

RF TEST REPORT

For

Shenzhen Dwell Electronics Co.,Limited

Product Name: Card Reader Test Model(s).: A02-C

Report Reference No. : DACE241209060RL001

FCC ID : 2BM3K-A02-C

Applicant's Name : Shenzhen Dwell Electronics Co.,Limited

Address : Room1405, JingYuan DaSha, No 28, BuLong Road, JiHua Street,

Longgang, Shenzhen 518112, Guangdong, China

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : December 9, 2024

Date of Test : December 9, 2024 to December 24, 2024

Data of Issue : December 24, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 58

Apply for company information

Applicant's Name	:	Shenzhen Dwell Electronics Co.,Limited				
Address	:	Room1405, JingYuan DaSha, No 28, BuLong Road, JiHua Street, Longgang, Shenzhen 518112, Guangdong, China				
Product Name	:	Card Reader				
Test Model(s)	:	A02-C				
Series Model(s)		PT160, PT180, PT200, PT280, PT289LF, DWELL-BLE01, RPD-180, RPD-190, RPD-200, RPD-201, RPD-202, RPD-A03, RPD-A04, RPD-A06, DW90A				
Test Specification Standard(s)	:	47 CFR Part 15.247				

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang/ Test Engineer

December 24, 2024

Supervised by

Stone yin

Stone Yin/Project Engineer

December 24, 2024

/Manager

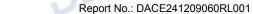
December 24, 2024

DAG

Report No.: DACE241209060RL001

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE241209060RL001	December 24, 2024
	1	2	


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 58

DAG

V1.0

CONTENTS

1 TEST SUMMARY	6
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	7
2.1 CLIENT INFORMATION	7
2.2 DESCRIPTION OF DEVICE (EUT)*	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 Announcement	11
3 EVALUATION RESULTS (EVALUATION)	12
3.1 ANTENNA REQUIREMENT	12
3.1.1 Conclusion:	12
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
4.1 CONDUCTED EMISSION AT AC POWER LINE	13
4.1.1 E.U.T. Operation:	13
4.1.2 Test Setup Diagram:	13
4.1.3 Test Data:	
4.2 6db Bandwidth	
4.2.1 E.U.T. Operation:	16
4.2.2 Test Setup Diagram:	16
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	19
4.4.1 E.U.T. Operation:	19
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6.1 E.U.T. Operation:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.1 E.0.1. Operation	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Setup Diagram:	
T.O.Z Test Detay Diagram	20

DAG

DAG

V1.0

4.8.3 Test Data:	29
5 TEST SETUP PHOTOS	32
6 PHOTOS OF THE EUT	
APPENDIX	46
16DB BANDWIDTH	
2. 99% OCCUPIED BANDWIDTH	48
3. PEAK OUTPUT POWER	50
4. POWER SPECTRAL DENSITY	52
5. BANDEDGE	
6. Spurious Emission	56

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 58

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

V1.0

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement	1	47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item

2. RF-conducted test results including cable loss.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 58

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen Dwell Electronics Co.,Limited

Address : Room1405, JingYuan DaSha, No 28, BuLong Road, JiHua Street, Longgang,

Shenzhen 518112, Guangdong, China

Manufacturer : Shenzhen Dwell Electronics Co.,Limited

Address : Room1405, JingYuan DaSha, No 28, BuLong Road, JiHua Street, Longgang,

Shenzhen 518112, Guangdong, China

2.2 Description of Device (EUT)*

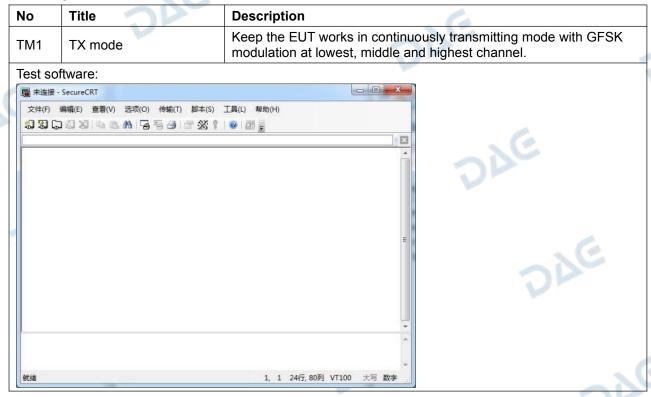
Product Name:	Card Reader
Model/Type reference:	A02-C
Series Model:	PT160, PT180, PT200, PT280, PT289LF, DWELL-BLE01, RPD-180, RPD-190, RPD-200, RPD-201, RPD-202, RPD-A03, RPD-A04, RPD-A06, DW90A
Model Difference:	There are many models of the product, and the differences between the models are due to the different appearance colors and the different model requirements of customers in different markets. Therefore, there will be more models, but these differences will not affect the RF and EMC performance of the product. Therefore, the testing model selected is A02-C.
Trade Mark:	DWECCRF
Product Description:	Card Reader
Power Supply:	DC7.4V from battery/charging by DC5.0V 1A from USB port
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB ANTENNA
Antenna Gain:	-0.58dBi
Hardware Version:	V3.2
Software Version:	V1.0

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 58


Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel

Toot channel	Frequency (MHz)
Test channel	BLE
Lowest channel	2402
Middle channel	2440
Highest channel	2480

2.3 Description of Test Modes

V1.0

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter HUAWEI		P0005	Provide by lab
USB CABLE	1	1	Provide by client

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 58

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	1	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K0 3-102109-MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	1	

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information T	RTS-01	V1.0.0	/	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information	TR1029-2	000001	/	61
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

(· · · · · · · · · · · · · · · · · · ·			
Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Farad	EZ -EMC	V1.1.42	/	/
MF	MF-7802	16	/	/
COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Schwarzbeck	1	/	2024-02-19	2025-02-18
Schwarzbeck	1	1	2024-02-19	2025-02-18
Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Schwarzbeck	SYV-50-3-1	1	2024-03-20	2025-03-19
Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
	Farad MF COM-POWER COM-POWER ZHINAN Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck	Farad EZ -EMC MF MF-7802 COM-POWER AH-1840 COM-POWER AH-1840 (18-40G) ZHINAN ZN30900C Schwarzbeck / Schwarzbeck / Schwarzbeck AK9515E Schwarzbeck SYV-50-3-1 Schwarzbeck BBV9743	Farad EZ -EMC V1.1.42 MF MF-7802 / COM-POWER AH-1840 10100008-1 COM-POWER AH-1840 (18-40G) 10100008 ZHINAN ZN30900C ZN30900C Schwarzbeck / / Schwarzbeck / / Schwarzbeck AK9515E 96250 Schwarzbeck SYV-50-3-1 / Schwarzbeck BBV9743 9743-151	Farad EZ -EMC V1.1.42 / MF MF-7802 / / COM-POWER AH-1840 10100008-1 2022-04-05 COM-POWER AH-1840 (18-40G) 10100008 2023-04-05 ZHINAN ZN30900C ZN30900C 2024-06-14 Schwarzbeck / / 2024-02-19 Schwarzbeck / 2024-02-19 Schwarzbeck AK9515E 96250 2024-03-20 Schwarzbeck SYV-50-3-1 / 2024-03-20 Schwarzbeck BBV9743 9743-151 2024-06-12

