

## 024FD12 wireless module Data Sheet

2.4GHz, 15mW, Wireless Serial Port Module

Full duplex, Adaptive Airspeed

Version: 024FD12-V1.0

Date: 2024-2-3

Status: controlled

# Table of Content

|                            |    |
|----------------------------|----|
| 1. Product                 |    |
| Overview .....             | 3  |
| 2. Product                 |    |
| Features .....             | 3  |
| 3. Series                  |    |
| Products .....             | 4  |
| 4. Electrical              |    |
| Parameters .....           | 4  |
| 5. Module                  |    |
| Definition .....           | 5  |
| 5.1 Recommended Connection |    |
| Diagram .....              | 5  |
| 5.2 Pin                    |    |
| Definition .....           | 5  |
| 5.3 Pin                    |    |
| Function .....             | 6  |
| 6. Module                  |    |
| Command .....              | 9  |
| 6.1 Command                |    |
| Format .....               | 9  |
| 6.2 Module Parameter       |    |
| Register .....             | 10 |
| 6.3 Module Factory         |    |
| Setting .....              | 12 |
| 7. Module                  |    |
| Functions .....            | 13 |
| 7.1 Overview of Module     |    |
| Functions .....            | 13 |
| 7.2 Detailed Module        |    |
| Functions .....            | 13 |

|                                              |    |
|----------------------------------------------|----|
| 8. Sequence                                  |    |
| Diagram .....                                | 15 |
| 8.1 Sequence Diagram of Data                 |    |
| Transmission .....                           | 15 |
| 8.2 Sequence Diagram of Module               |    |
| Switch .....                                 | 15 |
| 8.3 Sequence Diagram of Module               |    |
| Command .....                                | 16 |
| 9. Package                                   |    |
| Information .....                            | 18 |
| 9.1 Machine Size (unit:<br>mm) .....         | 18 |
| 9.2 Reference Pad Design (unit:<br>mm) ..... | 18 |
| 10. Package                                  |    |
| Manner .....                                 | 19 |
| 10.1 Electrostatic Bag                       |    |
| Package .....                                | 19 |
| 10.2 Pallet Package (unit<br>mm) .....       | 19 |

## 1. Product Overview

024FD12 wireless module is a 15mW industrial wireless data transceiver with high stability, operates at 2.4GHz. Designed and developed using the radio frequency chip SX1281, it supports eight baud rates from 1200 to 115200bps, adaptive matching of wireless airspeed and baud rate, and supports full-duplex transmission with no limit on packet length under certain baud rate and airspeed combinations. The module has three working states and can be switched freely during runtime.

## 2. Product Features

Point-to-point transmission, half-duplex transmission and full duplex transmission

Receiving sensitivity is up to -129dBm, range 8000 meters

Built-in multiple exception handling mechanisms ensure the stable operation for a long time

Airspeed and baud rate are adaptive matching

Multiple levels of transmitting power

4 power levels adjustable (0-3), each levels steps 6dBm

Power Range: 3-12dBm, Max 15mW

Multiple baud rates [1]

8 commonly used baud rates, default baud rate 9600bps

Baud rate range: 1200bps ~ 115200bps

4 operation modes [2]  
 MDO = 0 MD1 = 0 half-duplex working mode  
 MDO = 0 MD1 = 1 full duplex working mode  
 MDO = 1 MD1 = 0 full duplex working mode  
 MDO = 1 MD1 = 1 sleep mode  
 Frequency 2.4~2.5GHz, FLRC modulation method  
 provides 101 channels, LORA modulation method  
 provides 51 channels [4]  
 CHAN:  
 0x00~0x64 (FLRC modulation),  
 0x00~0x32 (LORA modulation)  
 Default operation frequency 2.4GHz, application  
 free band  
 FLRC single packet byte size is 120Byte  
 LORA single packet size is 240Byte  
 Supply voltage range  
 3.0V~5.5VDC  
 Built-in LDO ensures stable power supply,  
 meeting variety system requirements  
 Transparent Broadcasting [5]  
 The data sent by any module can be received by  
 modules with the same address and the same  
 channel. The data transmission is transparent,  
 and what is sent is what is received.  
 Half-Duplex Transmission Mode [5]  
 High-speed data transmission, partial airspeed  
 and baud rate combinations do not limit data  
 packet length, one-way transmission.  
 Full Duplex Transmission [5]  
 High-speed data transmission, partial airspeed  
 and baud rate combinations do not limit data  
 packet length and can be transmitted in both  
 directions at the same time  
 Remarks:  
 1) For details, see the SPEED register in Chapter 6.2 of module Parameter Configuration.  
 2) For details, See the pin definition and function in chapter 5  
 3) For details, see the CHAN register in Chapter 6.2 of module parameter configuration.  
 4) For details, See the relationship diagram of voltage and power in Chapter 5  
 5) For details, See the module function table in Chapter 7.

