

# **Test Report**

**Applicant** INTEGRATED TECHNICAL VISION LTD

12 CHIGORINA STR., KYIV 01042, UKRAINE **Address** 

**Product Name** : U-Prox access control system

**Brand Mark** : U-Prox

Universal reader U-Prox SE mini Model

**FCC ID** : 2BLQF-482026137EOM

**Report Number** : BLA-EMC-202411-A1702

**Date of Receipt** : Nov. 8, 2024

: Feb. 13, 2025 to Feb. 26, 2025 **Date of Test** 

**Test Standard** 47 CFR Part 15, Subpart C 15.247

**Test Result Pass** 

Compiled by:

Review by: Sweets Approved by: 13 live . Then

Issued Date: Feb. 26, 20

BlueAsia of Technical Services(Shenzhen) Co. Ltd

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,

Shenzhen, Guangdong Province, China







# **Table of Contents**

| 1 | Ger | neral information                                     | 5  |
|---|-----|-------------------------------------------------------|----|
|   | 1.1 | General information                                   | 5  |
|   | 1.2 | General description of EUT                            | 5  |
| 2 | Tes | t summary                                             | f  |
|   |     |                                                       |    |
| 3 | Tes | t Configuration                                       |    |
|   | 3.1 | Test mode                                             |    |
|   | 3.2 | Operation Frequency each of channel                   |    |
|   | 3.3 | Test channel                                          |    |
|   | 3.4 | Configuration diagram of EUT                          |    |
|   | 3.5 | Auxiliary equipment                                   | 8  |
|   | 3.6 | Test environment                                      | 8  |
| 4 | Lab | oratory information                                   | ç  |
|   | 4.1 | Laboratory and accreditations                         |    |
|   | 4.2 | Measurement uncertainty                               |    |
|   |     |                                                       |    |
| 5 | Tes | t equipment                                           | 10 |
| 6 | Tes | t result                                              | 12 |
|   | 6.1 | Antenna requirement                                   | 12 |
|   | 6.2 | Conducted peak output Power                           | 13 |
|   | 6.3 | Minimum 6dB bandwidth                                 | 14 |
|   | 6.4 | Power spectrum density                                | 15 |
|   | 6.5 | Conducted Band Edges Measurement                      | 16 |
|   | 6.6 | Conducted spurious emissions                          | 17 |
|   | 6.7 | Radiated spurious emissions                           | 18 |
|   | 6.8 | Radiated emissions which fall in the restricted bands | 29 |
| 7 | Арр | pendix A                                              | 36 |
|   | 7.1 | Maximum Conducted Output Power                        | 36 |
|   | 7.2 | -6dB Bandwidth                                        |    |
|   | 7.3 | Occupied Channel Bandwidth                            | 42 |
|   | 7.4 | Maximum Power Spectral Density Level                  |    |
|   | 7.5 | Band Edge                                             |    |

Blue Asia of Technical Services (Shenzhen) Co., Ltd.





Page 3 of 56

| 7.6      | Conducted RF Spurious Emission | .51 |
|----------|--------------------------------|-----|
| Appendix | x B: photographs of test setup | 55  |
| Annendi  | C: photographs of FUT          | 56  |







Page 4 of 56

# **Revise Record**

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 01          | Feb. 26, 2025 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |



## 1 General information

## 1.1 General information

| Applicant    | INTEGRATED TECHNICAL VISION LTD                   |  |  |
|--------------|---------------------------------------------------|--|--|
| Address      | 12 CHIGORINA STR., KYIV 01042, UKRAINE            |  |  |
| Manufacturer | INTEGRATED TECHNICAL VISION LTD                   |  |  |
| Address      | 5, kurganny side street, Chernihiv 14013, Ukraine |  |  |
| Factory      | INTEGRATED TECHNICAL VISION LTD                   |  |  |
| Address      | 5, kurganny side street, Chernihiv 14013, ukraine |  |  |

## 1.2 General description of EUT

| Product Name                                                                                      | U-Prox access control system    |  |
|---------------------------------------------------------------------------------------------------|---------------------------------|--|
| Model No.                                                                                         | Universal reader U-Prox SE mini |  |
| Series model                                                                                      | N/A                             |  |
| Operation Frequency:                                                                              | 2402MHz-2480MHz                 |  |
| Modulation Type:                                                                                  | GFSK                            |  |
| Rate data:                                                                                        | 1Mbps                           |  |
| Channel Spacing:                                                                                  | 2MHz                            |  |
| Number of Channels:                                                                               | 40                              |  |
| Antenna Type:                                                                                     | PCB antenna                     |  |
| Antenna Gain:                                                                                     | 4 dBi (Provided by customer)    |  |
| Power supply or adapter information                                                               | DC12V                           |  |
| Hardware Version                                                                                  | N/A                             |  |
| Software Version                                                                                  | N/A                             |  |
| Note: For a more detailed description, please refer to Specification or User's Manual supplied by |                                 |  |

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.



# 2 Test summary

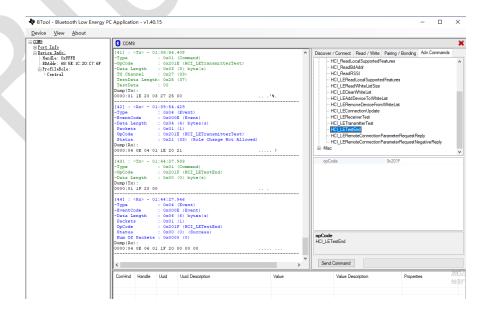
| No. | Test item                                                 | FCC standard          | Test Method(Clause)                 | Result |
|-----|-----------------------------------------------------------|-----------------------|-------------------------------------|--------|
| 1   | Antenna Requirement                                       | §15.203               | N/A                                 | Pass   |
| 2   | Conducted Emissions<br>at AC Power Line<br>(150kHz-30MHz) | §15.207               | ANSI C63.10-2013 Clause 6.2         | N/A    |
| 3   | Conducted Peak Output Power                               | §15.247(b)(3)         | ANSI C63.10-2013 Cluase 7.8.5       | Pass   |
| 4   | Minimum 6dB<br>Bandwidth                                  | §15.247a(2)           | ANSI C63.10-2013 Cluase 11.8.1      | Pass   |
| 5   | Power Spectrum  Density                                   | §15.247(d)            | ANSI C63.10-2013 Cluase 11.10.2     | Pass   |
| 6   | Conducted Band Edges Measurement                          | §15.247(d)            | ANSI C63.10-2013 Cluase 11.13       | Pass   |
| 7   | Conducted Spurious Emissions                              | §15.247(d)            | ANSI C63.10-2013 Cluase 11.11       | Pass   |
| 8   | Radiated Spurious Emissions                               | §15.209<br>§15.247(d) | ANSI C63.10-2013 Cluase 6.4,6.5,6.6 | Pass   |
| 9   | Radiated Emissions which fall in the restricted bands     | §15.209<br>§15.247(d) | ANSI C63.10-2013 Cluase 11.12       | Pass   |

