

RF Exposure Evaluation

According to KDB 447498 D01 V06 and part 2.1093, Unless specifically required by the *published RF exposure KDB procedures*, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding *SAR Test Exclusion Threshold* condition(s), listed below, is (are) satisfied.

For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f_{(\text{GHz})}}] \leq 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, where

$f_{(\text{GHz})}$ is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

$$\text{EIRP} = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$$

EIRP is the equivalent isotropically radiated power, in dBm

E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

d_{Meas} is the measurement distance, in m

Here,

For wifi 2.4G

Max Power(dBm)	Max Power(mW)	Frequency(MHz)	Min. distance(mm)	Calc. thresholds	limit
8.027	6.349	2462	5	1.99	3.0

For BT

Field strength (dB μ V/m)	EIRP (dBm)	Max tune-up (mW)	Frequency (MHz)	Min. distance(mm)	Calc. thresholds	limit
84.97	-10.19	0.09	2402	5	0.03	3.0

For Simultaneous transmitting, 1): The sum of the ratios of the spatially averaged results to the applicable frequency dependent MPE limits $= 1.99/3 + 0.03/3 = 0.67 < 1$ Since the sum of the MPE ratios for all simultaneously transmitting antennas incorporated in the device is ≤ 1.0 , the EUT is considered to satisfy MPE compliance for simultaneous transmission operations.