

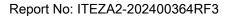
Product Name: AX1800 Gigabit Whole Home Mesh WiFi System	Report No: ITEZA2-202400364RF3
Product Model: Please refer to the Page 6 model list	Security Classification: Open
Version: V1.0	Total Page: 38

TIRT Testing Report

Prepared By: Checked By:		Approved By:	shnology Se		
Aaron Long	Stone Tang	Joky Wang	Zechi Certific		
soven long	Stone Tang	Log Wany	Shenzhen S		

RF TEST REPORT

FCC ID: 2BLJV-R-W62411


According to

47 CFR FCC Part 15, Subpart E(Section 15.407)

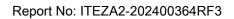
ANSI C63.10:2013

Applicant:	Shenzhen Dbit Network Equipment Co., Ltd				
	4002, Phase II, Qianhai Shimao Financial Center, No. 3040				
Address:	Xinghai Avenue, Nanshan Street, Qianhai Shenzhen-Hong Kong				
	Cooperation Zone, Shenzhen, China				
Manufacturer:	Shenzhen Dbit Network Equipment Co., Ltd				
	4002, Phase II, Qianhai Shimao Financial Center, No. 3040				
Address:	Xinghai Avenue, Nanshan Street, Qianhai Shenzhen-Hong Kong				
	Cooperation Zone, Shenzhen, China				
Factory:	Micronet Union Technology (Chengdu) Co., Ltd				
A dalago o o	No.2068, Aviation Kechuang Avenue, Hi-Tech Industrial Park,				
Address:	Xindu District, Chengdu, China				
Sample No:	1000035553				
Product Name:	AX1800 Gigabit Whole Home Mesh WiFi System				
Brand Name:	N/A				
Model No.:	Please refer to the Page 6 model list				
Test No.:	D-MAX5				

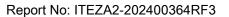
Date of Receipt:	2024/10/22
Date of Test:	2024/10/22~2024/11/25
Issued Date:	2024/12/10
Testing Lab:	TIRT

Note: This report shall not be reproduced except in full, without the written approval of Beijing TIRT

Technology Service Co.,Ltd Shenzhen.Laboratory.


This document may be altered or revised by Beijing TIRT Technology Service Co.,Ltd Shenzhen.

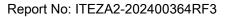
Laboratory.Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.


Table of Contents

Hi	istory of this test report6				
1.	Ger	neral Information	7		
	1.1	Basic Description of Equipment Under Test	7		
	1.2	Description Of Support Units			
2.	Sur	nmary of Test Results	9		
	2.1	Summary of Test Items	9		
	2.2	Application of Standard			
	2.3	Test Instruments	11		
	2.4	Operation Mode	11		
	2.5	Test Condition	12		
	2.6	Measurement Uncertainty	12		
	2.7	Test Location	13		
	2.8	DFS test requirement	13		
	2.9	DFS Detection Thresholds	15		
	2.10	Radar Test Waveforms	16		
3.	Cali	bration of Radar Waveform	19		
	3.1	Test Configuration	19		
	3.2	Test Procedure	19		
	3.3	Test Result	20		
4.	Cha	nnel Move Time, Channel Closing Transmission Time and			
No	on-O	ccupancy Period	21		
	4.1	Limit of In-Service Monitoring	21		
	4.2	Test Configuration			
	4.3	Test Procedure			
	4.4	Test Result			
5	I I_N	Il Detection Bandwidth	23		

5.1	Limit of U-NII Detection Bandwidth	23
5.2	Test Configuration	23
5.3	Test Procedure	
5.4	Test Result	25
6. Ch	annel Availability Check	26
6.1	Limit of Channel Availability Check	26
6.2	Test Configuration	26
6.3	Test Procedure	26
6.4	Test Result	29
7. Sta	atistical Performance Check	30
7.1	Limit of Statistical Performance Check	30
7.2	Test Configuration	30
7.3	Test Procedure	30
7.4	TEST RESULTS	
8. Ph	otos of EUT	33

History of this test report


Original Report Issue Date: 2024.12.10

- No additional attachment
- O Additional attachments were issued following record