N/A: Not Applicable



## 3 Test Configuration

#### 3.1 Test mode


| Test Mode Note 1  | Description                                                                    |  |
|-------------------|--------------------------------------------------------------------------------|--|
| TX                | Geep the EUT in continuously transmitting with modulation mode.                |  |
| RX                | Keep the EUT in receiving mode                                                 |  |
| TX Low channel    | Keep the EUT in continuously transmitting mode in low channel                  |  |
| TX middle channel | Keep the EUT in continuously transmitting mode in middle channel               |  |
| TX high channel   | TX high channel Keep the EUT in continuously transmitting mode in high channel |  |

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode Note 2 to fix the TX or Rx frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

| Power level setup in software |                                                      |      |                   |  |  |  |
|-------------------------------|------------------------------------------------------|------|-------------------|--|--|--|
| Test Software Name            | BTool - Bluetooth Low Energy PC Application-v1.40.15 |      |                   |  |  |  |
| Mode                          | Channel Frequency (MHz) Soft Set                     |      |                   |  |  |  |
|                               | CH00                                                 | 2402 |                   |  |  |  |
| GFSK                          | CH20                                                 | 2442 | TX level: default |  |  |  |
|                               | CH39                                                 | 2480 |                   |  |  |  |

#### Run Software



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



Report No.: BLA-EMC-202411-A1702

Page 8 of 56

# 3.2 Operation Frequency each of channel

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1       | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
|         |           |         |           |         |           |         |           |
| 8       | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9       | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |

## 3.3 Test channel

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |

## 3.4 Configuration diagram of EUT



# 3.5 Auxiliary equipment

| Device Type                                           | Manufacturer | Model Name | Serial No. | Remark                             |  |  |
|-------------------------------------------------------|--------------|------------|------------|------------------------------------|--|--|
| PC                                                    | Lenovo       | E460C      | N/A        | From lab<br>(No.BLA-ZC-BS-2022005) |  |  |
| Rechargeable battery                                  | OUTDO        | UTX7L-BS   | N/A        | From lab(No.BLA-ZC-PJ-2023005)     |  |  |
| Note: "" mean no any auxiliary device during testing. |              |            |            |                                    |  |  |

## 3.6 Test environment

| Environment | Temperature | Voltage |  |
|-------------|-------------|---------|--|
| Normal      | 25°C        | DC 12V  |  |

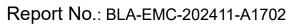
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



# 4 Laboratory information

## 4.1 Laboratory and accreditations


The test facility is recognized, certified, or accredited by the following organizations:

| Company name:            | BlueAsia of Technical Services(Shenzhen) Co., Ltd.                                                          |
|--------------------------|-------------------------------------------------------------------------------------------------------------|
| Address:                 | Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China |
| CNAS accredited No.:     | L9788                                                                                                       |
| A2LA Cert. No.:          | 5071.01                                                                                                     |
| FCC Designation No.:     | CN1252                                                                                                      |
| ISED CAB identifier No.: | CN0028                                                                                                      |
| Telephone:               | +86-755-28682673                                                                                            |
| FAX:                     | +86-755-28682673                                                                                            |

## 4.2 Measurement uncertainty

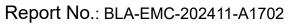
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

| Parameter                                      | Expanded Uncertainty |
|------------------------------------------------|----------------------|
| Radiated Emission(9kHz-30MHz)                  | ±4.34dB              |
| Radiated Emission(30Mz-1000MHz)                | ±4.24dB              |
| Radiated Emission(1GHz-18GHz)                  | ±4.68dB              |
| AC Power Line Conducted Emission(150kHz-30MHz) | ±3.45dB              |
| Occupied Channel Bandwidth                     | ±5 %                 |
| RF output power, conducted                     | ±1.5 dB              |
| Power Spectral Density, conducted              | ±3.0 dB              |
| Unwanted Emissions, conducted                  | ±3.0 dB              |
| Temperature                                    | ±3 °C                |
| Supply voltages                                | ±3 %                 |
| Time                                           | ±5 %                 |





Page 10 of 56


# 5 Test equipment

#### RF conducted

| Equipment       | Name                             | Model    | Manufacture        | S/N               | Cal. Date  | Due. Date  |
|-----------------|----------------------------------|----------|--------------------|-------------------|------------|------------|
| BLA-EMC-003-003 | Shield room                      | 5*3*3    | SKET               | N/A               | 2023/11/16 | 2025/11/15 |
| BLA-EMC-016     | Signal<br>Generator              | N5182A   | Agilent            | MY52420<br>567    | 2024/06/28 | 2025/06/27 |
| BLA-EMC-038     | Spectrum                         | N9020A   | Agilent            | MY49100<br>060    | 2024/08/08 | 2025/08/07 |
| BLA-EMC-042     | Power sensor                     | RPR3006W | DARE               | 14I00889<br>SN042 | 2024/08/08 | 2025/08/07 |
| BLA-EMC-044     | Radio<br>communication<br>tester | CMW500   | R&S                | 132429            | 2024/08/08 | 2025/08/07 |
| BLA-EMC-064     | Signal<br>Generator              | N5182B   | KEYSIGHT           | MY58108<br>892    | 2024/06/28 | 2025/06/27 |
| BLA-EMC-079     | Spectrum                         | N9020A   | Agilent            | MY54420<br>161    | 2024/08/08 | 2025/08/07 |
| BLA-EMC-088     | Audio Analyzer                   | ATS-1    | Audio<br>Precision | ATS1410<br>94     | 2024/06/28 | 2025/06/27 |

#### Radiated Spurious Emissions (Below 1GHz)

| Equipment      | Name              | Model            | Manufacture | S/N    | Cal. Date  | Due. Date  |
|----------------|-------------------|------------------|-------------|--------|------------|------------|
| BLA-EMC-002-01 | Anechoic chamber  | 9*6*6<br>chamber | SKET        | N/A    | 2024/3/27  | 2027/3/26  |
| BLA-EMC-002-02 | Control room      | 966 control room | SKET        | N/A    | 2024/3/27  | 2027/3/26  |
| BLA-EMC-009    | EMI receiver      | ESR7             | R&S         | 101199 | 2024/08/08 | 2025/08/07 |
| BLA-EMC-043    | Loop antenna      | FMZB1519B        | Schwarzbeck | 00102  | 2024/06/29 | 2026/06/28 |
| BLA-EMC-065    | Broadband antenna | VULB9168         | Schwarzbeck | 01065P | 2024/06/29 | 2026/06/27 |
| BLA-XC-01      | Coaxial Cable     | N/A              | BlueAsia    | V01    | N/A        | N/A        |
| BLA-XC-02      | Coaxial Cable     | N/A              | BlueAsia    | V02    | N/A        | N/A        |