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 58

Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2024-06-12	2025-06-11
Test Receiver	est Receiver R&S		1166.5950K03- 101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Conducted Disturbance (0.15~30MHz)	±3.41dB			
Occupied Bandwidth	±3.63%			
RF conducted power	±0.733dB			
RF power density	±0.234%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB			
Radiated Emission (Below 1GHz)	±5.79dB			

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

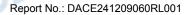
2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

Tel: +86-755-23010613 Page 10 of 58 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

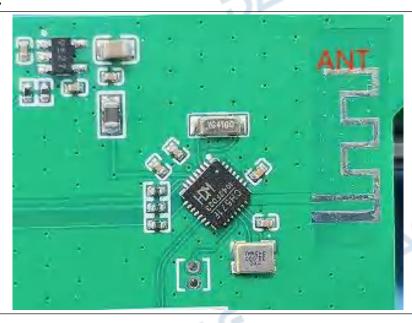


2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant(information with "*" provided by applicant). the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 58


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

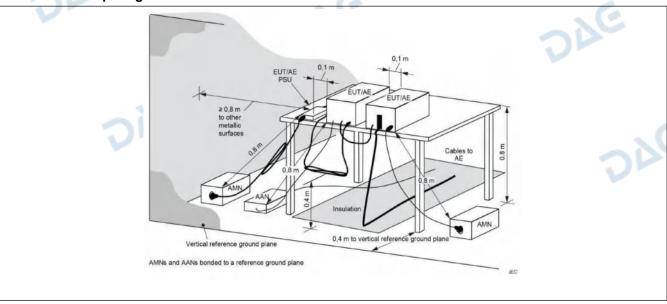
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 58

4 Radio Spectrum Matter Test Results (RF)

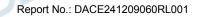

4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).									
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)									
		Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	5-30	60	50							
\	*Decreases with the logarithm of the frequency.									
Test Method:	ANSI C63.10-2013 section 6.2									
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices									

4.1.1 E.U.T. Operation:

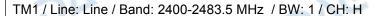
Operating Environment:										
Temperature:	22.6 °C		Humidity:	52 %	A	Atmospheric Pressure:	102 kPa			
Pretest mode:		TM1								
Final test mode:		TM1								

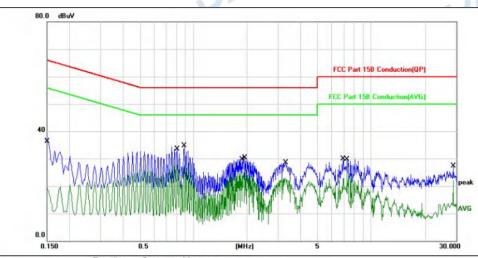
4.1.2 Test Setup Diagram:

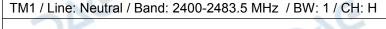


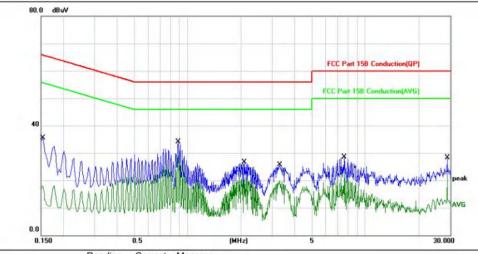
Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com


Page 13 of 58


4.1.3 Test Data:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	26.09	10.13	36.22	65.99	-29.77	QP	
2		0.1500	9.32	10.13	19.45	55.99	-36.54	AVG	
3	*	0.8100	17.52	10.09	27.61	46.00	-18.39	AVG	
4		0.8860	24.52	10.10	34.62	56.00	-21.38	QP	
5		1.8700	14.98	10.01	24.99	46.00	-21.01	AVG	
6		1.9460	20.23	10.00	30.23	56.00	-25.77	QP	
7		3.2860	12.78	10.09	22.87	46.00	-23.13	AVG	
8		3.3100	18.38	10.09	28.47	56.00	-27.53	QP	
9		6.9500	19.68	10.22	29.90	60.00	-30.10	QP	
10		7.2940	14.82	10.23	25.05	50.00	-24.95	AVG	
11		28.8140	16.21	11.01	27.22	60.00	-32.78	QP	
12		28.8140	11.03	11.01	22.04	50.00	-27.96	AVG	

V1.0

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1539	25.38	10.13	35.51	65.78	-30.27	QP	
2		0.1539	7.89	10.13	18.02	55.78	-37.76	AVG	
3		0.8860	23.96	10.10	34.06	56.00	-21.94	QP	
4	*	0.8860	18.98	10.10	29.08	46.00	-16.92	AVG	
5		2.0980	16.70	10.01	26.71	56.00	-29.29	QP	
6		2.0980	11.03	10.01	21.04	46.00	-24.96	AVG	
7		3.3100	15.64	10.09	25.73	56.00	-30.27	QP	
8		3.3100	9.73	10.09	19.82	46.00	-26.18	AVG	
9		7.6380	18.31	10.24	28.55	60.00	-31.45	QP	
10		7.6380	13.14	10.24	23.38	50.00	-26.62	AVG	
11		28.8060	17.20	11.01	28.21	60.00	-31.79	QP	
12		28.8060	11.76	11.01	22.77	50.00	-27.23	AVG	

NOTE:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 58


4.2 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.6 °C		Humidity:	52 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	TM1	70			6				
Final test mode: TN			V						

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 16 of 58

4.3 Maximum Conducted Output Power

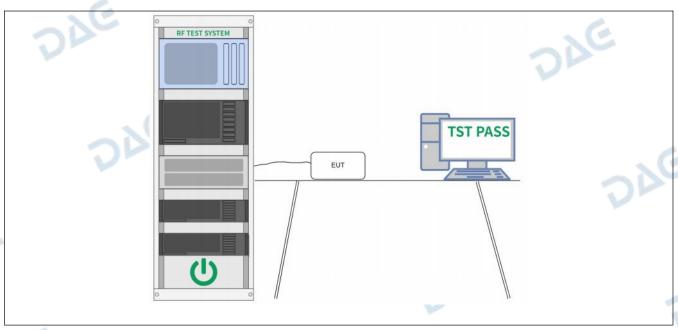
	deted Output i Owei
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

Report No.: DACE241209060RL001

4.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.6 °C		Humidity:	52 %	1	Atmospheric Pressure:	102 kPa	- 2/	
Pretest mode:		TM1		•				SI	
Final test mode:		TM1							