Attachment No.	Issue Date	Description

Model List

D-MAX1, D-MAX2, D-MAX3, D-MAX4, D-MAX5, D-MAX6, D-MAX7, D-MAX8, D-MAX9, D-MAX10, D-MAX11, D-MAX12, D-MAX13, D-MAX14, D-MAX15, D-MAX16, D-MAX17, D-MAX18, D-MAX19, D-MAX20, D-MAX21, D-MAX21, D-MAX22, D-MAX23, D-MAX24, D-MAX25, D-MAX26, D-MAX27, D-MAX28, D-MAX29, D-MAX30, D-MAX31, D-MAX32, D-MAX33, D-MAX34, D-MAX35, D-MAX36, D-MAX37, D-MAX38, D-MAX39, D-MAX40, D-MAX41, D-MAX42, D-MAX43, D-MAX44, D-MAX45, D-MAX46, D-MAX47, D-MAX48, D-MAX49, D-MAX50

1. General Information

1.1 Basic Description of Equipment Under Test

Equipment Name	AX1800 Gigabit Whole Home Mesh WiFi System				
Test Model	D-MAX5	D-MAX5			
Model Number	Please refer to the Page 6 mod	lel list			
Trademark	N/A				
Power Supply	DC 12V from SWITCHING POV	WER ADAPTER			
EUT Stage	O Product Unit	●Final-Sample			
	5260MU- 5220MU-	●IEEE 802.11a/n/ac/ax (20MHz)			
Operating Band	5260MHz~5320MHz 5500MHz~5700MHz	●IEEE 802.11n/ac/ax (40MHz)			
	3300ivii 12~3700ivii 12	●IEEE 802.11ac/ax (80MHz)			
Modulation technology	OFDM, OFDMA	OFDM, OFDMA			
Nominal Bandwidth	20MHz / 40MHz / 80MHz				
	IEEE 802.11a: OFDM (BPSK / QPSK / 16QAM / 64QAM)				
Modulation Type	IEEE 802.11n: (BPSK / QPSK / 16QAM / 64QAM)				
Modulation Type	IEEE 802.11ac: (BPSK / QPSK / 16QAM / 64QAM / 256QAM)				
	IEEE802.11ax:OFDMA(64QAM,16QAM,QPSK,BPSK,256QAM,1024QAM)				
Function	□Outdoor AP ⊠Indoor AP □F	Fixed P2P □Client			
Type of Device	Master, support the TPC function				
Antenna Type:	FPC Antenna				
Antenna Gain:	ANT1: 3.94dBi, ANT2: 3.86dBi,				

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

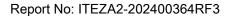
According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below.

All mode had been tested, this only show the worst mode

	Test Channel	20MHz		40MHz		80MHz	
Band		Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	L	52	5260	54	5270		
U-NII-2A	M	56	5280			58	5290
	Н	64	5320	62	5310		
U-NII-2C	L	100	5500	102	5510	-1	
	M	136	5680			106	5530
	Н	140	5700	110	5550		

1.2 Description Of Support Units

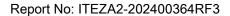
Description	Manufacturer	Model No.	Serial Number	FCC ID
Smart Phone	OPPO	PJX110	N/A	KA2IRX5460A1
Notebook	Lenovo	T430u	REF.No.SEA1800	N/A
Network Cable	Supplied by lab	N/A	N/A	N/A



2. Summary of Test Results

2.1 Summary of Test Items

	Tested Bandwid				
Item	Bandwidth (MHz) / mode	Frequency (MHz) / Channel No.	Limit	Result	
Channel Availability Check Time	80/ 802.11ac	5530/ 106	≥ 60 sec	Pass	
	20/ 802.11ac	5500/ 100			
U-NII Detection Bandwidth	40/ 802.11ac	5510/ 102	> 100% of the U-NII 99% transmission power bandwidth	Pass	
	80/ 802.11ac	5530/ 106			
	20/ 802.11ac	5500/ 100			
Statistical Performance Check	40/ 802.11ac	5510/ 102	Type 1~4≥60% Type 1~4 and 5≥80% Type 6 > 70%	Pass	
	80/ 802.11ac	5530/ 106			
Channel Move Time	80/ 802.11ac	5530/ 106	≤ 10 sec	Pass	
Channel Closing Transmission Time	80/ 802.11ac	5530/ 106	≤ 200 ms + aggregate of 60 ms over remaining 10 sec period	Pass	
Non-Occupancy Period Test	80/ 802.11ac	5530/ 106	≥ 30 minutes	Pass	