Page 11 of 56

## Radiated Spurious Emissions (Above 1GHz)

| Equipment      | Name              | Model                  | Manufacture | S/N              | Cal. Date  | Due. Date  |
|----------------|-------------------|------------------------|-------------|------------------|------------|------------|
| BLA-EMC-001-01 | Anechoic chamber  | 9*6*6<br>chamber       | SKET        | N/A              | 2023/11/16 | 2026/11/15 |
| BLA-EMC-001-02 | Control Room      | 966 control room       | SKET        | N/A              | 2023/11/16 | 2025/11/15 |
| BLA-EMC-008    | Spectrum          | FSP40                  | R&S         | 100817           | 2024/08/08 | 2025/08/07 |
| BLA-EMC-012    | Broadband antenna | VULB9168               | Schwarzbeck | 00836<br>P:00227 | 2022/10/12 | 2025/10/11 |
| BLA-EMC-013    | Horn Antenna      | BBHA9120D              | Schwarzbeck | 01892            | 2024/06/29 | 2026/06/28 |
| BLA-EMC-014    | Amplifier         | PA_000318G-<br>45      | SKET        | PA201804<br>3003 | 2024/08/08 | 2025/08/07 |
| BLA-EMC-046    | Filter bank       | 2.4G/5G Filter<br>bank | SKET        | N/A              | 2024/06/28 | 2025/06/27 |
| BLA-EMC-061    | Receiver          | ESPI7                  | R&S         | 101477           | 2024/06/28 | 2025/06/27 |
| BLA-EMC-066    | Amplifier         | LNPA_30M01<br>G-30     | SKET        | SK202106<br>0801 | 2024/06/28 | 2025/06/27 |
| BLA-EMC-086    | Amplifier         | LNPA_18G40<br>G-50dB   | SKET        | SK202207<br>1301 | 2024/06/28 | 2025/06/27 |
| BLA-EMC-087    | Horn Antenna      | BBHA 9170              | Schwarzbeck | 1106             | 2024/06/29 | 2026/06/28 |
| BLA-XC-03      | Coaxial Cable     | N/A                    | BlueAsia    | V03              | N/A        | N/A        |
| BLA-XC-04      | Coaxial Cable     | N/A                    | BlueAsia    | V04              | N/A        | N/A        |

#### **Test Software Record:**

| Software No. | Software Name                     | Manufacture | Software version | Test site |
|--------------|-----------------------------------|-------------|------------------|-----------|
| BLA-EMC-S001 | EZ-EMC                            | EZ          | EEMC-3A1+        | RE        |
| BLA-EMC-S002 | EZ-EMC                            | EZ          | EEMC-3A1+        | RE        |
| BLA-EMC-S010 | MTS 8310                          | MW          | 2.0.0.0          | RF        |
| BLA-EMC-S014 | Bluetooth and WiFi<br>Test System | Tonscend    | 2.5.77.0418      | RF        |



### 6 Test result

## 6.1 Antenna requirement

| Test Standard | 47 CFR Part 15, Subpart C 15.247 |
|---------------|----------------------------------|
| Test Method   | N/A                              |

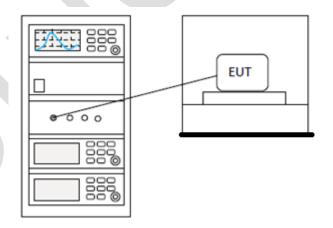
#### 6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### EUT antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4 dBi.




## 6.2 Conducted peak output Power

| Test Standard          | 17 CFR Part 15, Subpart C 15.247 |  |  |
|------------------------|----------------------------------|--|--|
| Test Method            | NSI C63.10 (2013) Section 7.8.5  |  |  |
| Test Mode (Pre-Scan)   | x                                |  |  |
| Test Mode (Final Test) | TX                               |  |  |

## 6.2.1 Limit

| Frequency range(MHz) | Output power of the intentional radiator(watt)         |  |  |  |
|----------------------|--------------------------------------------------------|--|--|--|
|                      | 1 for ≥50 hopping channels                             |  |  |  |
| 902-928              | 0.25 for 25≤ hopping channels <50                      |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |
|                      | 1 for ≥75 non-overlapping hopping channels             |  |  |  |
| 2400-2483.5          | 0.125 for all other frequency hopping systems          |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |
| 5725-5850            | 1 for frequency hopping systems and digital modulation |  |  |  |

## 6.2.2 Test setup



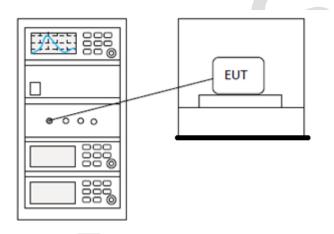
#### 6.2.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481




## 6.3 Minimum 6dB bandwidth

| Test Standard          | 17 CFR Part 15, Subpart C 15.247  |  |  |
|------------------------|-----------------------------------|--|--|
| Test Method            | ANSI C63.10 (2013) Section 11.8.1 |  |  |
| Test Mode (Pre-Scan)   | TX                                |  |  |
| Test Mode (Final Test) | TX                                |  |  |

#### 6.3.1 Limit

≥500 kHz

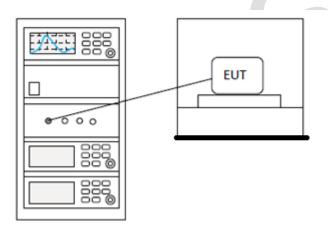
## 6.3.2 Test setup



#### 6.3.3 Test data

Pass: Please refer to appendix A for details




## 6.4 Power spectrum density

| Test Standard          | 7 CFR Part 15, Subpart C 15.247    |  |  |
|------------------------|------------------------------------|--|--|
| Test Method            | ANSI C63.10 (2013) Section 11.10.2 |  |  |
| Test Mode (Pre-Scan)   | TX                                 |  |  |
| Test Mode (Final Test) | TX                                 |  |  |

#### 6.4.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

#### 6.4.2 Test setup



#### 6.4.3 Test data

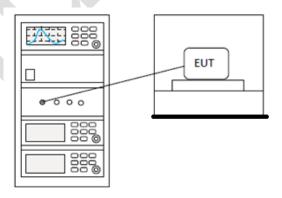
Pass: Please refer to appendix A for details