4.3.2 Test Setup Diagram:


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 17 of 58

DIE

DAG

DAG

DAG

4.3.3 Test Data:

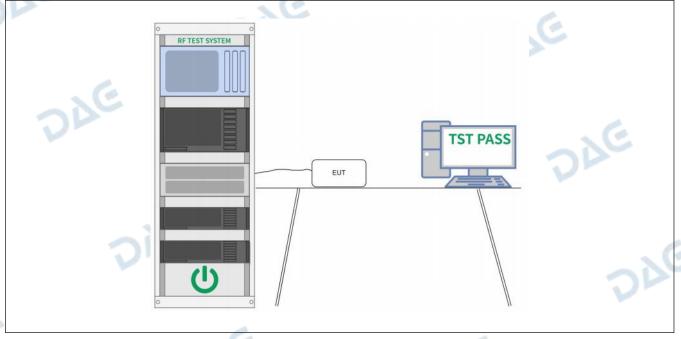
DAG

DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 58


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.6 °C		Humidity:	52 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1								
Final test mode:		TM1						

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

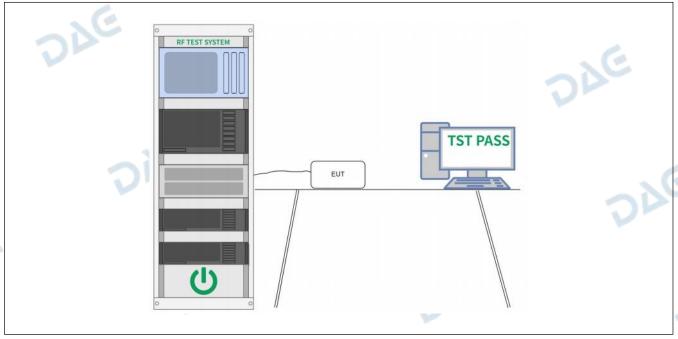
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 19 of 58


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.6 °C Humidity: 52 % Atmospheric Pressure: 102 kPa						102 kPa		
Pretest mode: TM1			0			C		
Final test mode:		TM1	V					

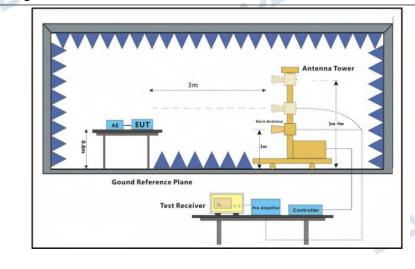
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 58

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


4.6 Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
70	0.009-0.490	2400/F(kHz)	300					
DI-	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
JE.	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	ANSI C63.10-2013 section (6.10.5.2						

4.6.1 E.U.T. Operation:

Operating Envir	Operating Environment:								
Temperature:	22.6 °C		Humidity:	52 %	Atmospheric Pressure:	102 kPa			
Pretest mode:		TM1			4				
Final test mode:	- 3	TM1			16				

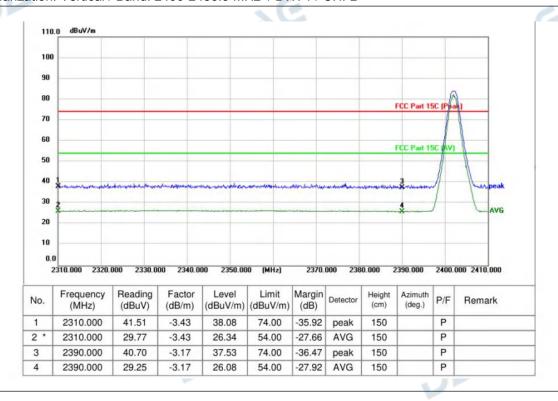
4.6.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

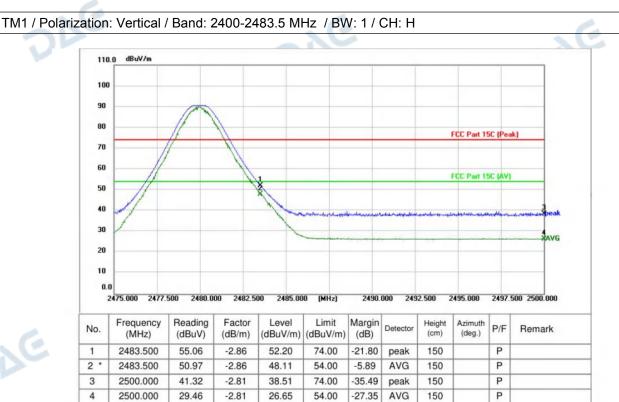
E-mail: service@dace-lab.com

Page 21 of 58



4.6.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L



TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 58

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 100 90 80 70 60 40 30 20 10 2475.000 2477.500 2480.000 2482.500 2497.500 2500.000 2485.000 (MHz) 2492.500 2495.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (deg.) 2483.500 57.51 -2.8654.65 74.00 -19.35peak 150 P Р 2 2483.500 53.98 -2.8651.12 54.00 -2.88AVG 150 P 3 2500.000 40.83 -2.81 38.02 74.00 -35.98 peak 150 Р 2500.000 29.28 -2.81 26.47 54.00 -27.53 AVG 150

Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	54-72 MHz, 76-88 MHz, 1 these frequency bands is and 15.241. In the emission table about The emission limits show employing a CISPR quasi	74-216 MHz or 470-806 permitted under other so we, the tighter limit applied in the above table are i-peak detector except for 1000 MHz. Radiated em	based on measurements or the frequency bands 9–90 kHz, ission limits in these three bands					
Test Method:	ANSI C63.10-2013 sectio KDB 558074 D01 15.247	n 6.6.4						
Procedure:	above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the Elabove the ground at a 3 nd degrees to determine the c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is with determine the maximum of the polarizations of the antenna e. For each suspected enthe antenna was turned to below 30MHz, the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing coureported. Otherwise the elested one by one using preported in a data sheet.	or 10 meter semi-anechoe the position of the higher UT was placed on the toneter fully-anechoic character fully-anechoic character fully-anechoic character fully-anechoic character fully-anechoic character fully-anechoic character from of the highest rate of the field strength and are set to make the noission, the EUT was arroll heights from 1 meter to a was tuned to heights as to 360 degrees to find an was set to Peak Detect Hold Mode. The EUT in peak mode would be stopped and the property of the peak, quasi-peak or averty as the position of the peak, quasi-peak or averty and the peak, quasi-peak or averty provided the text of the peak of the p	op of a rotating table 1.5 meters mber. The table was rotated 360 adiation. Interference-receiving antenna, at antenna tower. Interference-receiving antenna, to antenna tower. Interference-receiving antenna, antenna tower. Interference-receiving antenna, to antenna tower. Interference-receiving antenna, antenna tower. Interference-receiving antenna, to antenna tower. Interference-receiving antenna,					
	i. The radiation measuren Transmitting mode, and for j. Repeat above procedur Remark:	nents are performed in X bund the X axis positioni es until all frequencies n Hz, through pre-scan fo	ng which it is the worst case. neasured was complete. und the worst case is the lowest					