2.2 Application of Standard

47 CFR Part 15 Subpart E Section 15.407: Unlicensed National Information Infrastructure Devices KDB905462 D02 V02: COMPLIANCE MEASUREMENT PROCEDURES FORUNLICENSED-NATIONAL INFORMATION INFRASTRUCTUREDEVICES OPERATING IN THE 5250-5350 MHZ AND 5470-5725MHz BANDS INCORPORATING DYNAMIC FREQUENCYSELECTION

KDB905462 D04 v01: OPERATIONAL MODES SUGGESTED FOR DFS TESTING KDB905462 D03 v01r02: U-NIICLIENT DEVICES MTHOUT RADAR DETECTION CAPABILITY ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

2.3 Test Instruments

No.	Equipment	Manufacturer	Type No.	Serial No.	Cal. date (yyyy/mm/dd)	Cal. Due date (yyyy/mm/dd)
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2024/11/10	2025/11/09
2	WIDEBAND RADIO COMMNUNIC ATION TESTER	Rohde & Schwarz	CMW50 0	161997	2024/11/10	2025/11/09
3	ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY45094854	2024/11/10	2025/11/09
4	MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2024/11/18	2025/11/17
5	Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-605 0c	20211026123	2024/11/10	2025/11/09
6	RF Control Unit	TST	TST-Full	S01	2024/11/10	2025/11/09
7	RF Test software	TST	V2.0	1	2024/11/10	2025/11/09

2.4 Operation Mode

The EUT was supplied by and it was run in TX mode that was controlled by client provided RF testing program.

The EUT was transmitted continuously during the test. The worst case test result was showed in the report.

2.5 Test Condition

Applicable to	Environmental conditions	Input Power	Tested by	
Channel Availability Check Time		DC 12V from		
	20.0°C, 56 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		
Detection threshold		DC 12V from		
	24.3°C, 55 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		
Non-occupancy period		DC 12V from		
	20.0°C, 56 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		
Channel Move Time		DC 12V from		
	24.3°C, 55 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		
Detection bandwidth		DC 12V from		
	20.0°C, 56 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		
Channel Closing Transmission Time		DC 12V from		
	24.3°C, 55 % RH	SWITCHING	Stone Tang	
		POWER ADAPTER		

The applicant declare the operating environment of EUT as below:

2.6 Measurement Uncertainty

Test Item	Measurement Uncertainty
Channel Availability Check Time	± 5.4 x 10-8
Detection threshold	± 5.4 x 10-8
Non-occupancy period	± 5.4 x 10-8
Channel Move Time	± 5.4 x 10-8
Detection bandwidth	± 5.4 x 10-8
Channel Closing Transmission Time	± 5.4 x 10-8

Report No: ITEZA2-202400364RF3

2.7 Test Location

Company:	Beijing TIRT Technology Service Co.,Ltd Shenzhen
Address:	104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old Village East Zone, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, P. R. China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6049.01
FCC Accredited Lab. Designation Number:	CN1366
FCC Test Firm Registration Number:	820690
Telephone:	+86-0755-27087573

2.8 DFS test requirement

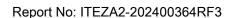

The following table from FCC KDB905462 D02 UNII DFS Compliance procedures new rules list the applicable requirements for the DFS testing.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode			
Requirement	Mastar	Client Without	Client With Radar	
	Master	Radar Detection	Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with	Client Without Radar		
	Radar Detection	Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Master Devices

- a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250~5350 MHz and 5470~5725 MHz bands. DFS is not required in the 5150~5250 MHz or 5725~5825 MHz bands.
- b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Report No: ITEZA2-202400364RF3

Table 4: DFS Response Requirement Values

Table in Dr. et Responde resquirement values					
Paramenter	Value				
Non-occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds See Note 1.				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.				
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.				

