

TEST REPORT

Test Report No. : UL-RPT-RP15486810-116A

Customer* : Lush Ltd

Model No. / HVIN* : Bath Bot 01

PMN* : Bath Bot 01

FCC ID* : 2BLRI-LUSHBATHBOT01

ISED Certification No.* : IC: 33209-BATHBOT01

Test Standard(s) : FCC Parts 15.207, 15.209 & 15.215(c)
Innovation, Science and Economic Development Canada
RSS-210 Issue 10 April 2020
RSS-Gen Issue 5 February 2021

Test Laboratory : UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom

1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
2. The results in this report apply only to the sample(s) tested.
3. This sample tested is in compliance with the above standard(s).
4. The test results in this report are traceable to the national or international standards.
5. All information marked with (*) was provided by the Customer, Applicant or Authorised representative
6. Version 2.0 supersedes all previous versions.

Date of Issue: 16 July 2025

Checked by:

Ben Mercer
Lead Test Engineer, Radio Laboratory

Company Signatory:

Sarah Williams
Staff Engineer, Radio Laboratory

Customer Information

Company Name*:	Lush Ltd
Address*:	29 High Street, Poole, BH15 1AB, United Kingdom

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	08/11/2024	Initial Version	Ben Mercer
2.0	16/07/2025	TCB/FCB requested updates	Ben Mercer

Table of Contents

Customer Information.....	2
Report Revision History	2
Table of Contents.....	3
1 Attestation of Test Results.....	4
1.1 Description of EUT	4
1.2 General Information	4
1.3 Summary of Test Results	4
1.4 Deviations from the Test Specification	4
2 Summary of Testing.....	5
2.1 Facilities and Accreditation	5
2.2 Methods and Procedures	5
2.3 Calibration and Uncertainty	6
2.4 Test and Measurement Equipment	7
3 Equipment Under Test (EUT)	8
3.1 Identification of Equipment Under Test (EUT)	8
3.2 Modifications Incorporated in the EUT	9
3.3 Additional Information Related to Testing	9
3.4 Description of Test Setup	10
4. Radiated Test Results.....	13
4.1. Transmitter 99% Emission Bandwidth	13
4.2. Transmitter 20 dB Bandwidth	14
4.3. Transmitter Radiated Emissions <1GHz	15
5 AC Power Line Conducted Emissions Test Results.....	19
5.1 Transmitter AC Conducted Spurious Emissions	19

1 Attestation of Test Results

1.1 Description of EUT

The equipment under test (EUT) was a Bath Bot TM 01 Dock.*

1.2 General Information

Specification Reference:	47CFR15.207, 47CFR15.209 and 47CFR15.215
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207, 15.209 & 15.215
Specification Reference:	ISED Canada RSS-210 Issue 10, April 2020
Specification Title:	Licence-Exempt Radio Apparatus: Category I Equipment
Specification Reference:	RSS-Gen Issue 5 February 2021
Specification Title:	General Requirements for Compliance of Radio Apparatus
Site Registration:	FCC: 685609, ISEDC: 20903
FCC Lab. Designation No.:	UK2011
ISEDC CABID:	UK0001
Location of Testing:	Units 3 & 4 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	07 October 2024 to 17 October 2024

1.3 Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
N/A	RSS-Gen 6.7	Transmitter 99% Emission Bandwidth	✓
Part 15.215(c)	N/A	Transmitter 20 dB Bandwidth	✓
Part 15.209	RSS-210 7.2 / RSS-Gen 8.9	Transmitter Radiated Emissions	✓
Part 15.207	RSS-Gen 8.8	Transmitter AC Conducted Emissions	✓

Key to Results

✓ = Complied ✗ = Did not comply

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Units 3 & 4 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	X
Site 2	-
Site 17	-
Site 32	-
Site 33	-

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	FCC KDB 414788 D01 Radiated Test Site v01r01 July 12, 2018
Title:	Test Sites For Radiated Emission Measurements
Reference:	Notice 2020 – DRS0023, December 18, 2020
Title:	Guidance on magnetic field strength radiated emission measurements (9 kHz – 30 MHz)
Reference:	KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

Measurement system instrumentation shall be used with an accuracy specification meeting the accuracy specification limits according to IEC/IECEE OD-5014.

