

RF TEST REPORT

Applicant trackap
FCC ID 2BLTJ-PEPPINO
Product IOT GNSS tracker
Brand trackap
Model PEPPINO
Report No. R2410A1489-R7
Issue Date November 20, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 2 (2023)/ FCC CFR 47 Part 90S (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Test Laboratory	4
1.1. Notes of the Test Report	4
1.2. Test Facility	4
1.3. Testing Location	4
2. General Description of Equipment Under Test	5
2.1. Applicant and Manufacturer Information	5
2.2. General Information	5
3. Applied Standards	6
4. Test Configuration	7
5. Test Case	8
5.1. RF Power Output and Effective Radiated Power	8
5.2. Radiated Spurious Emission	9
6. Test Results	12
6.1. RF Power Output and Effective Radiated Power	12
6.2. Radiated Spurious Emission	14
7. Main Test Instruments	16
ANNEX A: The EUT Appearance	17
ANNEX B: Test Setup Photos	18

Summary of Measurement Results

No.	Test Case	Clause in FCC rules	Verdict
1	RF Power Output and Effective Radiated Power	2.1046/90.635(b)	PASS
2	Radiated Spurious Emission	2.1053 /90.691	PASS

Date of Testing: October 18, 2024 ~ November 1, 2024

Date of Sample Received: October 16, 2024

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Only Radiated Spurious Emission is tested for PEPPINO in this report, and because of the change of antenna gain, Effective Radiated Power also re evaluated. Other test items refer to the Module report (Report No.: STS1911256W01, FCC ID: 2AJYU-8VC0002; Grant date: 08/02/2022).

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.
Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Xu Kai
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <https://www.eurofins.com/electrical-and-electronics>
E-mail: Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	trackap
Applicant address	Place Pierre de Saintignon Euratechnologies, Lille, France, 59000
Manufacturer	trackap
Manufacturer address	Place Pierre de Saintignon Euratechnologies, Lille, France, 59000

2.2. General Information

EUT Description					
Model	PEPPINO				
IMEI	860016048977867				
Hardware Version	V8				
Software Version	8.2.0.7				
Power Supply	Battery				
Antenna Type	Internal Antenna				
Antenna Gain	2.40 dBi				
Test Mode(s)	LTE Band 26;				
Test Modulation	QPSK, 16QAM				
LTE Category	M1				
Maximum E.R.P.	LTE Band 26:	24.13 dBm			
Rated Power Supply Voltage	36V				
Operating Voltage	Minimum: 6V Maximum: 60V				
Operating Temperature	Lowest: -20°C Highest: +60°C				
Testing Temperature	Lowest: -30°C Highest: +50°C				
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)		
	LTE-M Band 26	814 ~ 824	859 ~ 869		
EUT Accessory					
Battery	Manufacturer: A&S Power Model: A&S 18650				
Note: The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.					

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 90S (2023)

FCC CFR47 Part 2 (2023)

Reference standard:

ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (X axis, vertical polarization) and the worst case was recorded.

All mode and data rates and positions were investigated.

The following testing in LTE is set based on the maximum RF Output Power.

Test modes are chosen as the worst case configuration below for LTE-M Band 26

Test items	Bandwidth (MHz)				Modulation		RB			Test Channel		
	1.4	3	5	10	QPSK	16QAM	1	50%	100%	L	M	H
RF Power Output and Effective Radiated Powe	O	O	O	O	O	O	O	O	O	O	O	O
Radiated Spurious Emission	O	-	O	O	O	-	O	-	-	-	O	-
Note	1. The mark "O" means that this configuration is chosen for testing. 2. The mark "-" means that this configuration is not testing.											