## 6.5 Conducted Band Edges Measurement

| Test Standard          | 47 CFR Part 15, Subpart C 15.247                     |  |  |
|------------------------|------------------------------------------------------|--|--|
| Test Method            | ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2 |  |  |
| Test Mode (Pre-Scan)   | TX                                                   |  |  |
| Test Mode (Final Test) | TX                                                   |  |  |

#### 6.5.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 6.5.2 Test setup



#### 6.5.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

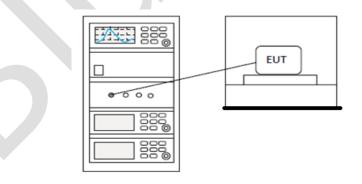
Tel: +86-755-23059481



## 6.6 Conducted spurious emissions

| Test Standard          | 47 CFR Part 15, Subpart C 15.247                 |
|------------------------|--------------------------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 7.8.6 & Section 11.11 |
| Test Mode (Pre-Scan)   | TX                                               |
| Test Mode (Final Test) | TX                                               |

#### 6.6.1 Limit

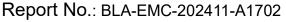

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 6.6.2 Test setup




6.6.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



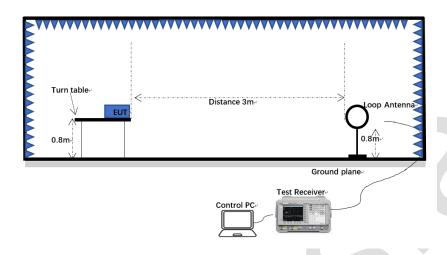


Page 18 of 56

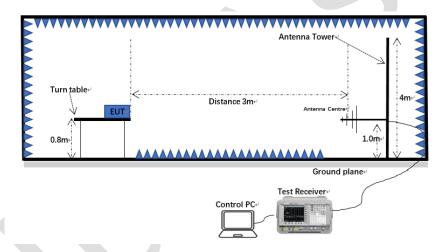
# 6.7 Radiated spurious emissions

| Test Standard          | 47 CFR Part 15, Subpart C 15.247       |
|------------------------|----------------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 6.4,6.5,6.6 |
| Test Mode (Pre-Scan)   | TX                                     |
| Test Mode (Final Test) | TX                                     |

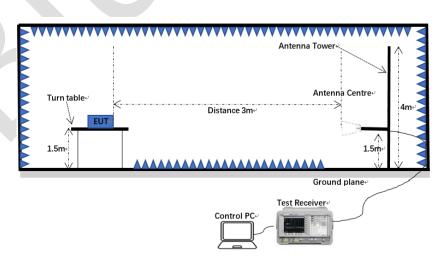
#### 6.7.1 Limit


| Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) |
|----------------|----------------------------------|------------------------------|
| 0.009-0.490    | 2400/F(kHz)                      | 300                          |
| 0.490-1.705    | 24000/F(kHz)                     | 30                           |
| 1.705-30.0     | 30                               | 30                           |
| 30-88          | 100                              | 3                            |
| 88-216         | 150                              | 3                            |
| 216-960        | 200                              | 3                            |
| Above 960      | 500                              | 3                            |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.




## 6.7.2 Test setup


#### Below 1GHz:



#### 30MHz-1GHz:



#### Above 1GHz:



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



Page 20 of 56

#### 6.7.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

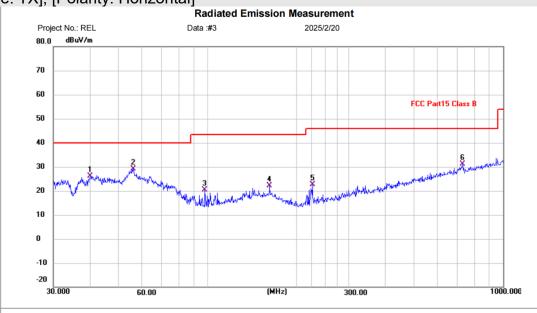
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Temperature:

Humidity:

(C)


%RH



#### 6.7.4 Test data

#### Below 1GHz

[Test mode: TX]; [Polarity: Horizontal]



Polarization: Horizontal

Site

Limit: FCC Part15 Class B

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX

Note:

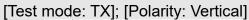
| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| 1   | 39.9942            | 6.67           | 19.34            | 26.01             | 40.00             | -13.99         | QP       | Р   |        |
| 2 * | 56.0007            | 10.09          | 19.16            | 29.25             | 40.00             | -10.75         | QP       | Р   |        |
| 3   | 97.7983            | 4.54           | 15.75            | 20.29             | 43.50             | -23.21         | QP       | Р   |        |
| 4   | 162.0414           | 1.76           | 20.33            | 22.09             | 43.50             | -21.41         | QP       | Р   |        |
| 5   | 226.0994           | 5.62           | 16.92            | 22.54             | 46.00             | -23.46         | QP       | Р   |        |
| 6   | 729.3583           | 2.11           | 29.00            | 31.11             | 46.00             | -14.89         | QP       | Р   |        |

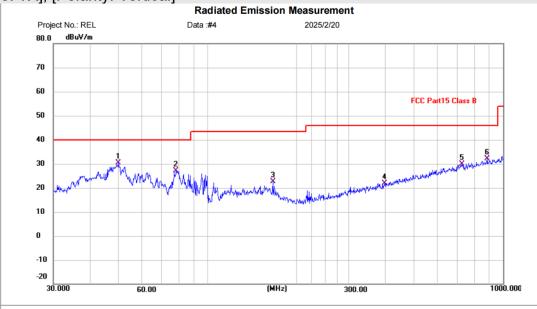
Power:

\*Maximum data viOvar limit I lavar marai

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Tel: +86-755-23059481


Temperature:

%RH

Humidity:







Polarization: Vertical

Site Limit: FCC Part15 Class B

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX

Note:

| - 1 |     |                    |                |                  |                   |                   |                |          |     |        |
|-----|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
|     | No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|     | 1 * | 49.8814            | 10.60          | 19.81            | 30.41             | 40.00             | -9.59          | QP       | Р   |        |
|     | 2   | 78.1389            | 11.43          | 15.58            | 27.01             | 40.00             | -12.99         | QP       | Р   |        |
|     | 3   | 166.0680           | 2.44           | 20.13            | 22.57             | 43.50             | -20.93         | QP       | Р   |        |
|     | 4   | 397.6334           | -1.01          | 23.00            | 21.99             | 46.00             | -24.01         | QP       | Р   |        |
| ĺ   | 5   | 726.8052           | 0.73           | 29.08            | 29.81             | 46.00             | -16.19         | QP       | Р   |        |
|     | 6   | 884.5029           | 1.31           | 30.78            | 32.09             | 46.00             | -13.91         | QP       | Р   |        |