As applicable, unless specified otherwise in this quotation, the compliance "Decision Rule" is based on Simple Acceptance. If the measured value is on the limit, the result is defined as a pass. In this case the risk of a false positive is 50%. For further information regarding risk assessment refer to ILAC G8:09/2019.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
99% Emission Bandwidth	150 kHz	95%	$\pm 2.41 \%$
20 dB Bandwidth	150 kHz	95%	$\pm 3.27 \%$
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	$\pm 5.44 \text{ dB}$
Radiated Spurious Emissions	30 MHz to 1000 MHz	95%	$\pm 2.98 \text{ dB}$
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	$\pm 1.88 \text{ dB}$

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

Test Equipment Used for Transmitter 20 dB Bandwidth / 99% Emission Bandwidth Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	27 Dec 2024	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	06 May 2025	12
A250419	Passive Loop Antenna	Schwarzbeck	HFRAE 5163	00331	Calibrated before use	-

Test Equipment Used for Transmitter Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	27 Dec 2024	12
K0001	3m RSE Chamber	MVG Industries UK	N/A	N/A	11 Sep 2025	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	06 May 2025	12
A3154	Pre-Amplifier	Com-Power	PAM-103	18020012	28 Aug 2025	12
A3165	Magnetic Loop Antenna	ETS-Lindgren	6502	00224383	26 Mar 2025	12
A553	Bi-Log Antenna	Chase	CBL6111A	1593	27 Aug 2025	12
A3112	Attenuator	AtlanTecRF	AN18-06	219706#2	27 Aug 2025	12

Test Equipment Used for Transmitter AC Conducted Emissions

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2046	Thermohygrometer	Testo	608-H1	45131910	27 Dec 2024	12
M2051	Test Receiver	Rohde & Schwarz	ESR3	102445	14 Nov 2024	12
A2883	LISN	Rohde & Schwarz	ENV216	101094	19 Mar 2025	12
A1828	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100669	24 Jan 2025	12

Test Measurement Software/Firmware Used:

Name	Version	Release Date
Rohde & Schwarz EMC32	10.40.10	2019

3 Equipment Under Test (EUT)

3.1 Identification of Equipment Under Test (EUT)

Brand Name* :	Lush
Model Name or Number / HVIN* :	Bath Bot 01
PMN* :	Bath Bot 01
Test Sample Serial Number* :	0936 (<i>Radiated sample #1</i>)
Hardware Version* :	REV B
Software Version* :	N/A
Firmware Version* :	V1.7.0.S
FCC ID* :	2BLRI-LUSHBATHBOT01
ISED Canada Certification Number* :	IC: 33209-BATHBOT01
Date of Receipt:	23 September 2024

Brand Name* :	Lush
Model Name or Number / HVIN* :	Bath Bot 01
PMN* :	Bath Bot 01
Test Sample Serial Number* :	0257 (<i>Radiated sample #1</i>)
Hardware Version* :	REV E
Software Version* :	N/A
Firmware Version* :	V1.7.0.S
FCC ID* :	2BLRI-LUSHBATHBOT01
ISED Canada Certification Number* :	IC: 33209-BATHBOT01
Date of Receipt:	23 September 2024

Brand Name* :	Lush
Model Name or Number / HVIN* :	Bath Bot 01
PMN* :	Bath Bot 01
Test Sample Serial Number* :	0675 (<i>Radiated sample #2</i>)
Hardware Version* :	REV E
Software Version* :	N/A
Firmware Version* :	V1.7.0.S
FCC ID* :	2BLRI-LUSHBATHBOT01
ISED Canada Certification Number* :	IC: 33209-BATHBOT01
Date of Receipt:	23 September 2024

Identification of Equipment Under Test (EUT) (continued)

Brand Name*:	Lush
Model Name or Number / HVIN*:	Bath Bot 01
PMN*:	Bath Bot 01
Test Sample Serial Number*:	0676 (<i>Radiated sample #3</i>)
Hardware Version*:	REV E
Software Version*:	N/A
Firmware Version*:	V1.7.0.S
FCC ID*:	2BLRI-LUSHBATHBOT01
ISED Canada Certification Number*:	33209-BATHBOT01
Date of Receipt:	23 September 2024

3.2 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3 Additional Information Related to Testing

Tested Technology:	Wireless Power Transfer
Power Supply Requirement*:	5 VDC via 120 VAC 60 Hz
Type of Unit:	Transceiver
Transmit Frequency:	~150 kHz