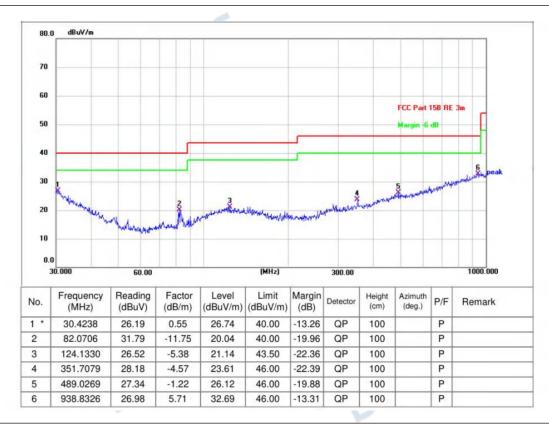
Report No.: DACE241209060RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 58

Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor C
Preamplifier Factor

2) The field strength is calculated by adding the Antenna Factor, Cable Factor &

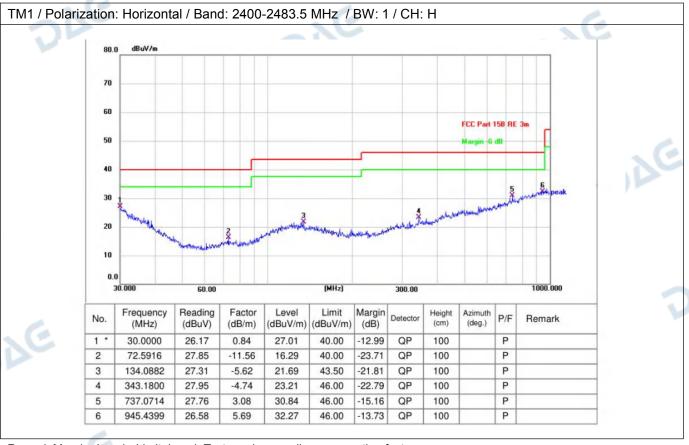

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.6 °C			Humidity:	52 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1	C				
Final test mode:		TM1			1 (e		

4.7.2 Test Data:

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 58

DAG

Report No.: DACE241209060RL001

Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 58

DAG

4.8 Emissions in frequency bands (above 1GHz)

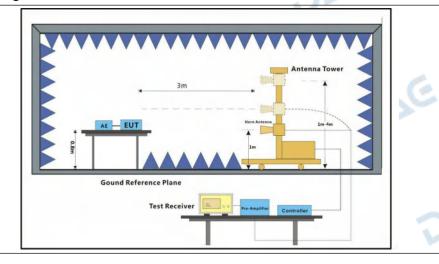
Test Requirement:	15.205(a), must also con	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
- 3/	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	and 15.241. In the emission table about the emission limits show employing a CISPR quast 110–490 kHz and above	these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247	on 6.6.4					
Procedure:	above the ground at a 3 and 360 degrees to determine be. For above 1GHz, the Endove the ground at a 3 degrees to determine the control of the EUT was set 3 or which was mounted on the determine the maximum polarizations of the anternet. For each suspected endown 30MHz, the antener was turned from 0 degrees for the endown 30MHz, the antener was turned from 0 degrees for the endown and the endow	or 10 meter semi-anechoice the position of the higher EUT was placed on the tometer fully-anechoic chan a position of the highest ration 10 meters away from the netop of a variable-height varied from one meter towalue of the field strength and are set to make the mission, the EUT was array heights from 1 meter towal a was tuned to heights 1 as to 360 degrees to find m was set to Peak Detection Hold Mode. The EUT in peak mode would be stopped and the premissions that did not have peak, quasi-peak or average west channel, the middle of ments are performed in X yound the X axis positionir	p of a rotating table 1.5 meters nber. The table was rotated 360 adiation. interference-receiving antenna, t antenna tower. four meters above the ground to be Both horizontal and vertical neasurement. anged to its worst case and then 4 meters (for the test frequency of meter) and the rotatable table the maximum reading. It Function and Specified The state of the EUT would be see 10dB margin would be reage method as specified and then channel, the Highest channel. The symbol of the Highest channel of the symbol of				
	Remark: 1) For emission below 10	·	und the worst case is the lowest				

Report No.: DACE241209060RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 58

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

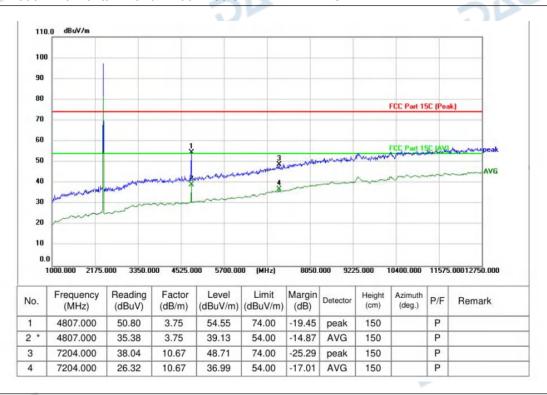

Report No.: DACE241209060RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

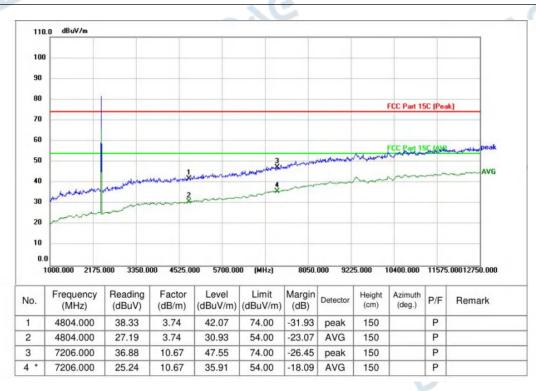
4.8.1 E.U.T. Operation:

Operating Envir	Operating Environment:							
Temperature: 22.6 °C Humidity: 52 % Atmospheric Pressure: 102 kPa								
Pretest mode:		TM1	C					
Final test mode:	1	TM1			1.C			