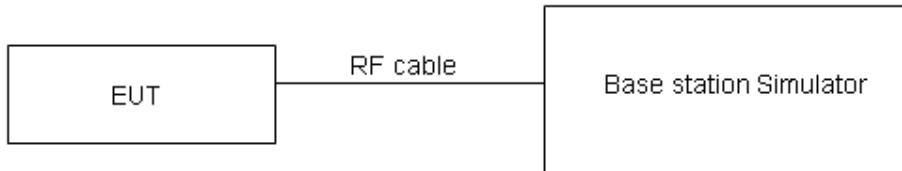
5. Test Case

5.1. RF Power Output and Effective Radiated Power

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement


During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.

ERP can then be calculated as follows:

$$\text{EIRP (dBm)} = \text{Output Power (dBm)} + \text{Antenna Gain (dBi)}$$

$$\text{EIRP (dBm)} = \text{ERP (dBm)} + 2.15 \text{ (dB.)}$$

Test Setup

Limits

Part 90.635 (b) the maximum output power of the transmitter for mobile stations is 100 watts.

Rule Part 90.635(b) specifies that "The maximum output power of the transmitter for mobile stations is 100 watts".

Limit	$\leq 100 \text{ W (50 dBm)}$

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 0.4 \text{ dB}$ for RF power output, $k = 2$, $U = 1.19 \text{ dB}$ for ERP.

Test Results

Refer to the section 6.1 of this report for test data.

5.2. Radiated Spurious Emission

Ambient Condition

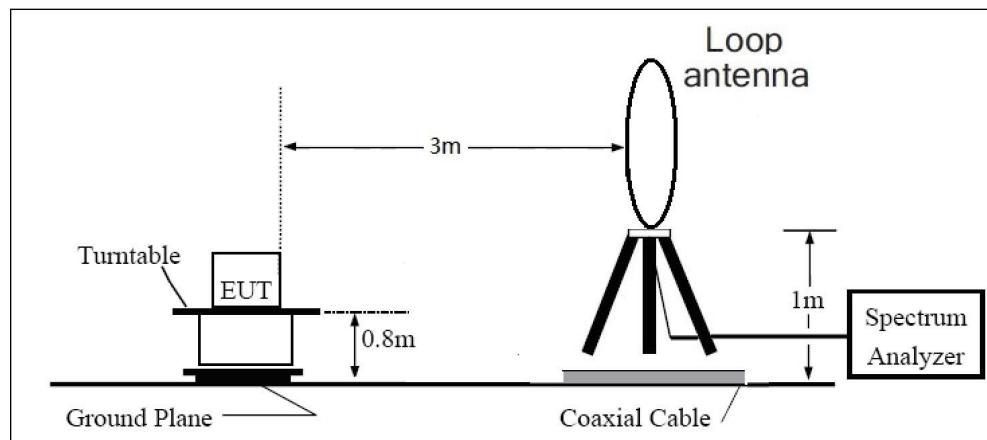
Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

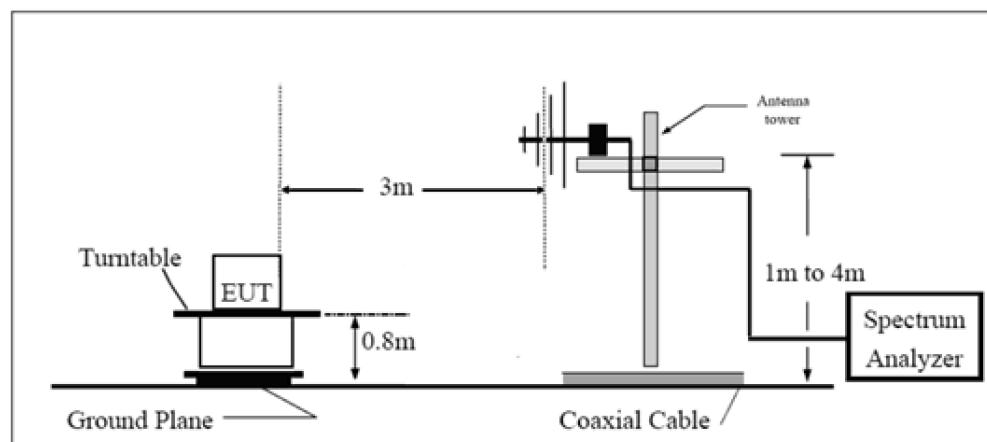
1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26-2015.
2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz, VBW=300kHz, and the maximum value of the receiver should be recorded as (Pr).
5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
7. The measurement results are obtained as described below:

$$\text{Power(EIRP)} = \text{PMea} - \text{PAg} - \text{Pcl} + \text{Ga}$$

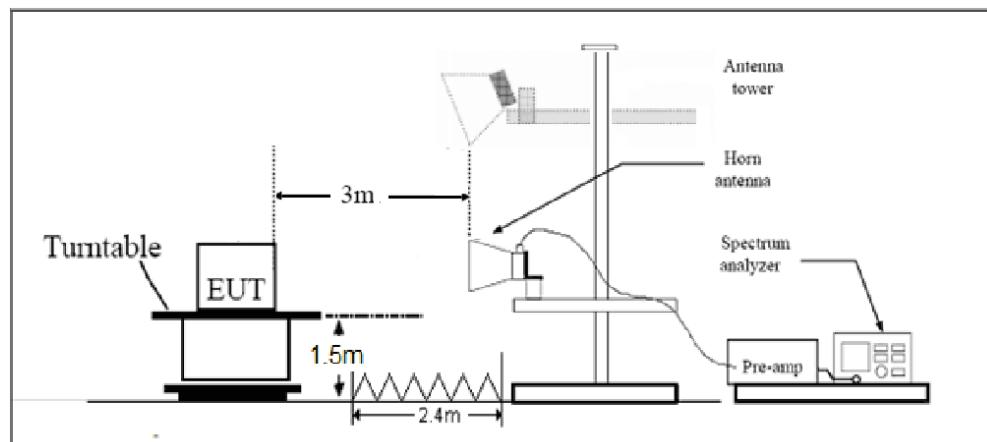
The measurement results are amend as described below:


$$\text{Power(EIRP)} = \text{PMea} - \text{Pcl} + \text{Ga}$$

8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test Setup


9KHz~ 30MHz

30MHz~ 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Limits

Rule Part 90.691 specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$, $U = 3.55$ dB.

Test Results

Refer to the section 6.2 of this report for test data.

6. Test Results

6.1. RF Power Output and Effective Radiated Power

LTE Band 26(Part 90) Maximum Average Power [dBm]					ERP [dBm]
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Lowest
1.4	1	0	QPSK	23.42	23.67
1.4	6	0		23.15	23.40
1.4	1	0	16-QAM	23.13	23.38
1.4	5	0		22.87	23.12
3	1	0	QPSK	23.58	23.83
3	6	0		23.35	23.60
3	1	0	16-QAM	23.37	23.62
3	5	0		23.08	23.33
5	1	0	QPSK	23.51	23.76
5	6	0		23.25	23.50
5	1	0	16-QAM	23.26	23.51
5	5	0		23.05	23.30
10	1	0	QPSK	23.88	24.13
10	6	0		23.60	23.85
10	1	0	16-QAM	23.64	23.89
10	5	0		23.40	23.65

Radiated Power (ERP) for LTE Band 26(Part 90) / 10M									
Modulation	RE		Channel	Result					Conclusion
	Size	Offset		S G.Level (dBm)	Cable loss	Gain (dBi)	PMeas E.R.P(dBm)	Polarization Of Max. ERP	
QPSK	1	0	Lowest	13.26	2.35	2.4	13.31	Horizontal	Pass
	1	0	Lowest	14.99	2.35	2.4	15.04	Vertical	Pass
16QAM	1	0	Lowest	13.37	2.35	2.4	13.42	Horizontal	Pass
	1	0	Lowest	14.62	2.35	2.4	14.67	Vertical	Pass
Limit	ERP<100W=50dBm								