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.9 DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Macimum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

2.10 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 5 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec) Number of Pulses M		Minimum Percentage of Successful	Minimum Number of	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in	Roundup $ \left\{ \frac{1}{360} \right\}. $ $ \left\{ \frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right\} $	60%	30
2	1-5 150-230		23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggre	egate (Radar Types 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses would

be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\}_{=\text{Round up } \{17.2\} = 18.}$$

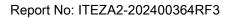


Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Report No: ITEZA2-202400364RF3

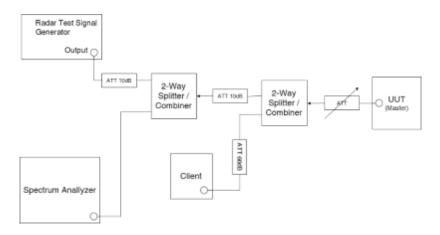
Table 6 - Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 - Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30


For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.


3. Calibration of Radar Waveform

3.1 Test Configuration

3.2 Test Procedure

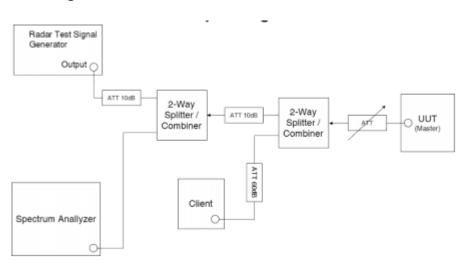
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -64dBm + 6.25dBi +1dB = -56.75dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process, there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth
- (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.
- 4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was -64dBm + 6.25dBi +1dB = -56.75dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

3.3 Test Result

Pass

Please refer to the DFS test report data

4. Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

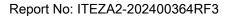

4.1 Limit of In-Service Monitoring

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If radar is detected, it must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec.

The total duration of Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Non-Occupancy Period time is 30 minutes during which a Channel will not be utilized after a Radar Waveform is detected on that Channel.

4.2 Test Configuration


4.3 Test Procedure

The steps below define the procedure to determine the above-mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

1. One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals.

This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.

2. In case the UUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client

Device will be used and it is assumed that the Client will Associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the

Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.

- 3. Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 4. At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- 5. Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing

Transmission Time.

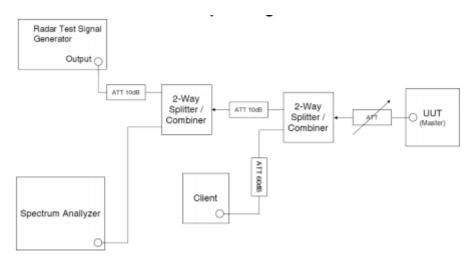
- 6. When operating as a Master Device, monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.
- 7. In case the UUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps 1 to 6.

4.4 Test Result

Pass

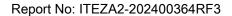
Please refer to the DFS test report data

Report No: ITEZA2-202400364RF3



5. U-NII Detection Bandwidth

5.1 Limit of U-NII Detection Bandwidth


The U-NII Detection Bandwidth shall contain minimum 100% of the 99% power bandwidth.

5.2 Test Configuration

5.3 Test Procedure


- Adjust the equipment to produce a single *Burst* of any one of the Short Pulse Radar Types 0 4 in **Table 5** at the center frequency of the UUT *Operating Channel* at the specified *DFS Detection Threshold* level found in **Table 3**.
- 2. Set the UUT up as a standalone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (macimum) that is user configurable during this test.
- 3. Generate a single radar *Burst*, and note the response of the UUT. Repeat for a minimum of 10 trials. The UUT must detect the *Radar Waveform* within the DFS band using the specified *U-NII Detection Bandwidth* criterion shown in **Table 4**. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 4. Starting at the center frequency of the UUT operating *Channel*, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in **Table 4**. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as F_H) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies above F_H is not required to demonstrate compliance.

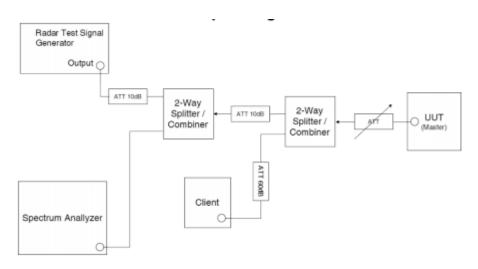
5. Starting at the center frequency of the UUT operating *Channel*, decrease the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in **Table 4**. Repeat this measurement in 1MHz steps at frequencies 5 MHz above where the detection rate begins to fall. Record the lowest frequency (denote as F_L) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies below F_L is not required to demonstrate compliance. The U-NII Detection Bandwidth is calculated as follows:

U-NII Detection Bandwidth = F_H − F_L

5.4 Test Result

Pass

Please refer to the DFS test report data



6. Channel Availability Check

6.1 Limit of Channel Availability Check

The Initial *Channel Availability Check Time* tests that the UUT does not emit beacon, control, or data signals on the test *Channel* until the power-up sequence has been completed and the U-NII device checks for *Radar Waveforms* for one minute on the test *Channel*.