4.8.2 Test Setup Diagram:

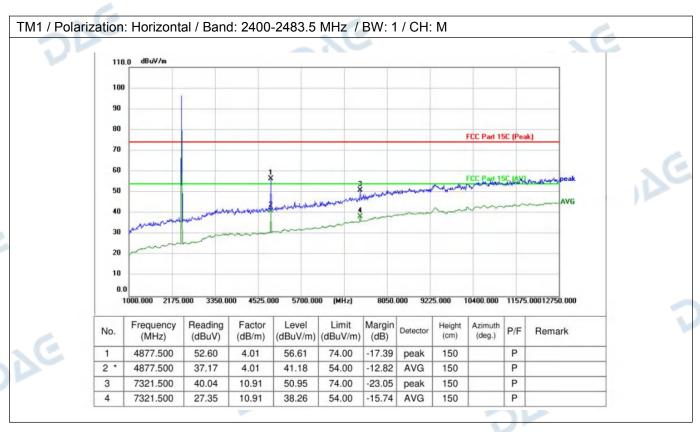

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

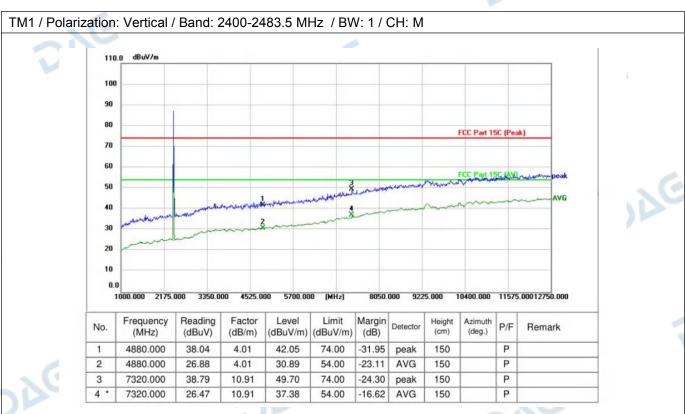
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 58

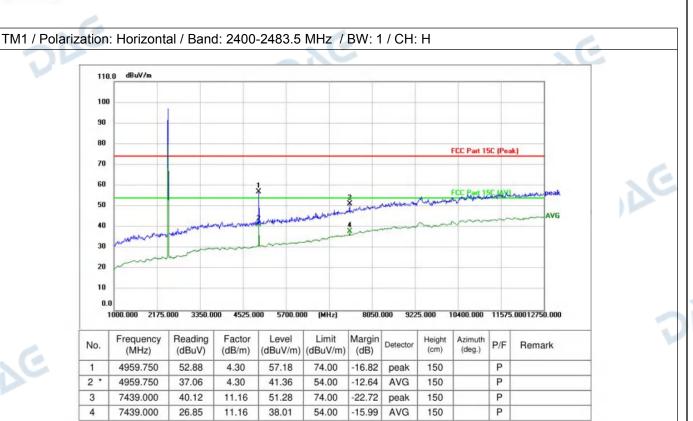


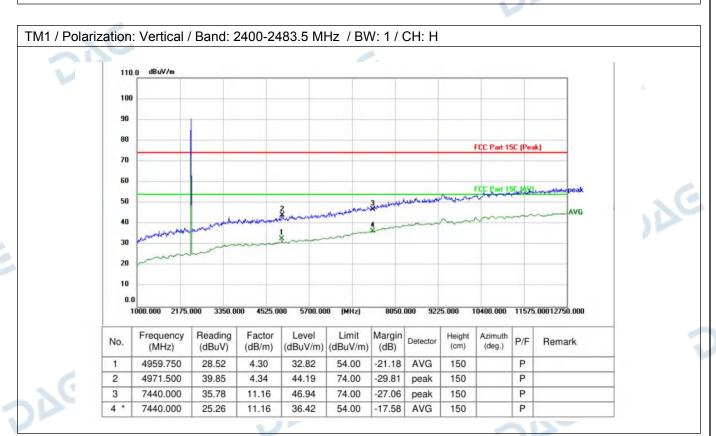
4.8.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L




TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

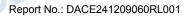

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 58



Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

5 TEST SETUP PHOTOS


Conducted Emission at AC power line

Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 32 of 58

DAG

DAG

DAG

DAG

6 PHOTOS OF THE EUT

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 35 of 58

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 37 of 58

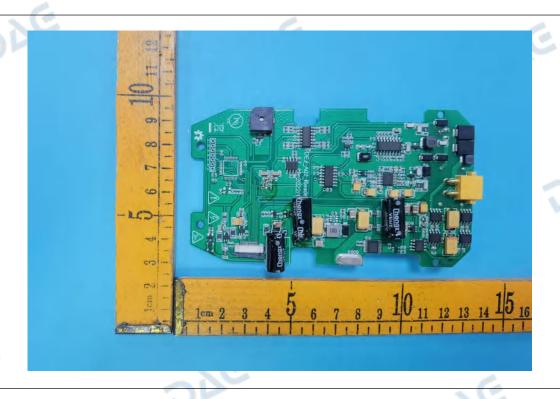
Internal

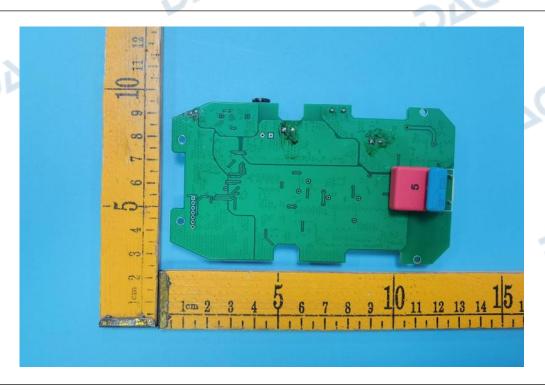
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