Power:

\*Maximum data would limit liavar marai

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



#### Above 1GHz:

## [Test mode: TX low channel]; [Polarity: Horizontal]

# Radiated Emission Measurement Data :#1 2025/2/20 Project No.: REH

Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2402

Note:

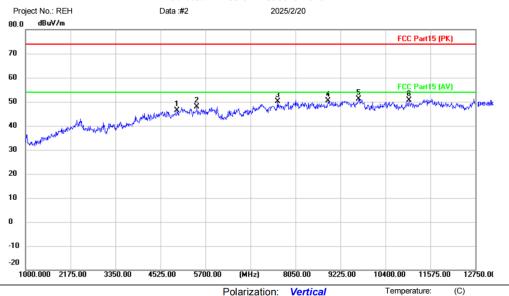
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                               | FCC Part                                                | 15 (AV)             |                                                                           |
|-------------------|--------------|-------------------|----------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|---------------------|---------------------------------------------------------------------------|
|                   | /4/\/        | 1 2<br>Mayuran XX | and insulation | way Market                      | A CONTRACTOR OF THE PROPERTY O | May the May Mark                                | March March March                                       | Mangagla rapide dad | pea                                                                       |
| purhote much free | who have the |                   | -              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         | -                   |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
|                   |              |                   |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                         |                     |                                                                           |
| 75.00 33          | 50.00 45     | 25.00 57          | 700.00         | (MHz) 80                        | )50.00 922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00 104                                        | 00.00 115                                               | 575.00 127          | 50.0                                                                      |
|                   |              |                   |                | 75.00 3350.00 4525.00 5700.00 ( | 75.00 3350.00 4525.00 5700.00 (MHz) 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.00 3350.00 4525.00 5700.00 (MHz) 8050.00 922 | 75.00 3350.00 4525.00 5700.00 (MHz) 8050.00 9225.00 104 |                     | 75.00 3350.00 4525.00 5700.00 (MHz) 8050.00 9225.00 10400.00 11575.00 127 |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4630.750 | 40.95            | 6.11              | 47.06            | 74.00  | -26.94 | peak     |         |
| 2   |    | 5429.750 | 40.29            | 8.28              | 48.57            | 74.00  | -25.43 | peak     |         |
| 3   |    | 6957.250 | 39.00            | 9.74              | 48.74            | 74.00  | -25.26 | peak     |         |
| 4   |    | 8038.250 | 38.97            | 11.68             | 50.65            | 74.00  | -23.35 | peak     |         |
| 5   | *  | 9377.750 | 38.26            | 13.01             | 51.27            | 74.00  | -22.73 | peak     |         |
| 6   |    | 10423.50 | 37.21            | 13.56             | 50.77            | 74.00  | -23.23 | peak     |         |

\*:Maximum data x:Over limit !:over margin Reference Only Receiver: Spectrum Analyzer: FSP40

#### **Test Result: Pass**

Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Tel: +86-755-23059481

%RH



## [Test mode: TX low channel]; [Polarity: Vertical]

## Radiated Emission Measurement



Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2402

Note:

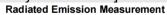
| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4959.750 | 38.92            | 7.41              | 46.33            | 74.00  | -27.67 | peak     |         |
| 2   |    | 5476.750 | 39.57            | 8.38              | 47.95            | 74.00  | -26.05 | peak     |         |
| 3   |    | 7591.750 | 39.36            | 10.66             | 50.02            | 74.00  | -23.98 | peak     |         |
| 4   |    | 8896.000 | 37.73            | 12.62             | 50.35            | 74.00  | -23.65 | peak     |         |
| 5   | *  | 9706.750 | 37.66            | 13.56             | 51.22            | 74.00  | -22.78 | peak     |         |
| 6   |    | 11011.00 | 37.59            | 13.00             | 50.59            | 74.00  | -23.41 | peak     |         |

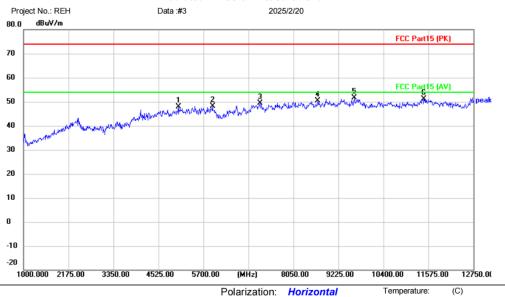
Power:

\*:Maximum data x:Over limit !:over margin \tag{Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

#### **Test Result: Pass**


Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode: TX middle channel]; [Polarity: Horizontal]





Site Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2442

Note:

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 5042.000 | 39.51            | 8.35              | 47.86            | 74.00  | -26.14 | peak     |         |
| 2   |    | 5935.000 | 39.14            | 9.06              | 48.20            | 74.00  | -25.80 | peak     |         |
| 3   |    | 7180.500 | 38.85            | 10.49             | 49.34            | 74.00  | -24.66 | peak     |         |
| 4   |    | 8684.500 | 38.54            | 11.79             | 50.33            | 74.00  | -23.67 | peak     |         |
| 5   | *  | 9636.250 | 38.31            | 13.35             | 51.66            | 74.00  | -22.34 | peak     |         |
| 6   |    | 11457.50 | 36.44            | 14.62             | 51.06            | 74.00  | -22.94 | peak     |         |

Power:

\*:Maximum data x:Over limit !:over margin \tag{Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481

Temperature:

%RH

Humidity:



## [Test mode: TX middle channel]; [Polarity: Vertical]



Polarization:

Power:

Vertical

Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2442

Note:

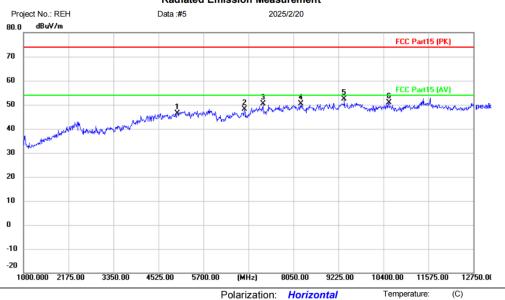
| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4560.250 | 40.07            | 6.09              | 46.16            | 74.00  | -27.84 | peak     |         |
| 2   |    | 5946.750 | 38.43            | 9.03              | 47.46            | 74.00  | -26.54 | peak     |         |
| 3   |    | 7204.000 | 39.70            | 10.39             | 50.09            | 74.00  | -23.91 | peak     |         |
| 4   |    | 8708.000 | 38.76            | 11.80             | 50.56            | 74.00  | -23.44 | peak     |         |
| 5   | *  | 9824.250 | 37.85            | 13.52             | 51.37            | 74.00  | -22.63 | peak     |         |
| 6   |    | 11575.00 | 36.52            | 14.79             | 51.31            | 74.00  | -22.69 | peak     |         |