3.4 Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

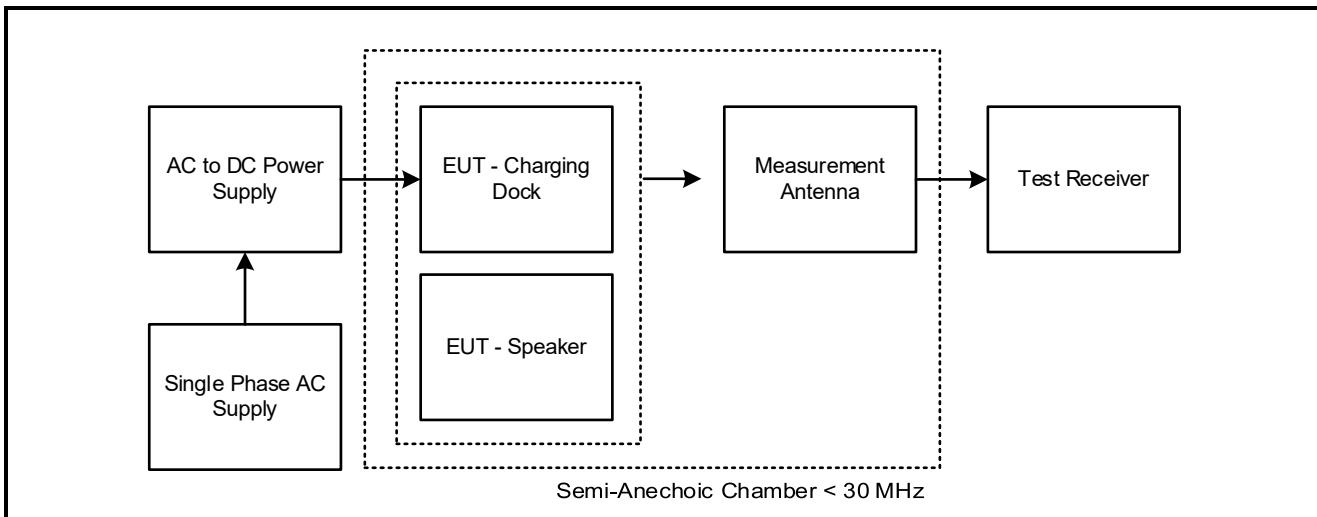
Customer Supplied*:

Description	Brand Name	Model Name or Number	Serial Number
AC Mains adapter	XP Power GMBH	VEL05US050-UK-BB	Not marked or stated
USB Cable Type C to Type A – 1m	Not marked or stated	Not marked or stated	Not marked or stated