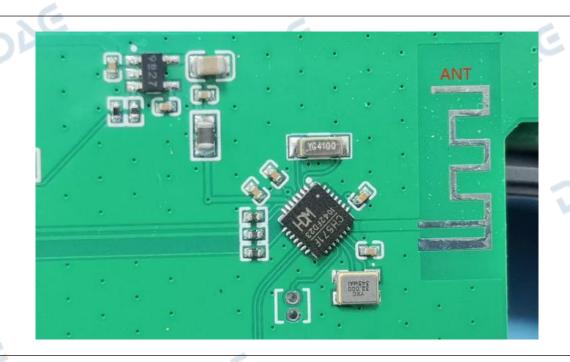
Web: http://www.dace-lab.com

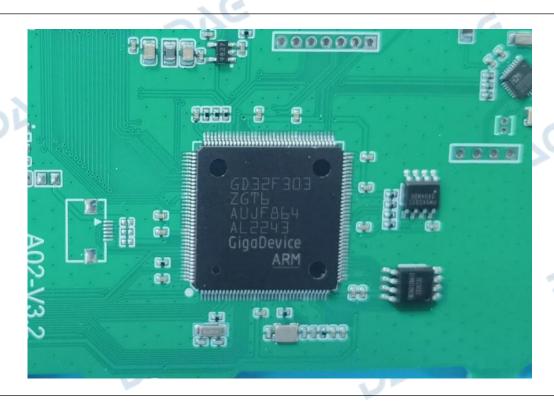
Tel: +86-755-23010613

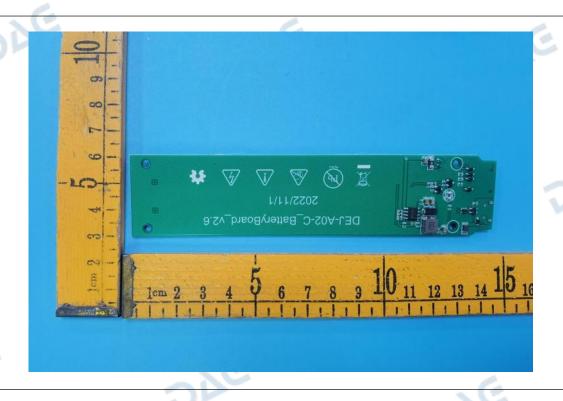
E-mail: service@dace-lab.com


Page 38 of 58








Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 58

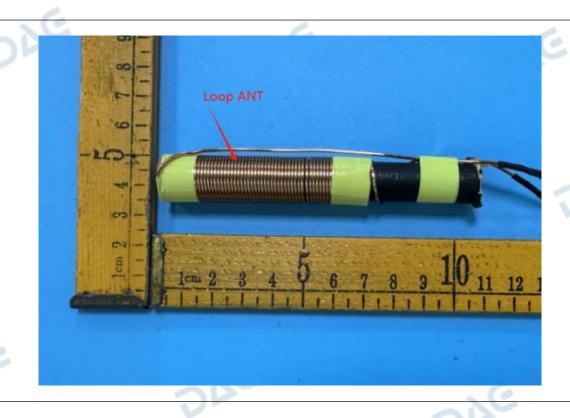
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 43 of 58


Report No.: DACE241209060RL001

DAG

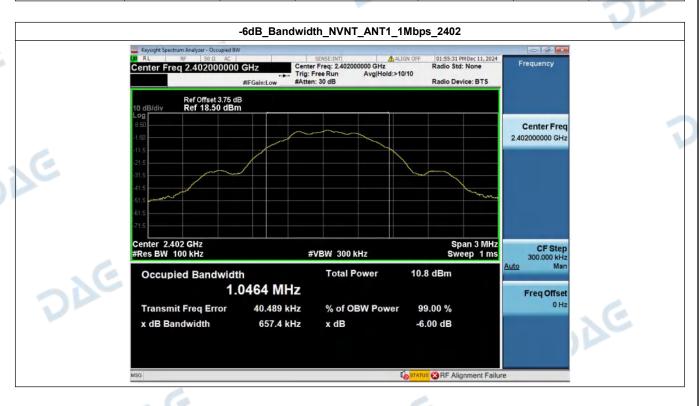
DAG

DAG

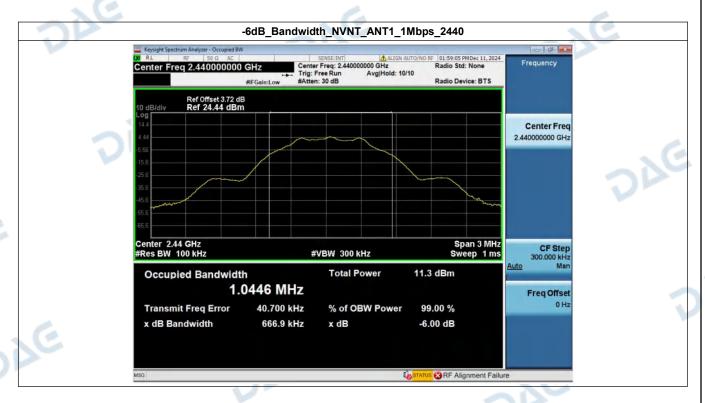
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 45 of 58

DAG

DAG



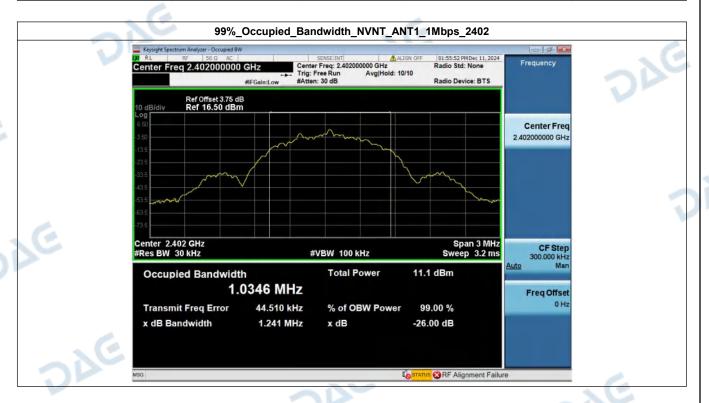
Appendix

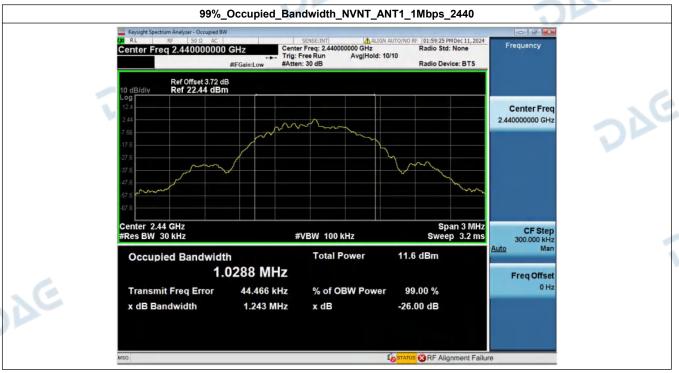

1. -6dB Bandwidth

V1.0

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	657.39	500	Pass
NVNT	ANT1	1Mbps	2440.00	666.90	500	Pass
NVNT	ANT1	1Mbps	2480.00	656.53	500	Pass

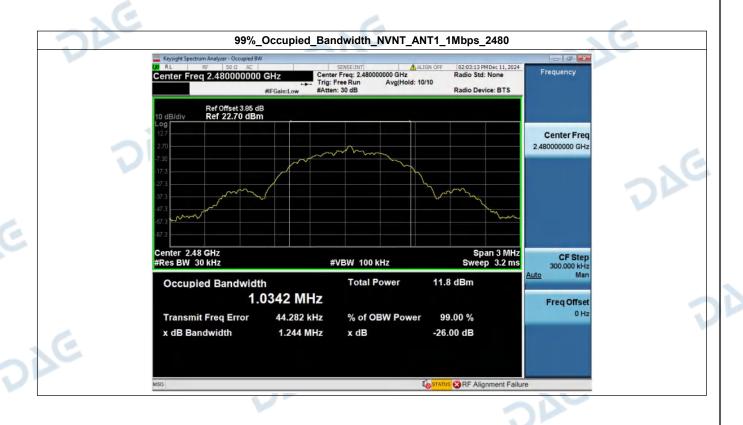
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 58