### 3. Series Products

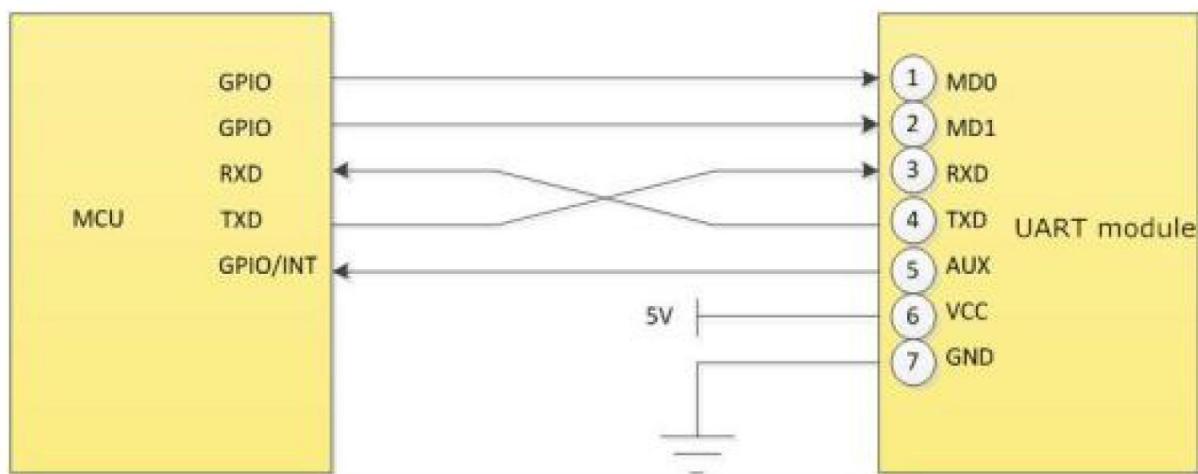
Table 3-1 Brief Specification of 024FD12

| Item Model | Carrier Frequency (Hz) | IC | Size (mm) | Max transmit power | Range (km) | package | Antenna |
|------------|------------------------|----|-----------|--------------------|------------|---------|---------|
|            |                        |    |           |                    |            |         |         |

|                                                                |           |            |       |       |   |                        |       |
|----------------------------------------------------------------|-----------|------------|-------|-------|---|------------------------|-------|
|                                                                |           |            |       | (dBm) |   |                        |       |
| 024FD1<br>2                                                    | 2.4G-2.5G | SX128<br>1 | 20*36 | 12    | 5 | in-line<br>packag<br>e | sma-k |
| *All models of the A28 series can communicate with each other* |           |            |       |       |   |                        |       |

## 4. Electrical Parameters

Table 4-1 Electrical Parameters of 024FD12


Test Condition:  $T_c=25^\circ\text{C}$ ,  $VCC=5\text{V}$

| Item<br>Model | Parameter<br>Name       | Description                                                                                                                     | Min | Typical<br>Value | Max |
|---------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----|
| 024FD12       | supply<br>voltage       | If the power supply voltage is less than 3.6V, the output power will decline, but it has little influence on the received power |     | 3                | 5.5 |
|               |                         | SendPower [1] = 0                                                                                                               |     | 20               |     |
|               |                         | SendPower= 1                                                                                                                    |     | 23               |     |
|               |                         | SendPower= 2                                                                                                                    |     | 28               |     |
|               | transmission<br>current | SendPower= 3                                                                                                                    |     | 35               |     |
|               |                         | half-duplex working mode (MDO=0, MD1=0)                                                                                         |     | 12               |     |
|               |                         | Full duplex working mode (MDO=0, MD1=1)                                                                                         |     | 12               |     |
|               |                         | Full duplex working mode (MDO=1, MD1=0)                                                                                         |     | 12               |     |
|               | Sleep<br>current        | current measured in sleep mode (MDO=1, MD1=1)                                                                                   |     | 2.5              |     |
|               | Transmit<br>power       | SendPower= 0                                                                                                                    |     | 3                |     |
|               |                         | SendPower= 1                                                                                                                    |     | 6                |     |
|               |                         | SendPower= 2                                                                                                                    |     | 9                |     |

|                       |                                                                                     |      |  |     |
|-----------------------|-------------------------------------------------------------------------------------|------|--|-----|
|                       | SendPower= 3                                                                        | 12   |  |     |
| Receiving sensitivity | The receiving sensitivity has nothing to do with the serial port rate or delay time | -123 |  | dBm |
| Operation temperature | 024FD12 is industrial product                                                       | -40  |  | En  |
| Operation humidity    | Relative humidity, no condensation                                                  | 10%  |  | mo  |
| Storage temperature   |                                                                                     | -40  |  | Sp  |