6.2 Test Configuration

6.3 Test Procedure

This test does not use any Radar Waveforms and only needs to be performed one time.

- 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the UUT initiates transmission on the channel

A) Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test *Channel* during a period equal to the *Channel Availability Check Time* and avoidance of operation on that *Channel* when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1 dB occurs at the beginning of the *Channel Availability Check Time*. This is illustrated in **Figure 15**.

1. The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on Configuration for Conducted Tests (7.2) or Radiated Tests (7.3) and

the power of the UUT is switched off.

- 2. The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The *Channel Availability Check Time* commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- 3. A single *Burst* of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- 4. Visual indication or measured results on the UUT of successful detection of the radar *Burst* will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar *Burst* has been generated.
- 5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The *Channel Availability Check* results will be recorded.

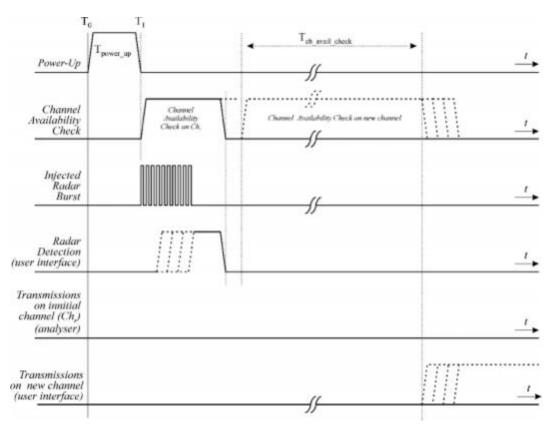


Figure 15: Example of timing for radar testing at the beginning of the Channel Availability Check Time

B) Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1dB occurs at the end of the *Channel Availability Check Time*. This is illustrated in **Figure 16**.

- The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.
- 2. The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The *Channel Availability Check Time* commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- 3. A single *Burst* of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- 4. Visual indication or measured results on the UUT of successful detection of the radar *Burst* will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar *Burst* has been generated.
- 5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The *Channel Availability Check* results will be recorded.

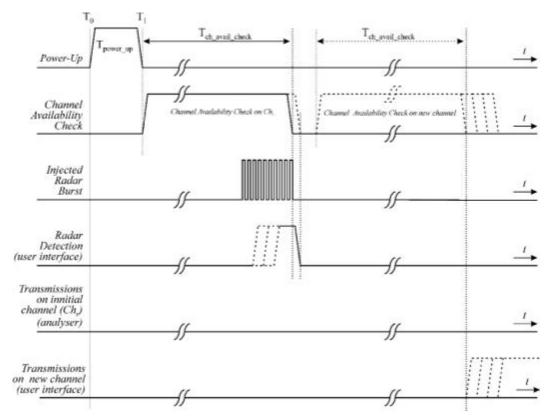
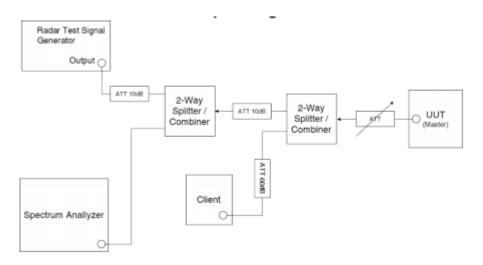



Figure 16: Example of timing for radar testing towards the end of the Channel Availability Check Time

6.4 Test Result

Pass

Please refer to the DFS test report data



7. Statistical Performance Check

7.1 Limit of Statistical Performance Check

Refer to Table 5, 5a, 6, 7

7.2 Test Configuration

7.3 Test Procedure

The steps below define the procedure to determine the minimum percentage of successful detection requirements found in **Tables 5-7** when a radar burst with a level equal to the *DFS Detection Threshold* + 1dB is generated on the *Operating Channel* of the U-NII device (*In- Service Monitoring*).