2. 99% Occupied Bandwidth

Condition	Condition Antenna		Frequency (MHz)	99%%BW(MHz)	
NVNT	ANT1	1Mbps	2402.00	1.035	
NVNT	ANT1	1Mbps	2440.00	1.029	
NVNT	ANT1	1Mbps	2480.00	1.034	

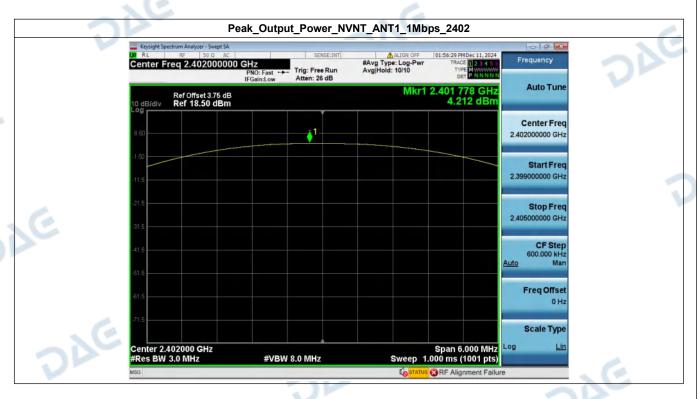


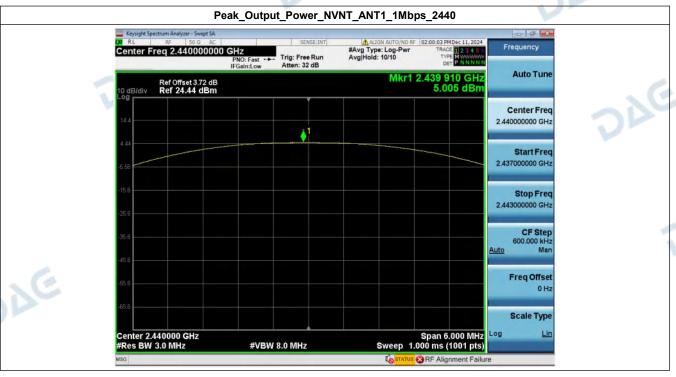
DAG

DAG

DAG

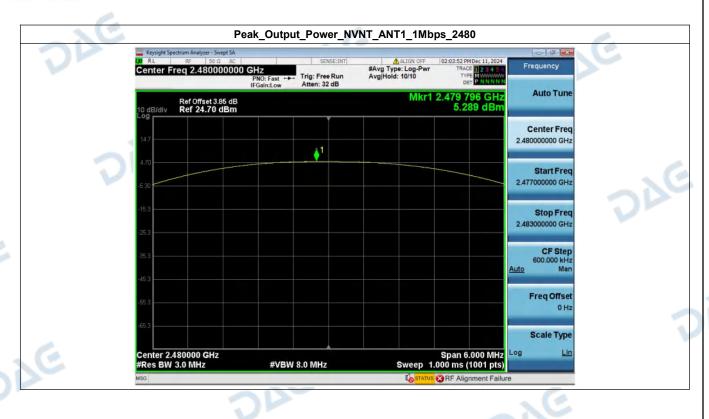
V1.0


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 58


DAG

3. Peak Output Power

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	4.21	2.64	1000	Pass
NVNT	ANT1	1Mbps	2440.00	5.00	3.17	1000	Pass
NVNT	ANT1	1Mbps	2480.00	5.29	3.38	1000	Pass



DAG

DAG

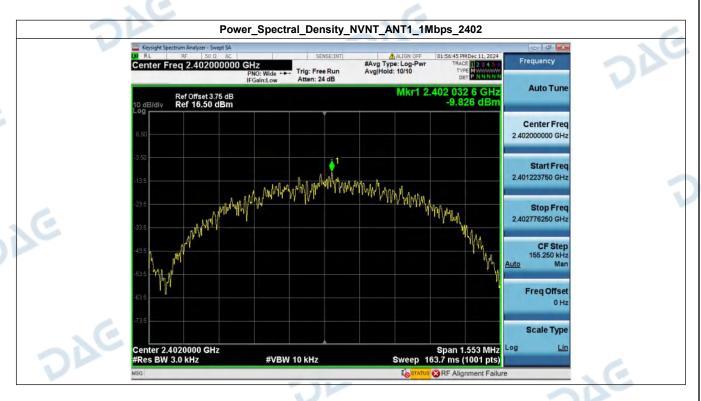
DAG

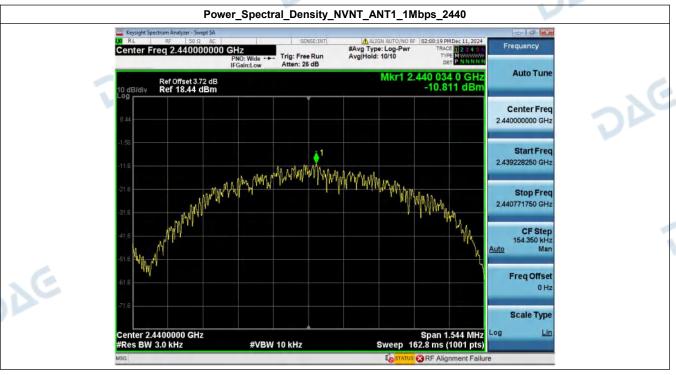
Report No.: DACE241209060RL001

DAG

DAG

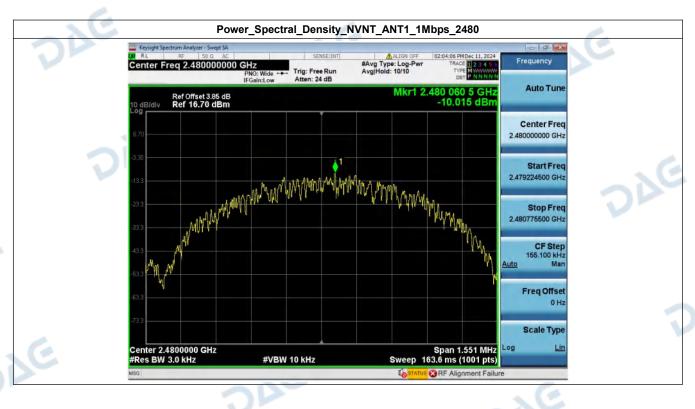
DAG


DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 58

4. Power Spectral Density

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-9.83	8.00	Pass
NVNT	ANT1	1Mbps	2440.00	-10.81	8.00	Pass
NVNT	ANT1	1Mbps	2480.00	-10.02	8.00	Pass



