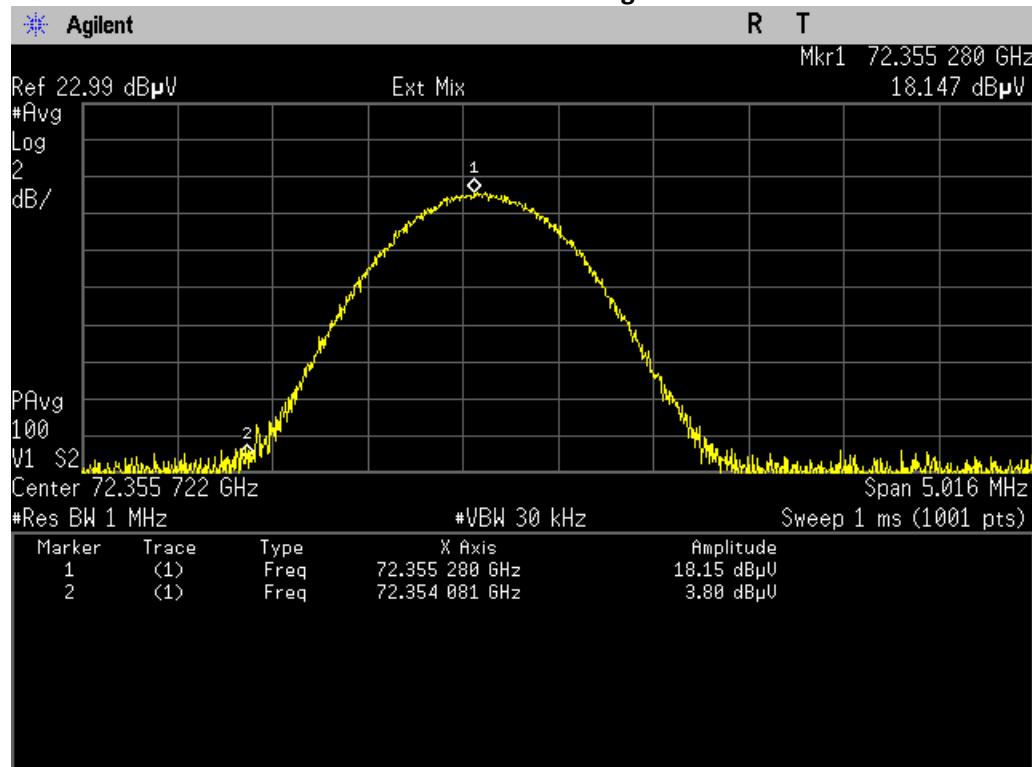
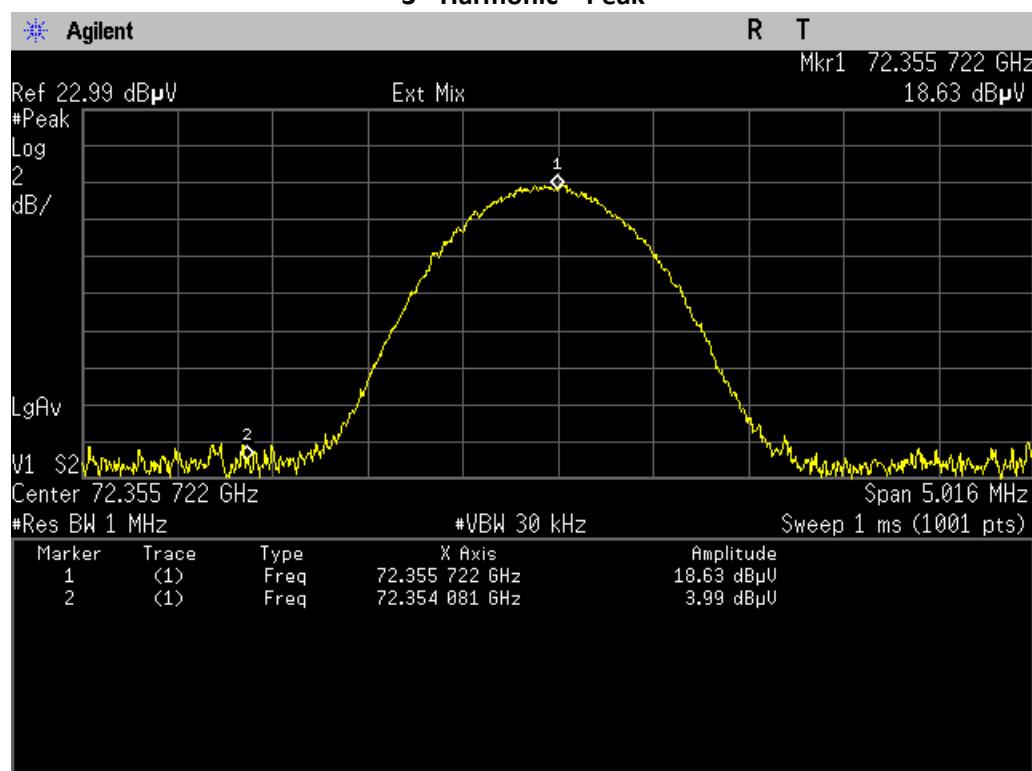
50 – 58 GHz – Avg