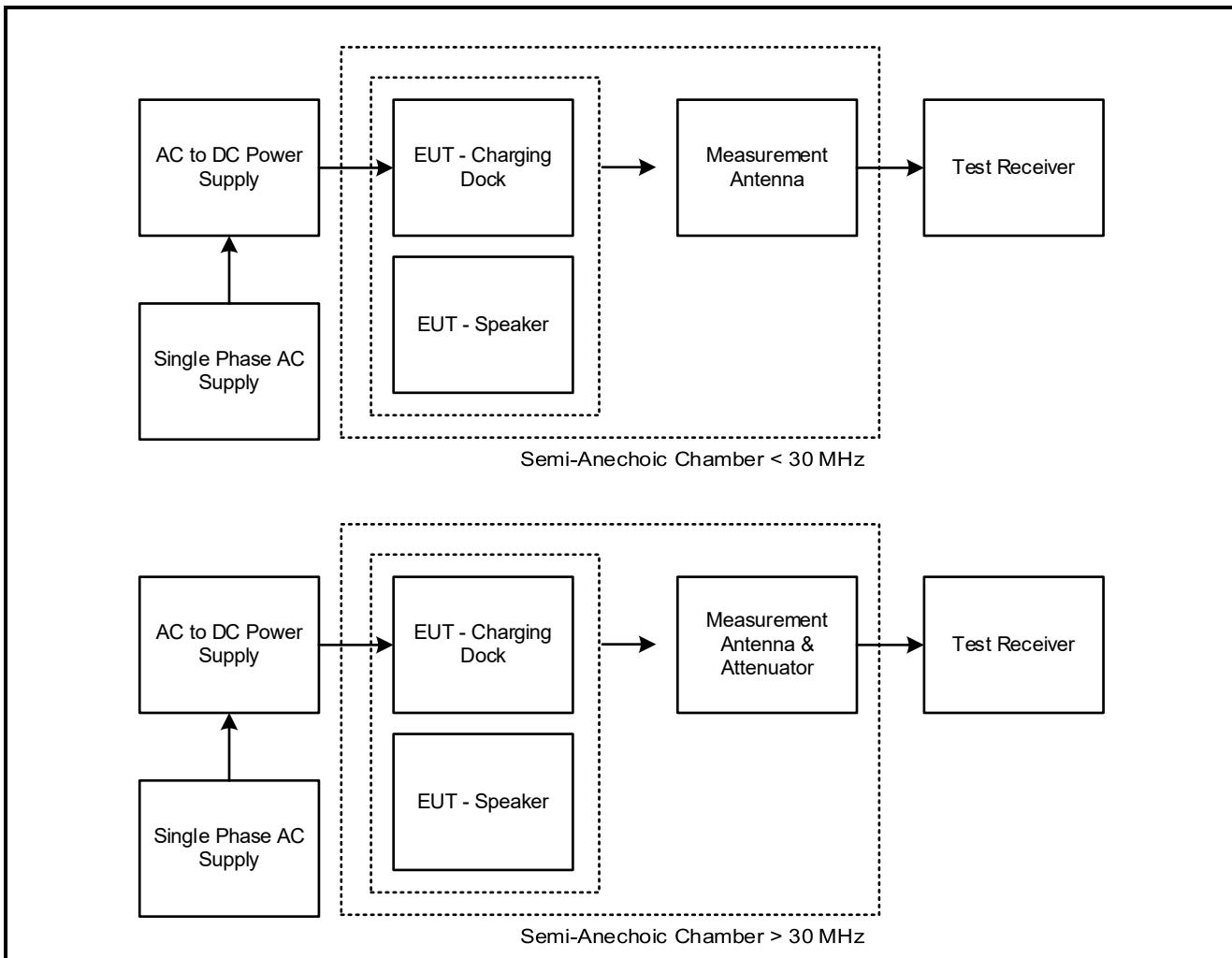
Operating Modes

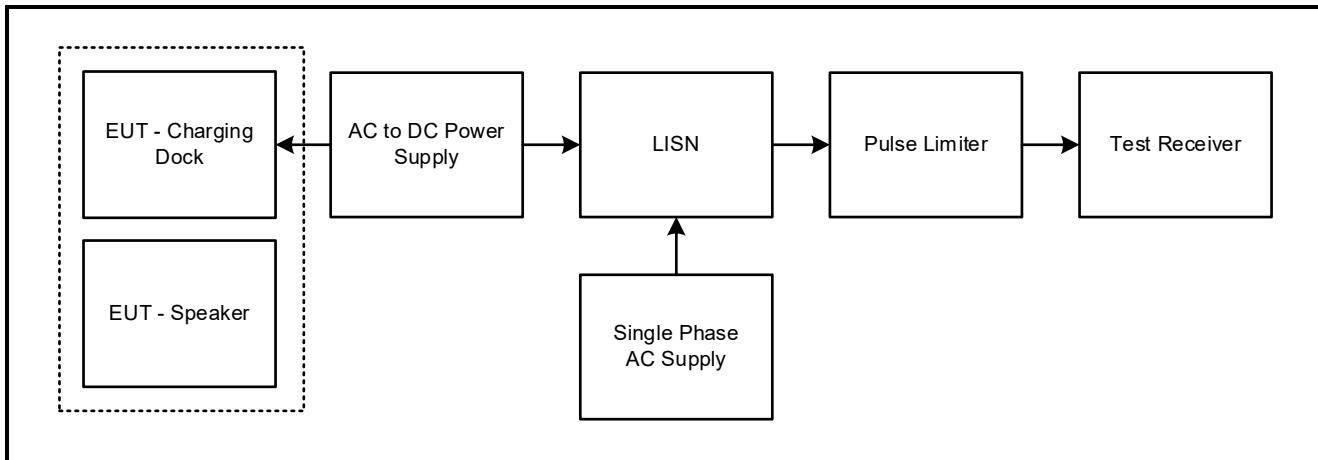
The EUT was tested in the following operating mode(s):

- WPT – Charging mode.


Configuration and Peripherals

The EUT was tested in the following configuration(s):


- WPT charging of the EUT's battery commenced when the *Bluetooth* speaker was placed into the docking port of the base station.
- The EUT is equipped with four LED lights to identify the battery status. At the start of testing the charge status was less than 25% and was monitored throughout testing.
- Radiated emission measurements were performed with the WPT system in its normal orientation and mode of operation.


Test Setup Diagrams

Test Setup for Transmitter 20 dB Bandwidth / 99% Emission Bandwidth

Test Setup for Transmitter Radiated Emissions

Test Setup Diagrams (continued)**Test Setup for Transmitter AC Conducted Emissions**

4. Radiated Test Results

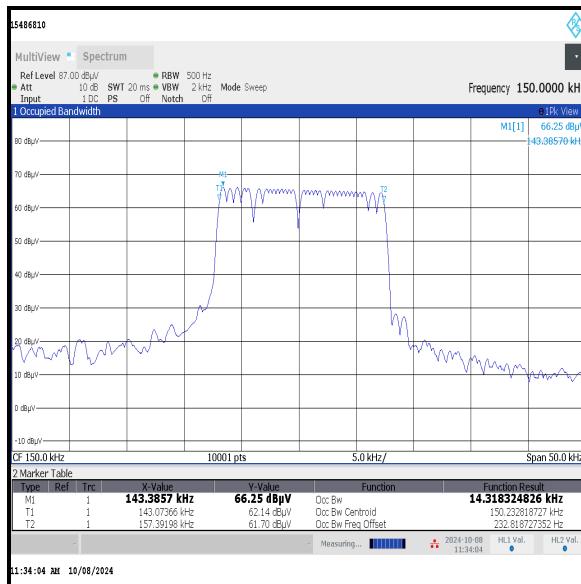
4.1. Transmitter 99% Emission Bandwidth

Test Summary:

Test Engineers:	Lenny Hantz & Andrew Edwards	Test Date:	08 October 2024
Test Sample Serial Numbers:	0675 & 0936		

FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	RSS-Gen 6.7 and Notes below

Environmental Conditions:


Temperature (°C):	23
Relative Humidity (%):	50

Note(s):

1. The 99% emission bandwidth was measured using the signal analyser occupied bandwidth function. The resolution bandwidth was set in the range of 1% to 5% of the emission bandwidth and the video bandwidth set to 3 times the resolution bandwidth as the signal allowed without being below 3 times RBW. The span was set to capture all products of the modulation process including emission skirts.

Results:

99% Emission Bandwidth (kHz)	
14.318	

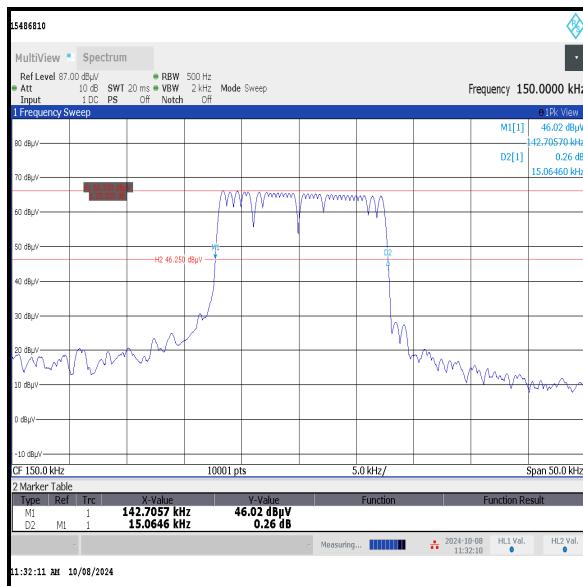
4.2. Transmitter 20 dB Bandwidth

Test Summary:

Test Engineers:	Lenny Hantz & Andrew Edwards	Test Date:	08 October 2024
Test Sample Serial Numbers:	0675 & 0936		

FCC Reference:	Part 15.215(c)
ISED Canada Reference:	N/A
Test Method Used:	ANSI C63.10 Section 6.9.2

Environmental Conditions:


Temperature (°C):	23
Relative Humidity (%):	50

Note(s):

1. The signal analyser resolution bandwidth was set to 500 Hz and video bandwidth 2 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 50 kHz. Normal and delta markers were placed 20 dB down from the peak of the carrier. The delta value was recorded in the table below.

Results:

20 dB Bandwidth (kHz)	
15.065	

4.3. Transmitter Radiated Emissions <1GHz

Test Summary:

Test Engineer:	Lenny Hantz	Test Dates:	07 October 2024 & 08 October 2024
Test Sample Serial Numbers:	0257, 0676 & 0936		