## 5. Module Functions

### 5.1 Recommended Connection Diagram



5-1 Recommended Connection Diagram

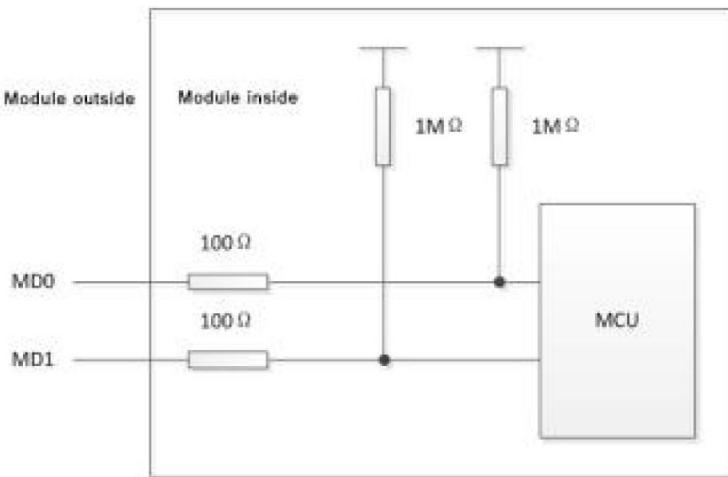

### 5.2 Pin Definition

Table 5-1 Pin Definition of A28-2G4A27D1a

| Pin Number | Pin Name | Pin Orientation      | Pin Usage                                                                                                                                                                                                                                                 |
|------------|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | MD0      | Input (weak pull up) | Cooperates with MD1 of low delay to decide four kinds of operation modes                                                                                                                                                                                  |
| 2          | MD1      | Input (weak pull up) | Cooperates with MD0 of low delay to decide four kinds of operation modes                                                                                                                                                                                  |
| 3          | RXD      | Input                | TTL UART inputs, connects to external TXD output pin. It can be configured as open-drain or pull-up input, see parameter setting for details                                                                                                              |
| 4          | TXD      | output               | TTL UART outputs, connects to external RXD input pin. It can be configured as open-drain or push-pull output, see parameter setting for details                                                                                                           |
| 5          | AUX      | output               | Indicates the operation status of the module, and wakes up the external MCU. During the procedure of self-test initialization, the pin outputs low level. Can be configured as open-drain output, or push-pull output. see parameter settings for details |
| 6          | VCC      |                      | power supply, voltage 2.0-5.5V                                                                                                                                                                                                                            |
| 7          | GND      |                      | Ground line, connected to the power supply reference ground                                                                                                                                                                                               |

## 5.3 Pin Function

### 5.3.1 Pins Function of MD0 and MD1 in Low Latency Mode



Picture 0-2 Internal structure of the MD0 and MD1 pin

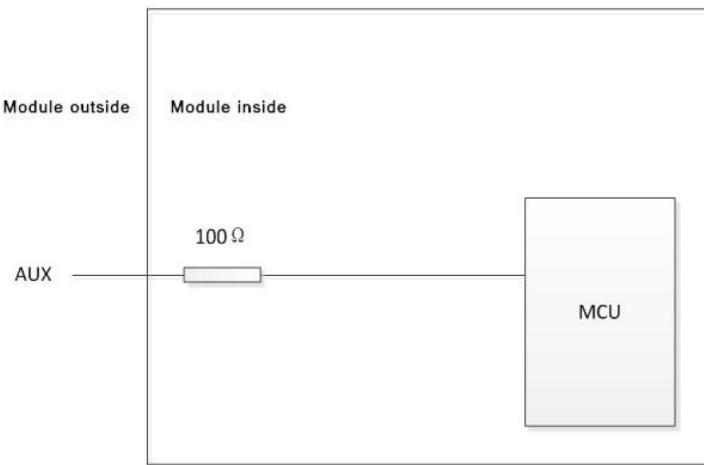
Picture 0-2 Internal structure of the MD0 and MD1 pin

The free combinations of the high and low level of pins MD0 and MD1 in low-latency operation mode can determine the four operating modes of the wireless UART module and these four operating modes can be freely switched.

Pay attention to the following two special cases when switching working modes:

1. The module received wireless data and has not finished outputting, and then enters a new mode after the data output is completed.