58 – 66 GHz - Avg

66 – 75 GHz – Avg

Note: This plot is for spurious only. The harmonic was recorded separately



50 – 75 GHz – Peak

75 – 100 GHz - Peak and Avg

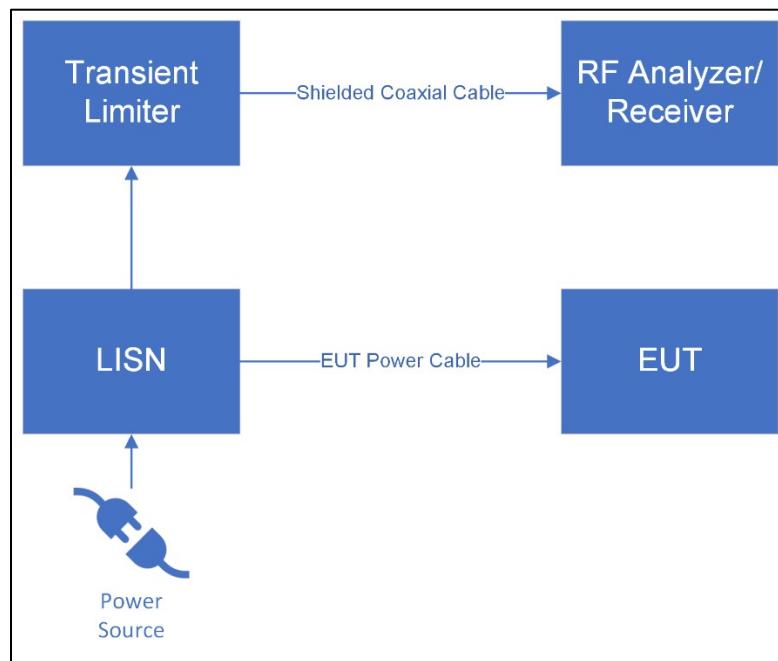
2nd and 3rd Harmonic Emission Plots
2nd Harmonic - Avg