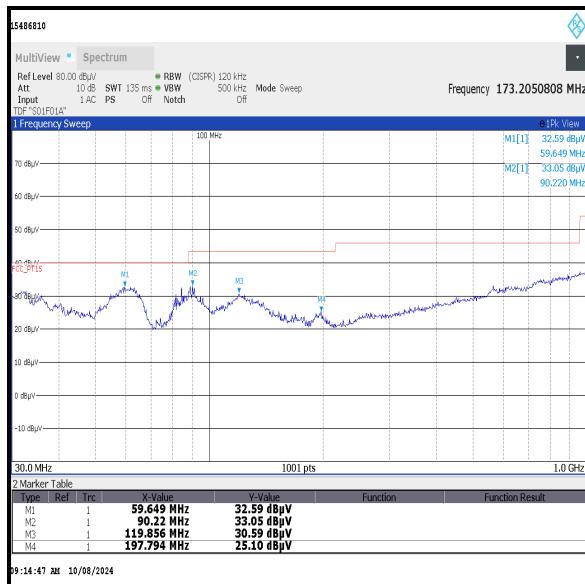
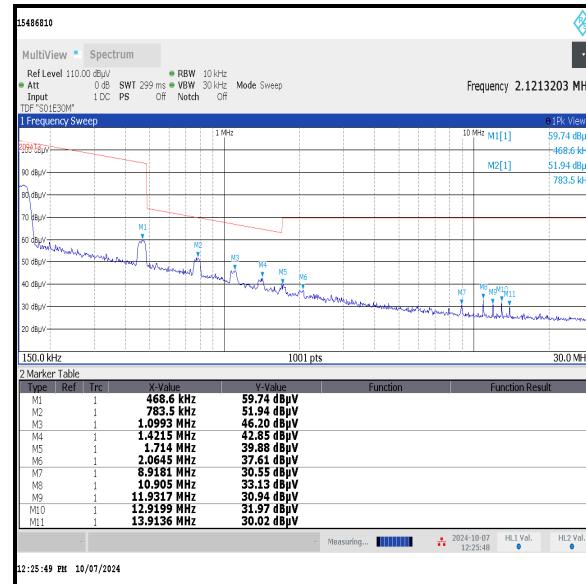
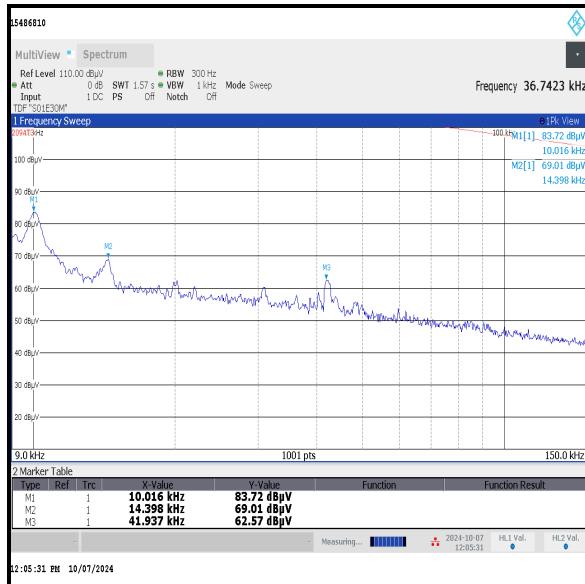
FCC Reference:	Part 15.209
ISED Canada Reference:	RSS-210 7.2 / RSS-Gen 8.9
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4 and 6.5 FCC KDB 414788 and notes below
Frequency Range:	9 kHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	22 to 23
Relative Humidity (%):	49 to 50

Transmitter Radiated Emissions <1 GHz (continued)**Note(s):**

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. All other emissions were at least 20 dB below the appropriate limit or below the noise floor of the measurement system.
3. The emission shown at approximately 150 kHz is the fundamental emission frequency.
4. The emissions shown at approximately 10 kHz and 14 kHz are ambient emissions originating from the chamber turntable.
5. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. As allowed by ANSI C63.10 clause 5.2; an alternative test site that can demonstrate equivalence to an open area test site may be used for measurements below 30 MHz. Therefore, measurements were performed in a semi-anechoic chamber. The correlation data between semi-anechoic chamber and an open field test site is available upon request.
6. Measurements below 30 MHz, the measured values at 3 metres were extrapolated to the required measurement distances of 300 metres and 30 metres and compared to the specified limits at those distances:
 - 9 kHz to 490 kHz: measured value extrapolated from 3 metres to 300 metres by subtracting 80 dB at 40 dB / decade
 - 490 kHz to 30 MHz: measured value extrapolated from 3 metres to 30 metres by subtracting 40 dB at 40 dB / decade
7. Measurements from 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB_{uV/m}, which is equivalent to $Y - 51.5 = Z$ dB_{uA/m}, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to the 15.209(a) limit.
9. Pre-scans were performed, and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used, and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
10. Final measurements were performed on the marker frequencies and the results entered into the tables below. The test receiver resolution bandwidth was set to the following bandwidths: 150 kHz to 30 MHz, the measured bandwidth was set to 9 kHz, and 30 MHz to 1 GHz, the measured bandwidth was set to 120 kHz, using a CISPR quasi-peak detector with a measurement time of 15 seconds.




Transmitter Radiated Emissions <1 GHz (continued)**Results: 9 kHz to 30 MHz / Quasi Peak**

Frequency (MHz)	Antenna Orientation	Measured Level at 3 metres (dB μ V/m)	Measured level at 3 m extrapolated to 30/300 m (dB μ V/m)	Limit ^{Note 5} (dB μ V/m)	Margin (dB)	Result
0.775	Antenna tip ground parallel	49.1	9.1	29.8	20.7	Complied

Results: 30 MHz to 1 GHz / Quasi Peak

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
59.850	Vertical	29.8	40.0	10.2	Complied
88.949	Vertical	27.6	43.5	15.9	Complied
119.504	Vertical	28.8	43.5	14.7	Complied
196.122	Vertical	20.1	43.5	23.4	Complied