2. The module sends wireless data has not been sent yet, and then enters the new mode after the data is sent.

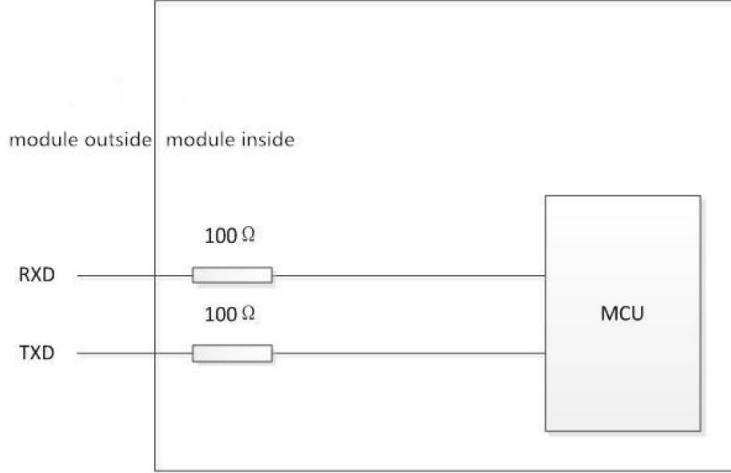

Table 5-2 Operation Mode Form

| Operation Mode           | MD1 | MD0 | Mode Introduction                                                                                |
|--------------------------|-----|-----|--------------------------------------------------------------------------------------------------|
| Half-duplex working mode | 0   | 0   | UART open, wireless channel open                                                                 |
| Full duplex working mode | 0   | 1   | UART open, wireless channel open, Full duplex transmission.                                      |
| Full duplex working mode | 1   | 0   | UART open, wireless channel open, Full duplex transmission.                                      |
| sleep mode               | 1   | 1   | Module enters into sleep can receive the parameter configuration Command to configure parameter. |

Table 5-3 Communication Mode Form

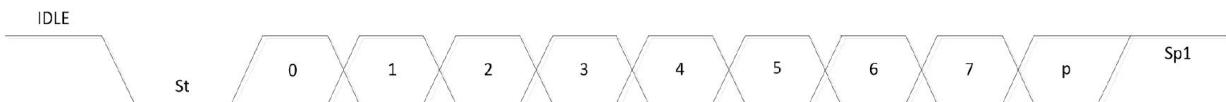
| Transmit       | Receive                  | Operation Mode           |                          | Data Transmission Mode   |
|----------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                |                          | Half-Duplex Working Mode | Full Duplex Working Mode | Transparent Broadcasting |
| Operation Mode | Half-Duplex Working Mode | Y                        | Y                        | Y                        |
|                | Full Duplex Working Mode | Y                        | Y                        | Y                        |

### 5.3.2 Function of AUX Pin




Picture 0-3 Schematic Diagram of The Internal Structure of The AUX Pin

AUX is used as an indication for wireless send and receive buffer and self-test. It indicates whether the module has data not sent by wireless, or whether the received data has been sent through the UART, or the module is initializing the self-test.


The mode of AUX pin should be checked before switching operation mode. When the AUX output is low, it indicates that the module is busy. After the AUX output is high for 2ms, it indicates the module is idle and ready to change operation mode. MDO, MD1 in low latency mode start to jump and after that AUX keeps outputting high level for 3ms, the module changes mode. When AUX outputs high level and maintains for about 2ms, the mode change is done. In the process of reset, the module will reinitialize the parameters, during which the AUX keeps low level.

### 5.3.3 Function of RXD And TXD Pins



Picture 5-4 Internal Structure of the RXD and TXD Pin

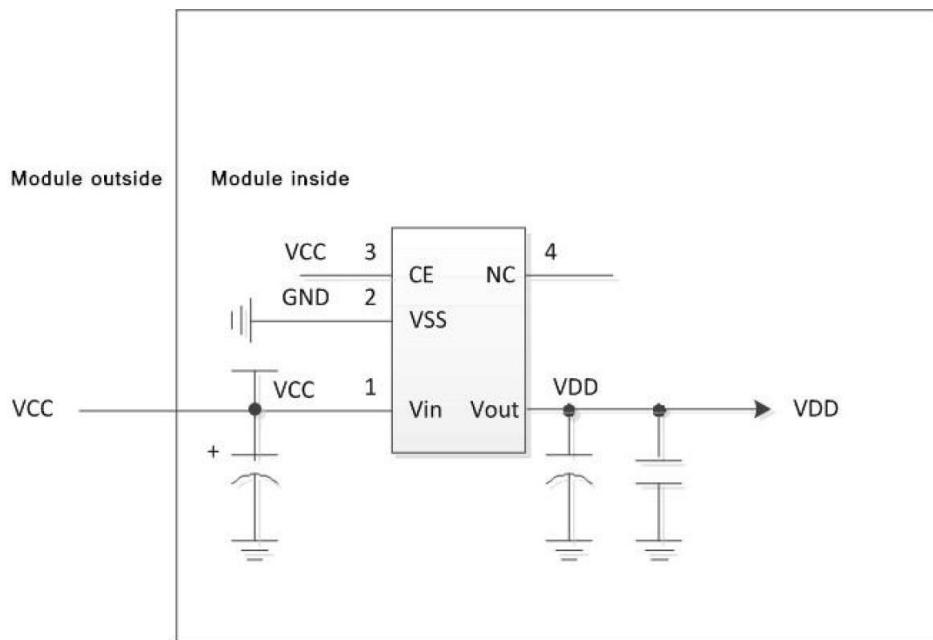
RXD and TXD are serial data transmission and reception pins, at the same time, the UART has 8 common baud rates to choose from, the supported baud rate range is 1200~115200 (bps); the UART parity mode also has odd parity, even parity and No parity. The byte transmission format of UART is shown in Picture:



Picture 5-5 Format of UART Byte Transmission

IDLE: High level when idle

St: start bit

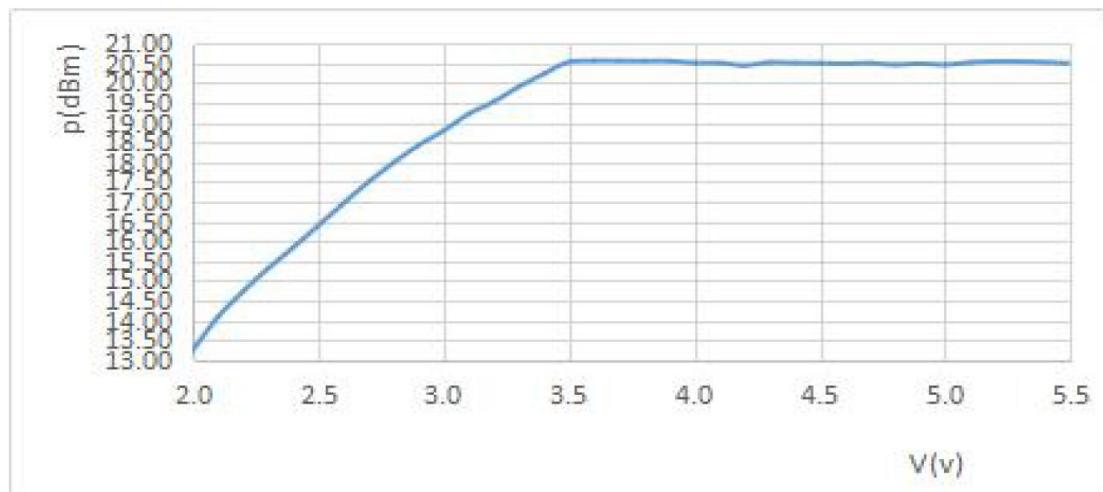

P: parity bit

Sp1: stop bit

#### 5.3.4 Function of VCC and GND Pins

GND indicates the ground line, VCC indicates the power supply, and the module power supply has its own LDO.

Input voltage range: 2.0V – 5.5VDC. As shown in below Picture




Picture 5-6 Power LDO

Remarks:

The input power ripple coefficient should be controlled within 100mV, and the instantaneous pulse current should be more than 200mA.

When the power supply voltage is less than critical value, the output power declines, but the reception performance is less affected. The relationship between voltage and power is shown in the below Picture



Picture 5-7 Relationship diagram of voltage and power

## 6. Module Command

### 6.1 Command Format

The parameter configuration Command is supported in the sleep operation mode, which means that the pins in low latency operation mode are set to high level (MD0 = 1, MD1 = 1).

Table 6-1 Command Overview Form

| No. | Command                                 | Command Function                                                                             |
|-----|-----------------------------------------|----------------------------------------------------------------------------------------------|
| 1   | 0xC0                                    | Set the module parameters. The parameters set by this Command can be saved after power off.  |
| 2   | 0xC2                                    | Set the module parameters. The parameters set by this Command are not saved after power off. |
| 3   | 0xC1 + 0xC1 + 0xC1                      | Read module parameters                                                                       |
| 4   | 0xC3 + 0xC3 + 0xC3                      | Read the hardware version of the module                                                      |
| 5   | 0xC4 + 0xC4 + 0xC4                      | Reset module Command                                                                         |
| 6   | 0xC9 + 0xC9 + 0xC9                      | Restore default parameters                                                                   |
| 7   | 0xE1 + 0xE1 + 0xE1                      | Handshake command                                                                            |
| 8   | 0xF3 + 0xF3 + 0xF3                      | Read the software version of the module                                                      |
| 9   | 0xAF + 0xAF + 0x73 + 0x00 + 0xAF + 0xF3 | Read the RSSI of the current data                                                            |
| 10  | 0xAF + 0xAF + 0x74 + 0x00 + 0xAF + 0xF4 | Read the RSSI of the environment                                                             |

Detailed explanation of the command function, taking the default factory configuration as an example. See the following form for details:

Table 6-2

| Command Format                                                                                               | Module Response    | Description                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xC0 ADDH ADDL SPEED CHAN<br>OPTION (See the register description of parameter configuration for details)    | OK                 | The configuration succeeds and the ASCII string is returned. The parameters configured can be saved after power-off.                                                                                                                                                  |
|                                                                                                              | ERROR              | The configuration failed and the ASCII string is returned. The original configuration parameters are not changed.                                                                                                                                                     |
| 0xC2 ADDH ADDL SPEED CHAN<br>OPTION<br>(See the register description of parameter configuration for details) | OK                 | The configuration succeeds and the ASCII string is returned. The parameters configured cannot be saved after power-off.                                                                                                                                               |
|                                                                                                              | ERROR              | The configuration failed and the ASCII string is returned. The original configuration parameters are not changed.                                                                                                                                                     |
| 0xC1 0xC1 0xC1                                                                                               | C0 12 34 18 00 03  | The module returns the present configuration parameters in hexadecimal format.                                                                                                                                                                                        |
| 0xC3 0xC3 0xC3                                                                                               | A28-2G4A27D1a-V3.0 | The module returns the present hardware version in ASCII format.                                                                                                                                                                                                      |
| 0xC4 0xC4 0xC4                                                                                               | OK                 | The module generates a reset. During the reset process, the module performs a self-test and the AUX outputs a low level. After the reset, the AUX output is high, and the module starts to work normally. At this time, you can switch mode or initiate next Command. |
| 0xC9 0xC9 0xC9                                                                                               | OK                 | Restore default parameter configuration successfully                                                                                                                                                                                                                  |
| 0xE1 0xE1 0xE1                                                                                               | OK                 | Handshake Command                                                                                                                                                                                                                                                     |
| 0xF3 0xF3 0xF3                                                                                               | A28-2G4A27D1a-V9.0 | The module will return the current software version in ASCII format.                                                                                                                                                                                                  |

## 6.2 Module Parameter Register

The module parameters can be modified in the sleep mode (i.e. MD0 = 1, MD1 = 1).

Configuring parameter register (Configuring parameter register cannot be used alone, it must be used according

to the command format of the configuration parameter, see Chapter 6, Section 6.1 for details)

Table 6-3 ADDH Module Address High 8-Bit Register

|                           | ADDH [ 7:0] |    |    |    |    |    |    |    |
|---------------------------|-------------|----|----|----|----|----|----|----|
| Read and Write Properties | rw          | rw | rw | rw | rw | rw | rw | rw |
| Default Value             | 0           | 0  | 0  | 1  | 0  | 0  | 1  | 0  |

ADDH [ 7:0]: indicates the module address high byte, factory default 0x12

Table 6-4 ADDL Module Address Low 8-Bit Register

|                           | ADDL [ 7:0] |    |    |    |    |    |    |    |
|---------------------------|-------------|----|----|----|----|----|----|----|
| Read and Write Properties | rw          | rw | rw | rw | rw | rw | rw | rw |
| Default Value             | 0           | 0  | 1  | 1  | 0  | 1  | 0  | 0  |

ADDL [ 7:0]: module address low byte, factory default 0x34

Table 6-5 SPEED Communication Configuration Register

|                           | UART CS [ 1: 0] |    | UART BAUD [ 2: 0] |    |    | Reserved |    |    |
|---------------------------|-----------------|----|-------------------|----|----|----------|----|----|
| Read and Write Properties | rw              | rw | rw                | rw | rw | rw       | rw | rw |
| Default Value             | 0               | 0  | 0                 | 1  | 1  | 0        | 0  | 0  |

SPEED [ 7: 6]

UART CS [ 1: 0]: UART parity bit 00: 8N1 (default) 01: 801 10: 8E1 11: Same as 8N1

SPEED [ 5: 3]

UART BAUD [ 2: 0]: UART baud rate

000: UART baud rate is 1200 bps

001: UART baud rate is 2400 bps

010: UART baud rate is 4800 bps

011: UART baud rate is 9600 bps (default)

100: UART baud rate is 19200 bps

101: UART baud rate is 38400 bps

110: UART baud rate is 57600 bps

111: UART baud rate is 115200 bps

SPEED [ 2: 0]

AIR\_SPEED [ 2: 0]: airspeed

LFLRC:

000: airspeed 0 (default) 001: Airspeed 1 010: Airspeed 2 011: Airspeed 3

100: Reserved 101: Reserved 110: Reserved 111: Reserved

LORA:

000: airspeed 0 (default) 001: Airspeed 1 010: Airspeed 2 011: Airspeed 3

100: Airspeed 4 101: Airspeed 5 110: Airspeed 6 111: Airspeed 7

Note: Airspeed 0 is low airspeed, airspeed 7 is high airspeed.

Some combinations of airspeed and baud rate can achieve unlimited packet length transmission.