- One frequency will be chosen from the *Operating Channels* of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.
- 2. In case the UUT is a U-NII device operating as a Client Device (with or without Radar Detection), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- 3. Stream the channel loading test file from the *Master Device* to the Client Device on the test *Channel* for the entire period of the test.
- 4. At time T0 the *Radar Waveform* generator sends the individual waveform for each of the Radar Types 1- 6 in **Tables 5-7**, at levels defined in **Table 3**, on the *Operating Channel*. An

additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.

- 5. Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 10 seconds for Radar Type 0 to ensure detection occurs.
- 6. Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- 7. In case the UUT is a U-NII device operating as a *Client Device* with *In-Service Monitoring*, perform steps 1 to 6.

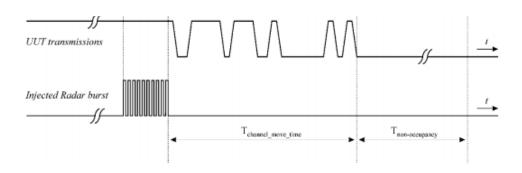
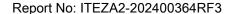


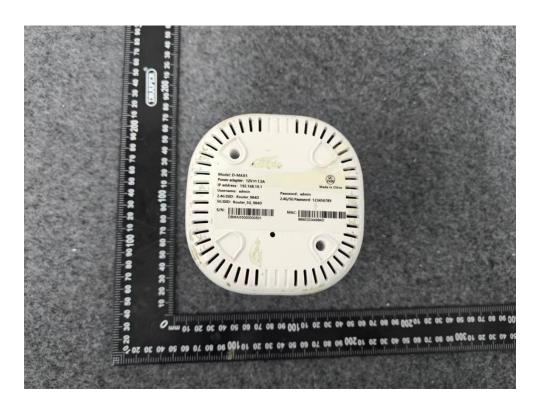

Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time

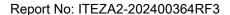


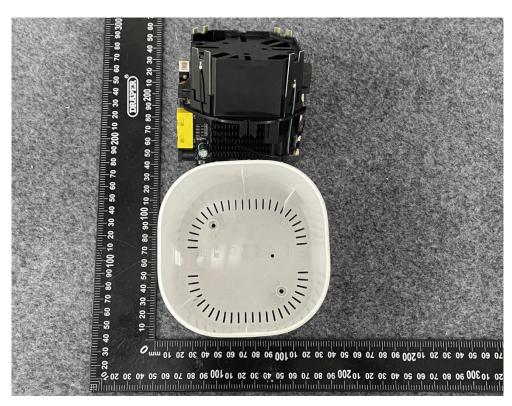
7.4 TEST RESULTS

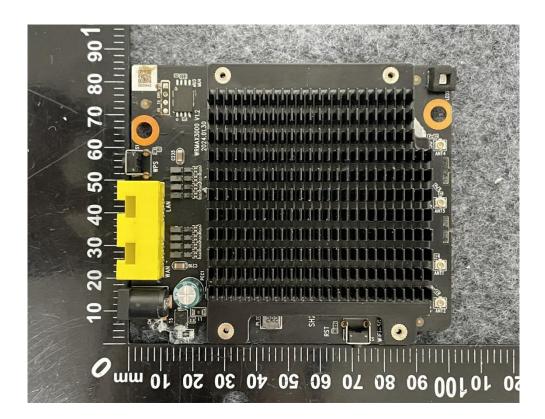
Pass

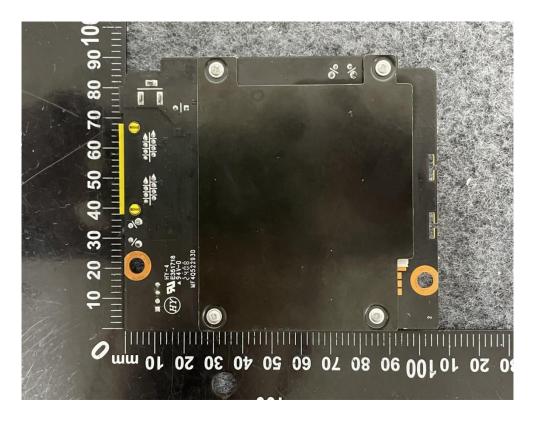
Please refer to the DFS test report data


8. Photos of EUT









End of Test Report