\*:Maximum data x:Over limit !:over margin \text{ Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

#### **Test Result: Pass**

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode: TX High channel]; [Polarity: Horizontal]

#### Radiated Emission Measurement



Site Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2480

Note:

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 5018.500 | 38.18            | 8.09              | 46.27            | 74.00  | -27.73 | peak     |         |
| 2   |    | 6769.250 | 39.17            | 8.86              | 48.03            | 74.00  | -25.97 | peak     |         |
| 3   |    | 7251.000 | 39.96            | 10.48             | 50.44            | 74.00  | -23.56 | peak     |         |
| 4   |    | 8249.750 | 39.10            | 11.20             | 50.30            | 74.00  | -23.70 | peak     |         |
| 5   | *  | 9377.750 | 39.30            | 13.01             | 52.31            | 74.00  | -21.69 | peak     |         |
| 6   |    | 10541.00 | 37.08            | 13.69             | 50.77            | 74.00  | -23.23 | peak     |         |

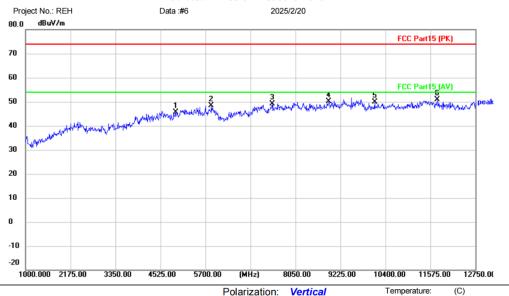
Power:

\*:Maximum data x:Over limit !:over margin \tag{Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode: TX High channel]; [Polarity: Vertical]

#### Radiated Emission Measurement



Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-TX-2480

Note:

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |     | 4924.500 | 38.84            | 6.90              | 45.74            | 74.00  | -28.26 | peak     |         |
| 2   |     | 5852.750 | 39.40            | 8.88              | 48.28            | 74.00  | -25.72 | peak     |         |
| 3   |     | 7439.000 | 38.23            | 11.01             | 49.24            | 74.00  | -24.76 | peak     |         |
| 4   |     | 8919.500 | 37.71            | 12.38             | 50.09            | 74.00  | -23.91 | peak     |         |
| 5   |     | 10118.00 | 36.72            | 13.26             | 49.98            | 74.00  | -24.02 | peak     |         |
| 6   | *   | 11751.25 | 37.36            | 13.47             | 50.83            | 74.00  | -23.17 | peak     |         |

Power:

\*:Maximum data x:Over limit !:over margin \text{ Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481



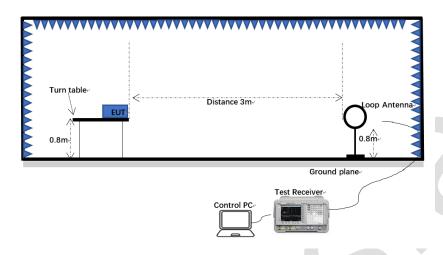


Page 29 of 56

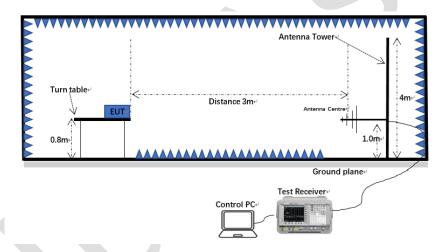
#### 6.8 Radiated emissions which fall in the restricted bands

| Test Standard          | 47 CFR Part 15, Subpart C 15.247  |
|------------------------|-----------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 6.10.5 |
| Test Mode (Pre-Scan)   | TX                                |
| Test Mode (Final Test) | TX                                |

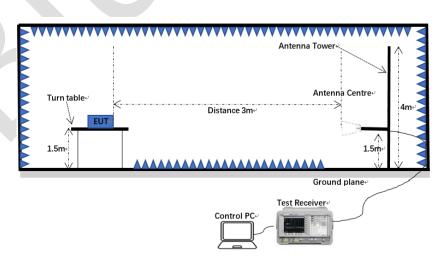
#### 6.8.1 Limit


| Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) |  |  |
|----------------|----------------------------------|------------------------------|--|--|
| 0.009-0.490    | 2400/F(kHz)                      | 300                          |  |  |
| 0.490-1.705    | 24000/F(kHz)                     | 30                           |  |  |
| 1.705-30.0     | 30                               | 30                           |  |  |
| 30-88          | 100                              | 3                            |  |  |
| 88-216         | 150                              | 3                            |  |  |
| 216-960        | 200                              | 3                            |  |  |
| Above 960      | 500                              | 3                            |  |  |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

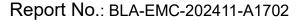



## 6.8.2 Test setup


#### Below 1GHz:



#### 30MHz-1GHz:




#### Above 1GHz:



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481





Page 31 of 56

#### 6.8.3 Procedure

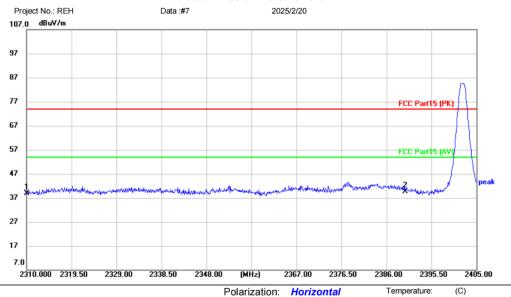
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481


%RH



#### 6.8.4 Test data

## [Test mode: TX low channel]; [Polarity: Horizontal]

# Radiated Emission Measurement



Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-2402

Note:

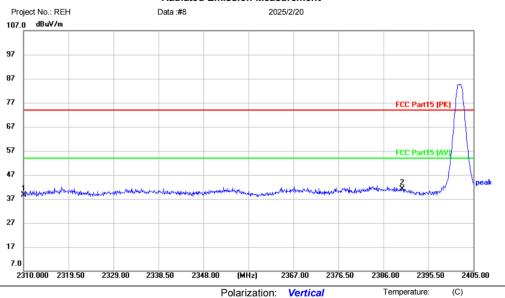
| No. | Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 2310.000 | 41.81            | -2.87 | 38.94            | 74.00  | -35.06 | peak     |         |
| 2   | *  | 2390.000 | 42.10            | -2.44 | 39.66            | 74.00  | -34.34 | peak     |         |