Refer to the

combinations marked with "✓" in the table below. It can also be set to continuous transmission to allow air speed to adapt.

FLRC Modulation:

| Airspeed \ Baud rate | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 |
|----------------------|------|------|------|------|-------|-------|-------|--------|
| Airspeed             | ✓    | ✓    | ✓    | ✓    | ✓     | ✓     | ✓     | ✓      |
| airspeed 0           | ✓    | ✓    | ✓    | ✓    | ✓     | ✓     | ✓     | ✓      |
| airspeed 1           | ✓    | ✓    | ✓    | ✓    | ✓     | ✓     | ✓     | ✓      |
| airspeed 2           | ✓    | ✓    | ✓    | ✓    | ✓     | ✓     | ✓     | ✓      |
| airspeed 3           | ✓    | ✓    | ✓    | ✓    | ✓     | ✓     | ✓     | ✓      |

LoRa Modulation:

| Baud rate \ Airspeed | 1200 | 2400   | 4800  | 9600  | 19200 | 38400 | 57600 | 115200 |
|----------------------|------|--------|-------|-------|-------|-------|-------|--------|
| airspeed 0           | ✓    | 1670ms | 1670  | 1670  | 1670  | 1670  | 1670  | 1670   |
| airspeed 1           | ✓    | ✓      | 780ms | 780ms | 780ms | 780ms | 780ms | 780ms  |
| airspeed 2           | ✓    | ✓      | ✓     | 410ms | 410ms | 410ms | 410ms | 410ms  |
| airspeed 3           | ✓    | ✓      | ✓     | ✓     | 360ms | 360ms | 360ms | 360ms  |
| airspeed 4           | ✓    | ✓      | ✓     | ✓     | 140ms | 140ms | 140ms | 140ms  |
| airspeed 5           | ✓    | ✓      | ✓     | ✓     | ✓     | 120ms | 120ms | 120ms  |
| airspeed 6           | ✓    | ✓      | ✓     | ✓     | ✓     | ✓     | 60ms  | 60ms   |
| airspeed 7           | ✓    | ✓      | ✓     | ✓     | ✓     | ✓     | ✓     | 50ms   |

Note: For non-infinite packet length, please refer to the recommended single packet delay in the table. The single packet delay tested by LORA is based on a single packet of 240Byte

Table 6-6 CHAN Channel Register

|                           | CHAN [ 7: 0] |    |    |    |    |    |    |    |
|---------------------------|--------------|----|----|----|----|----|----|----|
| Read and Write Properties | rw           | rw | rw | rw | rw | rw | rw | rw |
| Default Value             | 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

CHAN [ 7: 0] : frequency (2400+ CHAN\*10M)

Factory Default: 0x00 (2400MHz)

FLRC: (0 channels~50 channels: frequency point: 2.400+2 \* CHAN; 51 channels~100 channels: frequency point:

2.401+2 \* (CHAN% 51))

LORA: (0 channels~50 channels: frequency point: 2400+2 \* CHAN)

Table 6-7 OPTION Special Function Register

|                           | Modulation | Continuous Transmission | Reserved |    |    |    | SendPower [1:0] |    |
|---------------------------|------------|-------------------------|----------|----|----|----|-----------------|----|
| Read and Write Properties | rw         | rw                      | rw       | rw | rw | rw | rw              | rw |
| Default Value             | 0          | 1                       | 0        | 0  | 0  | 0  | 0               | 0  |

Option [7]: Modulation method

0: FLRC modulation method (default)

1: LORA modulation method

Option [6] Continuous transmission: Can transfer files (adaptive airspeed, not configurable)

0: Non continuous transmission (default)

1: Continuous transmission

Option [5:2]: Reserved

Option [1:0] SendPower [1:0]: Transmission power  
 00:27dBm (default)  
 01:24dBm  
 10: 21dBm  
 11: 18dBm

Note: Power values are typical

### 6.3 Module Factory Setting

Table 6-9 Factory Configuration Form of Register:

| Register Name      | ADDH | ADDL | SPEED | CHAN | OPTION |
|--------------------|------|------|-------|------|--------|
| Register Parameter | 12   | 34   | 18    | 00   | 03     |

Table 6-10 Module Factory Parameter:

| Item Model | Operation Frequency (MHZ) | ID Address (HEX) | Factory Channel | Air Speed (Kbps) | Baud Rate (bps) | UART Format | Modulation | Transmission Power |
|------------|---------------------------|------------------|-----------------|------------------|-----------------|-------------|------------|--------------------|
| 024FD12    | 2400                      | 0x1234           | 0               | 0                | 9600            | 8N1         | FLRC       | 15mW               |

