

Analysis Report

The Equipment Under Test (EUT), is a 2.4GHz BT Classic Transceiver for a speaker. The sample supplied operated on 79 channels, normally at 2402 - 2480MHz. The channels are separated with 1MHz spacing.

The EUT is powered by 1 x 3.7V Lithium-ion battery. After switching on EUT, it can be paired up with a smartphone and will be used to play different sound based on the sound received from the paired smartphone.

Antenna Type: Internal integral antenna

Antenna Gain: -0.58dBi

Peak Power Range: 80.2dB μ V/m to 95.2dB μ V/m at 3m

According to the KDB 447498 D04 Interim General RF Exposure Guidance v01

Based on the Maximum allowed peak field strength was 95.2dB μ V/m at 3m.

Thus, it below calculated field strength according to minimum SAR exclusion threshold level as follows:

For mobile devices that are not exempt per Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] at distances from 20 cm to 40 cm and in 0.3 GHz to 6 GHz, evaluation of compliance with the exposure limits in § 1.1310 is necessary if the ERP of the device is greater than $ERP_{20\text{cm}}$ in Formula (B.1) [repeated from § 2.1091(c)(1) and § 1.1307(b)(1)(i)(B)].

$$P_{th} \text{ (mW)} = ERP_{20\text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases} \quad (\text{B.1})$$

If the ERP is not easily obtained, then the available maximum time-averaged power may be used (i.e., without consideration of ERP only if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole.

$$P_{th} (\text{mW}) = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases} \quad (\text{B.2})$$

where

$$x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right)$$

and f is in GHz, d is the separation distance (cm), and $ERP_{20\text{cm}}$ is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW)

Frequency (MHz)	Distance (mm)									
	5	10	15	20	25	30	35	40	45	50
300	39	65	88	110	129	148	166	184	201	217
450	22	44	67	89	112	135	158	180	203	226
835	9	25	44	66	90	116	145	175	207	240
1900	3	12	26	44	66	92	122	157	195	236
2450	3	10	22	38	59	83	111	143	179	219
3600	2	8	18	32	49	71	96	125	158	195
5800	1	6	14	25	40	58	80	106	136	169

The worst case of SAR Exclusion Threshold Level at 2.48GHz with distance 5mm:
= 2.717mW

According to the KDB 412172 D01:

$$\text{EIRP} = [(FS \cdot D)^2 \cdot 1000 / 30]$$

Calculated Field Strength for 2.717mW is 99.6dBuV/m @3m

Since maximum average field strength plus production tolerance $\leq 99.6\text{dBuV/m}$ @3m and antenna gain is $\geq 0.0\text{dBi}$, it is concluded that maximum Conducted Power and Field Strength are well below the SAR Exclusion threshold level, so the EUT is considered to comply with SAR requirement without testing.