Power:

\*:Maximum data Reference Only x:Over limit !:over margin Receiver: FSP40 ESR\_1 Spectrum Analyzer:

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode:TX low channel]; [Polarity: Vertical]

#### Radiated Emission Measurement



Site Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-2402

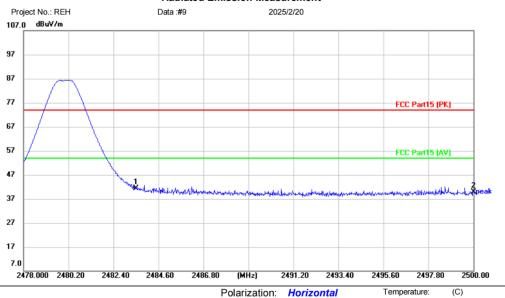
Note:

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 2310.000 | 41.58            | -2.87             | 38.71            | 74.00  | -35.29 | peak     |         |
| 2   | *  | 2390.000 | 43.63            | -2.44             | 41.19            | 74.00  | -32.81 | peak     |         |

Power:

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode: TX High channel]; [Polarity: Horizontal]

#### Radiated Emission Measurement



Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-2480

Note:

| No. | MI | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   | *  | 2483.500 | 44.31            | -2.91             | 41.40            | 74.00  | -32.60 | peak     |         |
| 2   |    | 2500.000 | 42.77            | -3.00             | 39.77            | 74.00  | -34.23 | peak     |         |

Power:

\*:Maximum data x:Over limit !:over margin

Receiver: ESR\_1 Spectrum Analyzer: FSP40

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

%RH



## [Test mode:TX High channel]; [Polarity: Vertical]

#### Radiated Emission Measurement



Site

Limit: FCC Part15 (PK)

EUT: U-Prox access control system M/N: Universal reader U-Prox SE Mini

Mode: BLE-2480

Note:

| No | . N | Иk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|----|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|    |     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1  | ,   | *   | 2483.500 | 43.08            | -2.91             | 40.17            | 74.00  | -33.83 | peak     |         |
| 2  |     | :   | 2500.000 | 41.93            | -3.00             | 38.93            | 74.00  | -35.07 | peak     |         |

Power:

\*:Maximum data x:Over limit !:over margin \text{ Reference Only}

Receiver: ESR\_1 Spectrum Analyzer: FSP40

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481



# 7 Appendix A

# 7.1 Maximum Conducted Output Power

| Condition | Mode | Frequency | Antenna | Conducted Power | Limit | Verdict |
|-----------|------|-----------|---------|-----------------|-------|---------|
|           |      | (MHz)     |         | (dBm)           | (dBm) |         |
| NVNT      | BLE  | 2402      | Ant1    | -8.009          | 30    | Pass    |
| NVNT      | BLE  | 2442      | Ant1    | -8.43           | 30    | Pass    |
| NVNT      | BLE  | 2480      | Ant1    | -9.401          | 30    | Pass    |

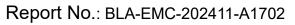


#### Power NVNT BLE 2402MHz Ant1



#### Power NVNT BLE 2442MHz Ant1




Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481



### Power NVNT BLE 2480MHz Ant1







Page 39 of 56

## 7.2-6dB Bandwidth

| Condition | Mode | Frequency | Antenna | -6 dB Bandwidth | Limit -6 dB     | Verdict |
|-----------|------|-----------|---------|-----------------|-----------------|---------|
|           |      | (MHz)     |         | (MHz)           | Bandwidth (MHz) |         |
| NVNT      | BLE  | 2402      | Ant1    | 0.665           | 0.5             | Pass    |
| NVNT      | BLE  | 2442      | Ant1    | 0.651           | 0.5             | Pass    |
| NVNT      | BLE  | 2480      | Ant1    | 0.677           | 0.5             | Pass    |





#### -6dB Bandwidth NVNT BLE 2402MHz Ant1



#### -6dB Bandwidth NVNT BLE 2442MHz Ant1





### -6dB Bandwidth NVNT BLE 2480MHz Ant1





# 7.3 Occupied Channel Bandwidth

| Condition | Mode | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|------|-----------------|---------|---------------|
| NVNT      | BLE  | 2402            | Ant1    | 1.0735        |
| NVNT      | BLE  | 2442            | Ant1    | 1.0508        |
| NVNT      | BLE  | 2480            | Ant1    | 1.0629        |

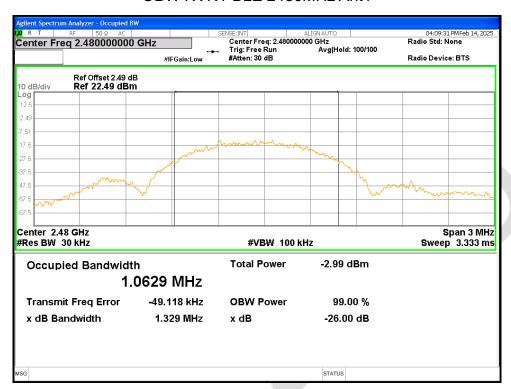




### **OBW NVNT BLE 2402MHz Ant1**



### **OBW NVNT BLE 2442MHz Ant1**




Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

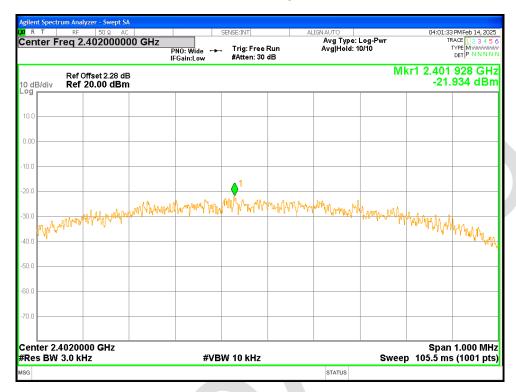
Tel: +86-755-23059481



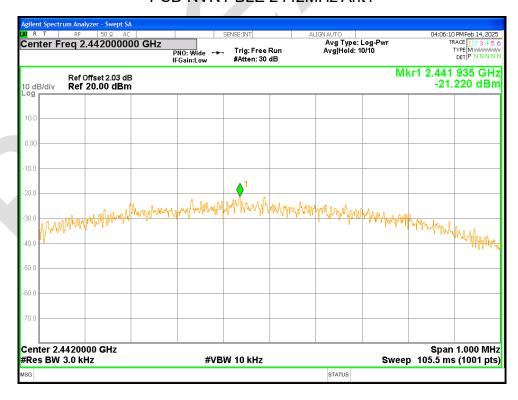
### **OBW NVNT BLE 2480MHz Ant1**






# 7.4 Maximum Power Spectral Density Level

| Condition | Mode | Frequency (MHz) | Antenna | Max PSD (dBm) | Limit (dBm) | Verdict |
|-----------|------|-----------------|---------|---------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | -21.934       | 8           | Pass    |
| NVNT      | BLE  | 2442            | Ant1    | -21.22        | 8           | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -21.198       | 8           | Pass    |