DAG

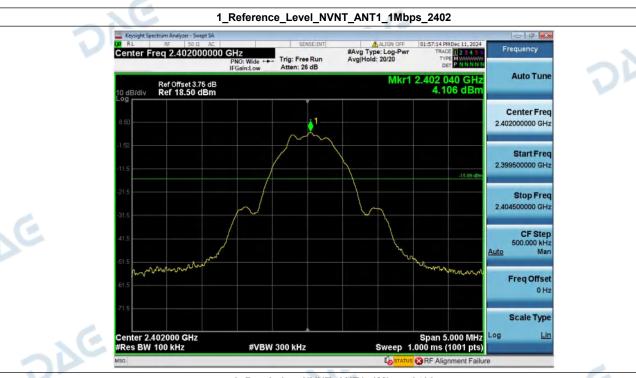
DAG

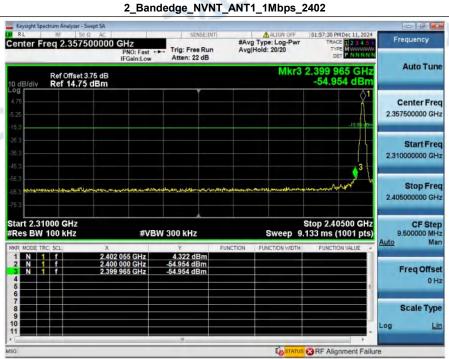
DAG

DAG

DAG

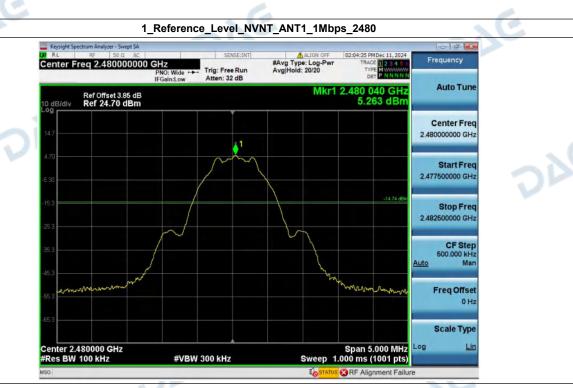
DAG

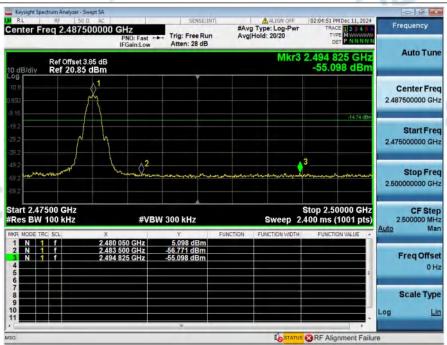

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 58

5. Bandedge

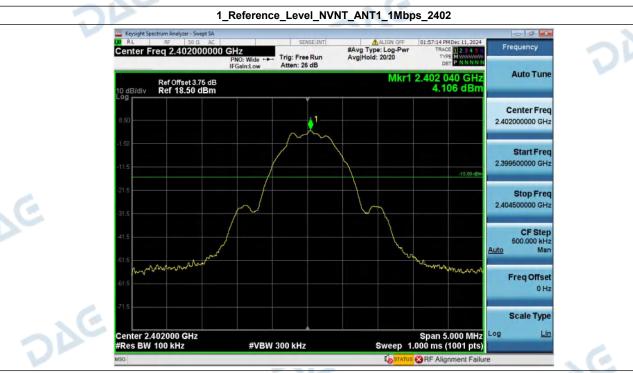
Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.965	4.106	-54.954	-15.894	Pass
NVNT	ANT1	1Mbps	2480.00	2494.825	5.263	-55.098	-14.737	Pass





DAG

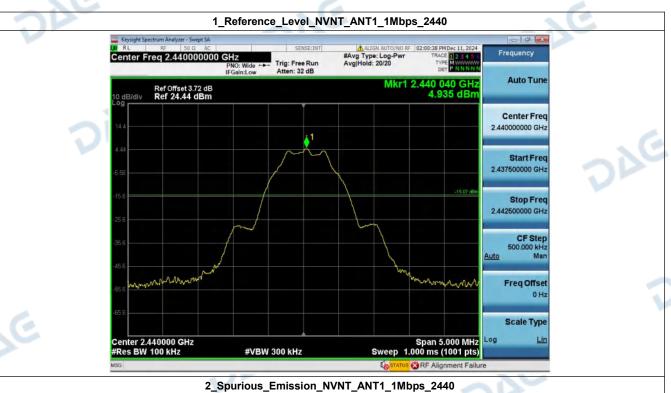
V1.0

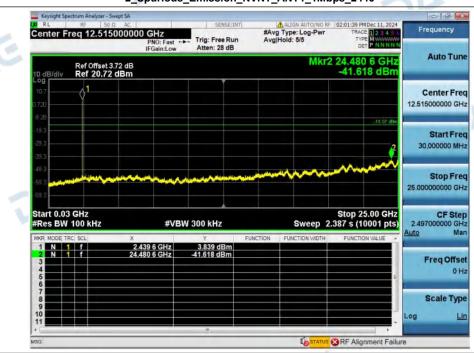

2_Bandedge_NVNT_ANT1_1Mbps_2480



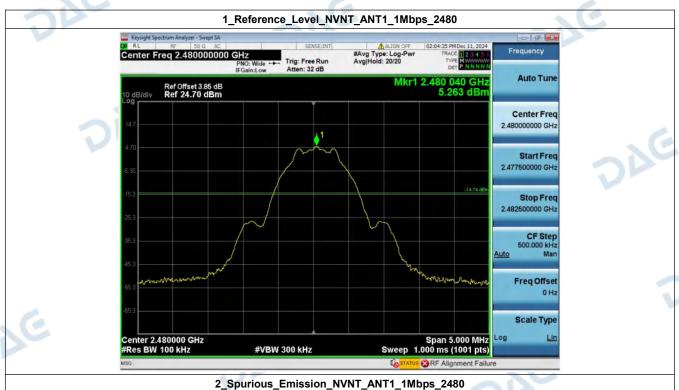
6. Spurious Emission

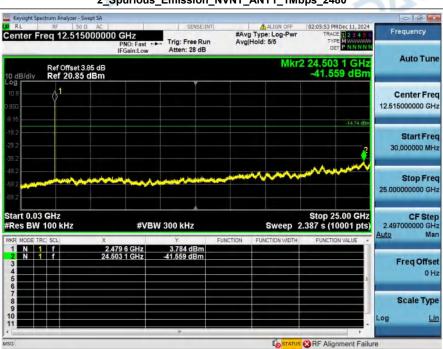
Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	4.106	-46.877	-15.894	Pass
NVNT	ANT1	1Mbps	2440.00	4.935	-41.618	-15.065	Pass
NVNT	ANT1	1Mbps	2480.00	5.263	-41.559	-14.737	Pass




2_Spurious_Emission_NVNT_ANT1_1Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 58





4

DAG

****************** End of Report ***************

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 58 of 58