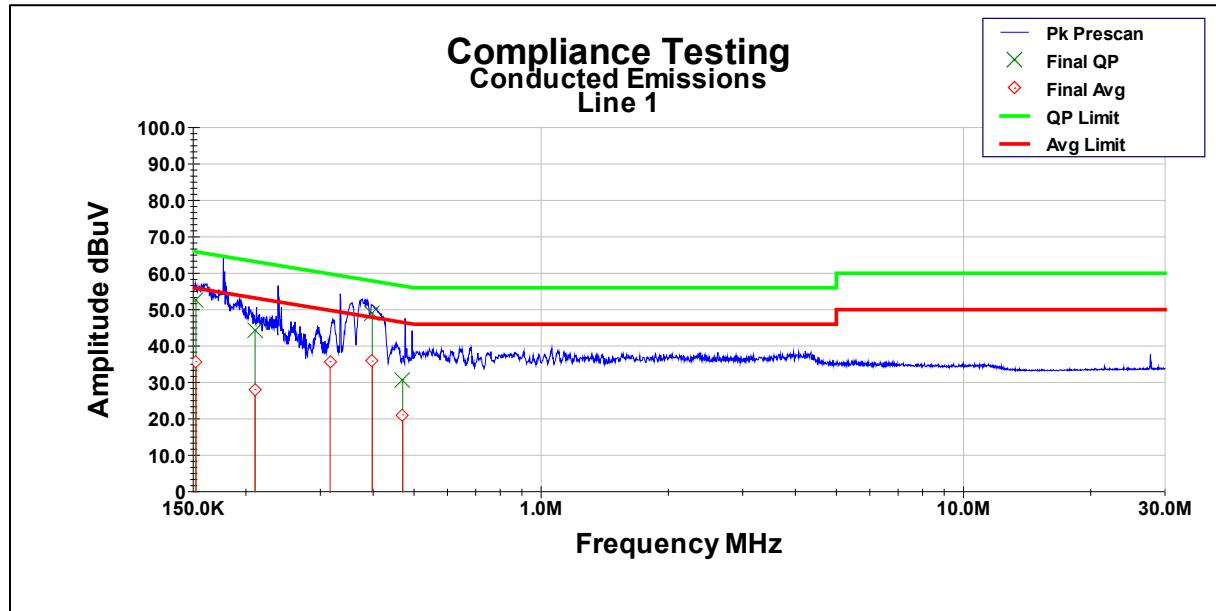
2nd Harmonic - Peak

3rd Harmonic - Avg

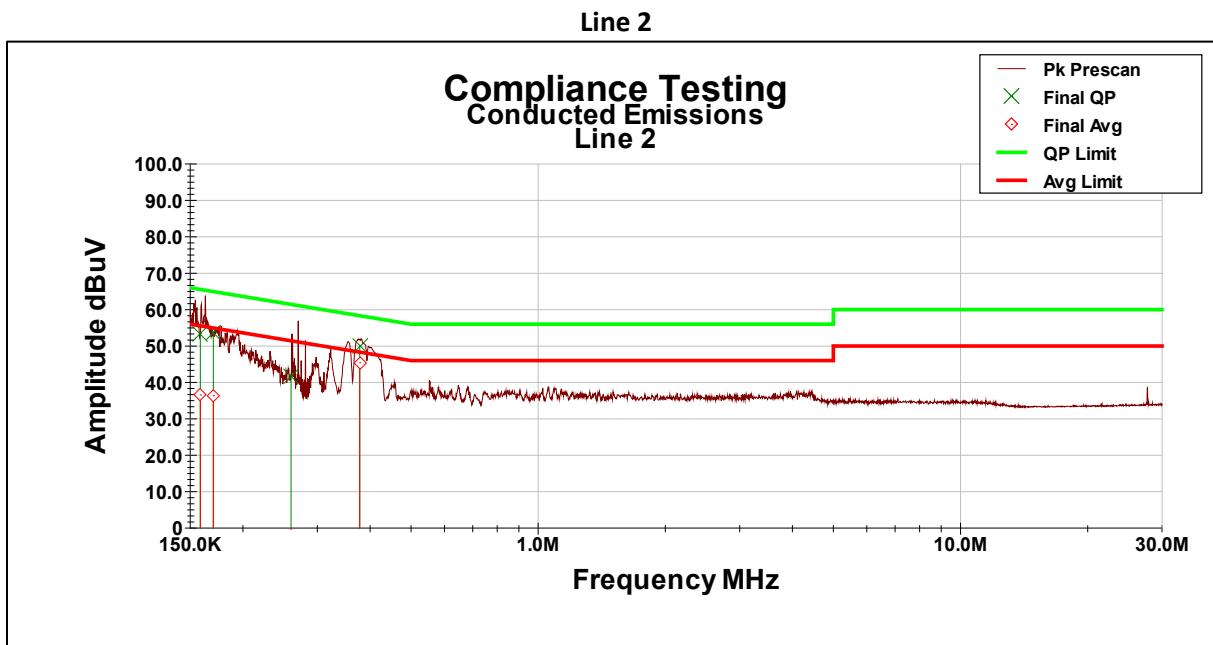
3rd Harmonic – Peak

AC Powerline Conducted Emissions


Engineer: Greg Corbin


Test Date: 4/23/2025

Test Procedure


The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits.

Basic Test Setup

AC Line Conducted Emissions
 Line 1

Frequency	Raw QP	Raw Avg	Path Loss	Final QP	Final Avg	QP Limit	QP Margin	Avg Limit	Avg Margin
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB	dBuV	dB
152.31 KHz	42.7	25.8	9.9	52.5	35.7	65.9	-13.4	55.9	-20.2
210.25 KHz	34.3	18	10	44.3	28	64.3	-20	54.3	-26.3
316.5 KHz	-60	25.6	10	-50	35.7	61.2	-111.2	51.2	-15.5
398.13 KHz	39	25.8	10.1	49.1	35.9	58.9	-9.8	48.9	-13
470.26 KHz	20.7	11	10.1	30.8	21.1	56.8	-26	46.8	-25.7

Frequency	Raw QP	Raw Avg	Path Loss	Final QP	Final Avg	QP Limit	QP Margin	Avg Limit	Avg Margin
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB	dBuV	dB
158.56 KHz	43.57	26.7	9.8	53.4	36.5	65.7	-12.3	55.7	-19.2
170.13 KHz	43.64	26.5	9.9	53.5	36.3	65.4	-11.9	55.4	-19.1
260.01 KHz	31.68	-21.1	10	41.7	-11.1	62.8	-21.1	52.8	-63.9
378.13 KHz	40.08	35.4	10	50.1	45.4	59.5	-9.4	49.5	-4.1