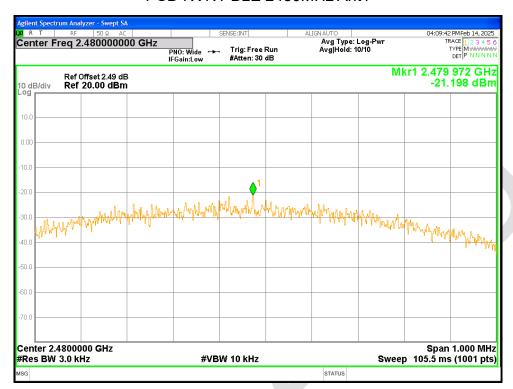





#### PSD NVNT BLE 2402MHz Ant1



## PSD NVNT BLE 2442MHz Ant1




Blue Asia of Technical Services (Shenzhen) Co., Ltd.

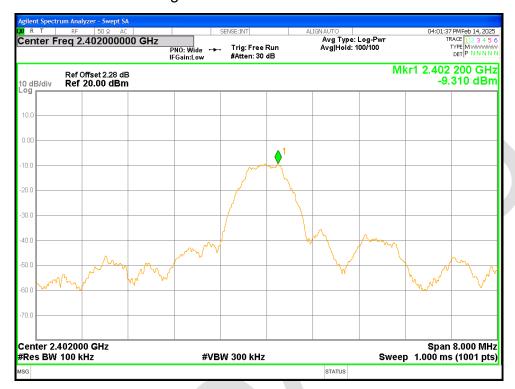
Tel: +86-755-23059481



### PSD NVNT BLE 2480MHz Ant1






# 7.5 Band Edge

| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | -46.47          | -20         | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -44.22          | -20         | Pass    |





## Band Edge NVNT BLE 2402MHz Ant1 Ref



## Band Edge NVNT BLE 2402MHz Ant1 Emission






## Band Edge NVNT BLE 2480MHz Ant1 Ref



## Band Edge NVNT BLE 2480MHz Ant1 Emission



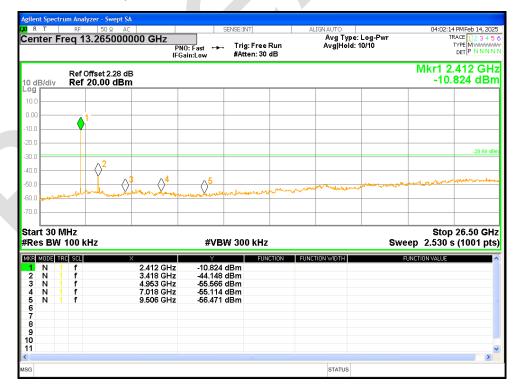
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



# 7.6 Conducted RF Spurious Emission

| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | -35.47          | -20         | Pass    |
| NVNT      | BLE  | 2442            | Ant1    | -24.62          | -20         | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -34.5           | -20         | Pass    |





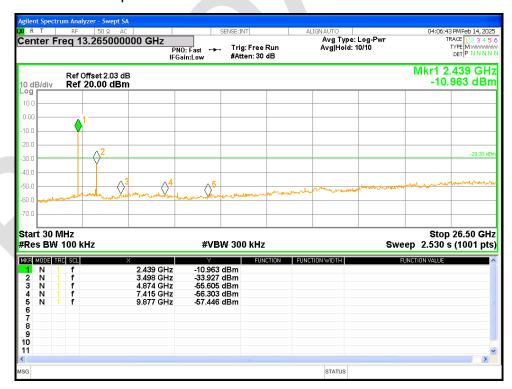

### Tx. Spurious NVNT BLE 2402MHz Ant1 Ref



## Tx. Spurious NVNT BLE 2402MHz Ant1 Emission



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

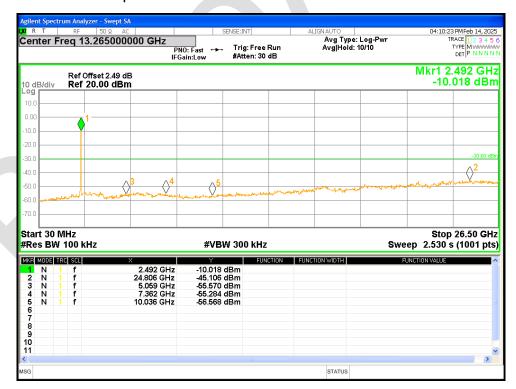

Tel: +86-755-23059481



## Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

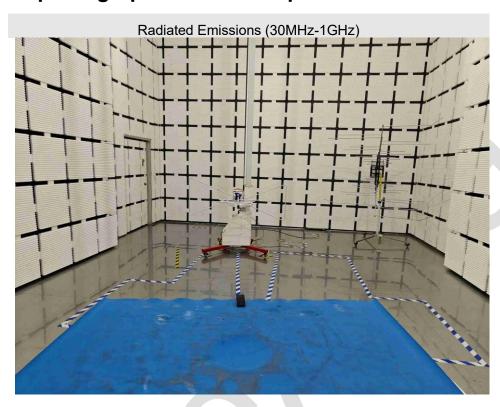


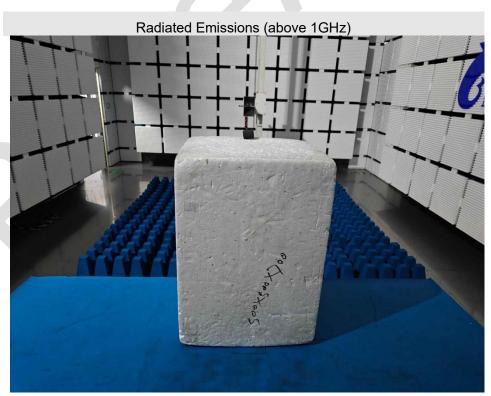
### Tx. Spurious NVNT BLE 2442MHz Ant1 Emission






## Tx. Spurious NVNT BLE 2480MHz Ant1 Ref





### Tx. Spurious NVNT BLE 2480MHz Ant1 Emission





# Appendix B: photographs of test setup





Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481



# **Appendix C: photographs of EUT**

Reference to the test report no. BLA-EMC-202411-A1701

## ----END OF REPORT----

The test report is effective only with both signature and specialized stamp, the result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