Transmitter Radiated Emissions <1 GHz (continued)

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

5 AC Power Line Conducted Emissions Test Results

5.1 Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Alison Johnston	Test Date:	17 October 2024
Test Sample Serial Numbers:	0676 & 0936		

FCC Reference:	Part 15.207
ISED Canada Reference:	RSS-Gen 8.8
Test Method Used:	ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below

Environmental Conditions:

Temperature (°C):	27
Relative Humidity (%):	48

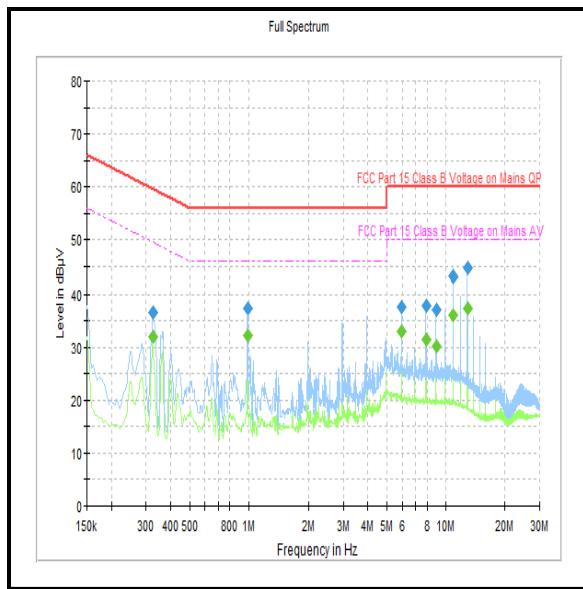
Note(s):

1. The EUT Speaker was placed on the dock base. The dock base was connected to its AC power supply via a USB cable. The AC power supply was connected to 120 VAC 60 Hz single phase supply via a LISN.
2. In accordance with FCC KDB 174176 Q4, tests were performed with a 240 VAC 60 Hz single phase supply as this was within the voltage range marked as 100 to 240 VAC the AC power supply.
3. Preliminary measurements were performed at both 50 Hz and 60 Hz supply frequencies. There was no change to the observed emissions.
4. A pulse limiter was fitted between the LISN and the test receiver.
5. Pre-scans were performed, then markers placed on the highest six live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.

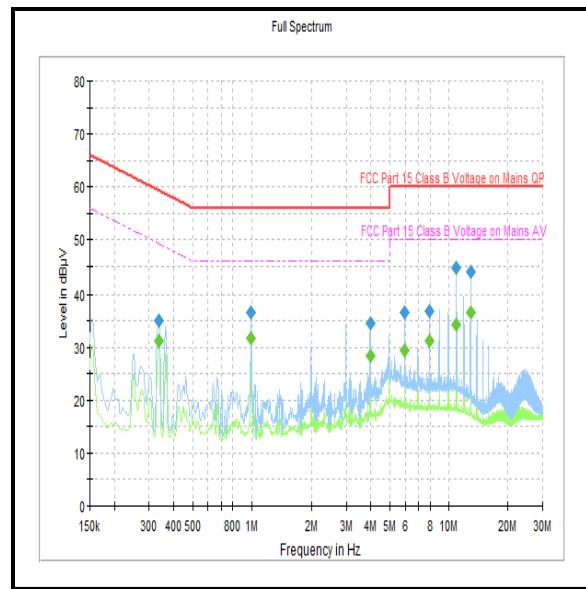
Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak / 120 VAC 60 Hz**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.328	Live	36.7	59.5	22.8	Complied
0.990	Live	37.3	56.0	18.7	Complied
5.939	Live	37.7	60.0	22.3	Complied
7.922	Live	37.7	60.0	22.3	Complied
10.896	Live	43.3	60.0	16.7	Complied
12.878	Live	44.9	60.0	15.1	Complied

Results: Live / Average / 120 VAC 60 Hz


Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.328	Live	31.9	49.5	17.6	Complied
0.992	Live	32.1	46.0	13.9	Complied
5.946	Live	33.0	50.0	17.0	Complied
7.931	Live	31.5	50.0	18.5	Complied
10.907	Live	36.1	50.0	13.9	Complied
12.892	Live	37.3	50.0	12.7	Complied

Results: Neutral / Quasi Peak / 120 VAC 60 Hz


Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.994	Neutral	36.5	56.0	19.5	Complied
3.975	Neutral	34.6	56.0	21.4	Complied
5.962	Neutral	36.6	60.0	23.4	Complied
7.949	Neutral	36.7	60.0	23.3	Complied
10.932	Neutral	44.6	60.0	15.4	Complied
12.919	Neutral	44.0	60.0	16.0	Complied

Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.337	Neutral	31.3	49.3	18.0	Complied
0.994	Neutral	31.7	46.0	14.3	Complied
3.975	Neutral	28.5	46.0	17.5	Complied
7.949	Neutral	31.1	50.0	18.9	Complied
10.934	Neutral	34.3	50.0	15.7	Complied
12.919	Neutral	36.6	50.0	13.4	Complied

Transmitter AC Conducted Spurious Emissions (continued)**Results: 120 VAC 60 Hz**

Live

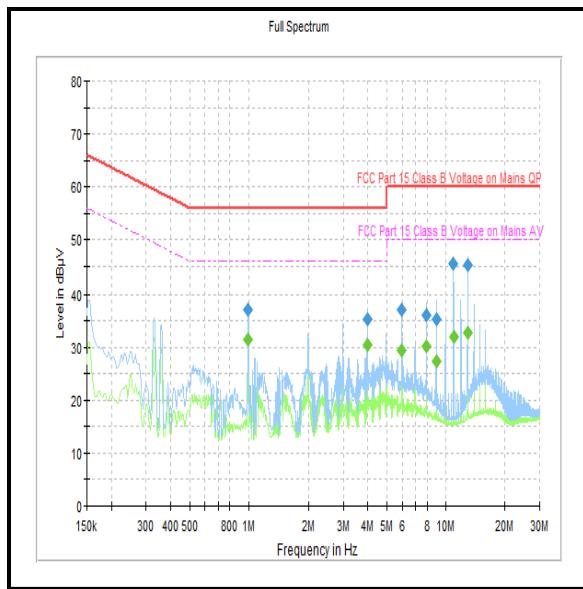
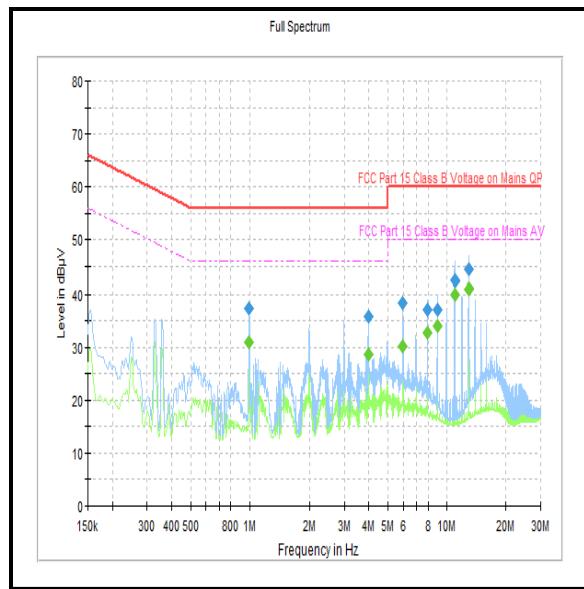
Neutral

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak / 240 VAC 60 Hz**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.994	Live	37.1	56.0	18.9	Complied
3.975	Live	35.3	56.0	20.7	Complied
5.964	Live	37.1	60.0	22.9	Complied
7.953	Live	36.0	60.0	24.0	Complied
10.937	Live	45.4	60.0	14.6	Complied
12.923	Live	45.3	60.0	14.7	Complied

Results: Live / Average / 240 VAC 60 Hz



Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.994	Live	31.5	46.0	14.5	Complied
3.977	Live	30.3	46.0	15.7	Complied
5.966	Live	29.3	50.0	20.7	Complied
7.953	Live	30.3	50.0	19.7	Complied
10.939	Live	31.9	50.0	18.1	Complied
12.926	Live	32.8	50.0	17.2	Complied

Results: Neutral / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.994	Neutral	37.2	56.0	18.8	Complied
5.966	Neutral	38.4	60.0	21.6	Complied
7.958	Neutral	37.0	60.0	23.0	Complied
8.952	Neutral	37.0	60.0	23.0	Complied
10.939	Neutral	42.3	60.0	17.7	Complied
12.930	Neutral	44.4	60.0	15.6	Complied

Results: Neutral / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.994	Neutral	30.8	46.0	15.2	Complied
3.980	Neutral	28.7	46.0	17.3	Complied
7.958	Neutral	32.8	50.0	17.2	Complied
8.952	Neutral	33.9	50.0	16.1	Complied
10.941	Neutral	40.0	50.0	10.0	Complied
12.930	Neutral	40.9	50.0	9.1	Complied

Transmitter AC Conducted Spurious Emissions (continued)**Results: 240 VAC 60 Hz****Live****Neutral**

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

--- END OF REPORT ---