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Temperature Chamber	Thermotron	SE-1000-3-3	i00557		NR
Data Logger	Fluke	Hydra Data Bucket	i00343	6/19/24	6/19/25
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	7/13/23	7/13/26
Temp./humidity/pressure monitor (Main Lab)	Omega Engineering	iBTHX-W-5	i00686	1/25/25	1/25/26
Voltmeter	Fluke	79III	i00499	10/15/24	10/15/25
PSA Spectrum Analyzer	Agilent	E4448A	i00688	10/26/24	10/26/25
MXE EMI receiver	Keysight	N9038A	i00552	3/17/25	3/17/26
Bi-Log antenna	Chase	CBL6111C	i00267	3/5/24	3/5/26
Horn Antenna	ARA	DRG-118/A	i00271	8/9/24	8/9/26
Horn Antenna (18-40GHz)	EMCO	3116	i00085	3/18/25	3/18/27
Horn Antenna, standard gain	CMI	HO22R	i00484	NR	NR
Horn Antenna, standard gain	CMI	HO15R	i00477	NR	NR
Horn Antenna, standard gain	CMI	HO10R	i00476	NR	NR
Horn Antenna, standard gain	CMI	HO6R	i00475	NR	NR
Horn Antenna, standard gain	CMI	HO4R	i00473	NR	NR
Harmonic Mixer	Agilent	11970W	i00464	Verified on: 7/11/24	
Mixer with Preselector	Hewlett Packard	11974	i00726	Verified on: 9/23/24	
Spectrum Analyzer Extension Module	VDI	WR4.3SAX-M	i00740	Verified on: 7/11/24	
Spectrum Analyzer Extension Module	VDI	WR6.5SAX-M	i00741	Verified on: 9/24/24	
LNA	Preamplifier	SBL-1141743065-0606-E1	i00658	Verified on: 9/30/24	
Preamplifier	Eravant	SBB-0115034019-2F2F-E3	i00588	Verified on: 9/3/24	
LNA	Eravant	SBL-7531143550-1010-E1	i00589	Verified on: 9/3/24	
Preamplifier	VDI	VDIWR4.3PAMP	i00682	Verified on: 9/24/24	
Preamplifier	Eravant	SBB-0115034019-2F2F-E3	i00722	Verified on: 9/9/24	
Preamplifier	Com Power	PAM-103	i00734	Verified on: 9/9/24	
Power Meter w/859V power sensor (75 – 110 GHz)	VDI	PM5B with 859V sensor	i00736	6-25-24	6-5-25
Waveguide taper WR10 to WR6.5	VDI	WR6.5TA	i00737	N/A	

Waveguide taper WR10 to WR4.3	VDI	WR4.3TA	i00738	N/A	
Waveguide Extension, WR-15	Eravant	SWG-15020-FB	i00664	N/A	
Waveguide Extension, WR-15	VDI	WR15SWG2R4	i00749	N/A	
Waveguide Extension, WR-10	Eravant	SWG-10020-FB	i00665	N/A	
Waveguide Extension, WR-06	OML	N/A	i00748	N/A	
Waveguide Extension, WR-04	Eravant	STQ-WG-04020-F1-A-R	i00750	N/A	
EMI Receiver	Hewlett Packard	85462A	i00033	6/25/24	6/25/25
Transient Limiter	Com-Power	LIT-153	i00123	Verified on: 4/23/25	
LISN	COM-Power	LI-125A	i00446	3/18/24	3/18/26
LISN	COM-Power	LI-125A	i00448	3/18/24	3/18/26

In addition to the equipment listed above, standard RF connectors and cables were utilized in the testing of the equipment described. Prior to testing these components were tested to verify proper operation.

Measurement Uncertainty

Measurement Uncertainty for Compliance Testing is listed in the table below.

Measurement	U_{lab}
Radio Frequency	$\pm 3.3 \times 10^{-8}$
RF Power, conducted	± 1.5 dB
RF Power Density, conducted	± 1.0 dB
Conducted Emissions	± 1.8 dB
Radiated Emissions 30Mhz-1000MHz	± 4.25 dB
Radiated Emissions – 1GHz-18GHz	± 4.5 dB
Temperature	± 1.5 deg C
Humidity	± 4.3 %
DC voltage	± 0.20 VDC
AC Voltage	± 1.2 VAC

The reported expanded uncertainty $+\/- U_{lab}$ (dB) has been estimated at a 95% confidence level (k=2)
 U_{lab} is less than or equal to U_{EMC} therefore;

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

END OF TEST REPORT