6.2. Radiated Spurious Emission

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

LTE Band 26 1.4MHz CH Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1637.07	-32.08	1.70	8.70	Vertical	-27.23	-13.00	14.23	117
3	2455.67	-45.61	2.30	12.00	Vertical	-38.06	-13.00	25.06	88
4	3274.20	-61.50	2.20	13.10	Vertical	-52.75	-13.00	39.75	68
5	4092.80	-50.47	3.00	12.50	Vertical	-43.12	-13.00	30.12	315
6	4911.20	-57.11	3.10	12.50	Vertical	-49.86	-13.00	36.86	315
7	5729.90	-54.85	3.40	12.50	Vertical	-47.90	-13.00	34.90	48
8	6548.30	-47.73	3.80	11.50	Vertical	-42.18	-13.00	29.18	44
9	7366.70	-36.53	4.20	12.20	Vertical	-30.68	-13.00	17.68	167
10	8185.40	-46.11	4.30	12.30	Vertical	-40.26	-13.00	27.26	203

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Vertical position.

LTE Band 26 5MHz CH Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1633.80	-29.56	1.70	8.70	Vertical	-24.71	-13.00	11.71	167
3	2450.47	-45.27	2.30	12.00	Vertical	-37.72	-13.00	24.72	315
4	3267.50	-58.20	2.20	13.10	Vertical	-49.45	-13.00	36.45	88
5	4084.20	-50.28	3.00	12.50	Vertical	-42.93	-13.00	29.93	313
6	4900.90	-59.81	3.10	12.50	Vertical	-52.56	-13.00	39.56	302
7	5717.60	-55.70	3.40	12.50	Vertical	-48.75	-13.00	35.75	24
8	6534.80	-47.76	3.80	11.50	Vertical	-42.21	-13.00	29.21	141
9	7351.40	-33.32	4.20	12.20	Vertical	-27.47	-13.00	14.47	191
10	8168.60	-46.99	4.30	12.30	Vertical	-41.14	-13.00	28.14	74

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Vertical position.

LTE Band 26 10MHz CH Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1629.60	-29.68	1.70	8.70	Vertical	-24.83	-13.00	11.83	154
3	2444.33	-45.34	2.30	12.00	Vertical	-37.79	-13.00	24.79	278
4	3258.80	-59.43	2.20	13.10	Vertical	-50.68	-13.00	37.68	258
5	4070.00	-49.78	3.00	12.50	Vertical	-42.43	-13.00	29.43	145
6	4888.80	-57.44	3.10	12.50	Vertical	-50.19	-13.00	37.19	32
7	5703.30	-58.23	3.40	12.50	Vertical	-51.28	-13.00	38.28	126
8	6517.80	-50.16	3.80	11.50	Vertical	-44.61	-13.00	31.61	33
9	7332.30	-36.37	4.20	12.20	Vertical	-30.52	-13.00	17.52	256
10	8147.50	-47.99	4.30	12.30	Vertical	-42.14	-13.00	29.14	265

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Vertical position.

7. Main Test Instruments

Name	Manufacturer	Type	Serial Number	Calibration Date	Expiration Date
Wireless Communication Tester	R&S	CMW500	150415	2024-05-07	2025-05-06
Spectrum Analyzer	R&S	FSV30	100815	2023-12-05	2024-12-04
High-pass filter	Chengyi	HPF 1000MHz	2024021	2024-02-21	2025-02-21
High-pass filter	R&S	HPF 1500MHz	HPF 002	2024-02-21	2025-02-21
High-pass filter	R&S	HPF 3000MHz	HPF 003	2024-02-21	2025-02-21
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	391	2022-09-29	2025-09-28
Horn Antenna	SCHWARZBECK	BBHA 9120D	1594	2023-12-05	2026-12-04
Software	R&S	EMC32	10.35.10	/	/

ANNEX A: The EUT Appearance

The EUT Appearance is submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos is submitted separately.

***** END OF REPORT *****