## 7. Module Functions

### 7.1 Overview of Module Functions

Table 7-1 Module Function Form

| Module Function          | Data Format of Transmitter | Data Format of Receiver | Function Introduction                                                                                                                                                    |
|--------------------------|----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparent broadcasting | User data                  | User data               | The data sent by random module can be received by the modules with the same address and channel. The data transmission is transparent. What is sent is what is received. |
| Half-duplex transmission | user data                  | User data               | The module can only transmit in one direction at the same time, and data transmission and reception cannot be performed simultaneously.                                  |
| Half-duplex transmission | user data                  | User data               | Module can be transmitted in both directions, data can be sent and received at the same time                                                                             |

### 7.2 Detailed Module Functions

#### 7.2.1. Transparent Broadcasting

##### i. Function Description

The data sent by random module can be received by the modules with the same address and channel. The data transmission is transparent. What is sent is what is received.

##### ii. Module Setting

1. MD0 = 0, MD1 = 0

2. The 7th bit of the OPTION Special Function Register needs to be configured to 0, transparent transmission mode.

3. The addresses of the transmitter and the receiver are set to the same value.

4. The channels of the transmitter and the receiver are set to the same value.

For Example,

Table 7-2

| Transmitter    |                          | Receiver       |                          |
|----------------|--------------------------|----------------|--------------------------|
| Module Address | 0x1234 (factory default) | Module Address | 0x1234 (factory default) |
| Module Channel | 0x17 (factory default)   | Module Channel | 0x17 (factory default)   |
| Sending Data   | User data                | Output Data    | User data                |
|                | 0x11 0x22 0x33           |                | 0x11 0x22 0x33           |

### 7.2.2 Half-Duplex Transmission

#### i. Function Description

When the module performs high-speed data transmission, it does not limit the packet length and can only perform one-way transmission. Data cannot be received when sending data, and data cannot be sent when receiving data.

#### ii. Module Setting

1. MD0 = 0, MD1 = 0
2. The addresses of the transmitter and the receiver can be same.
3. The channels of the transmitter and the receiver can be same.

#### iii. For Example

Table 7-3

| Transmitter    |                                                                        | Receiver       |                |
|----------------|------------------------------------------------------------------------|----------------|----------------|
| Module Address | 0x1234                                                                 | Module Address | 0x1234         |
| Module Channel | 0x00                                                                   | Module Channel | 0x00           |
| Sending Data   | Receiver address high + receiver address low + receiver channel + data | Output Data    | User data      |
|                | 0x56 0x78 0x18 0x11 0x22 0x33                                          |                | 0x11 0x22 0x33 |

### 7.2.3 Full-Duplex Transmission

#### i. Function Description

When the module performs high-speed data transmission, it does not limit the packet length and transmits in both directions. Sending data can receive data at the same time, and can send data at the same time when receiving data.

#### ii. Module Setting

1. MD0 = 0, MD1 = 1 or MD0 = 1, MD1 = 0
2. The addresses of the transmitter and the receiver are set to the same value.
3. The channels of the transmitter and the receiver are set to the same value.

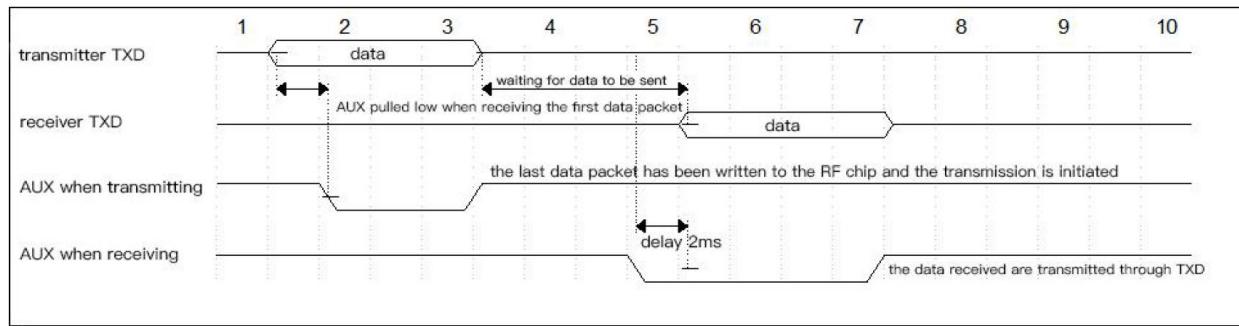

#### iii. For Example

Table 7-4

| Transmitter    |                | Receiver       |                |
|----------------|----------------|----------------|----------------|
| Module Address | 0x1234         | Module Address | 0x1234         |
| Module Channel | 0x00           | Module Channel | 0x00           |
| Sending Data   | User data      | Output Data    | user data      |
|                | 0x11 0x22 0x33 |                | 0x11 0x22 0x33 |

## 8. Sequence Diagram

### 8.1 Sequence Diagram of Data Transmission



### 8.2 Sequence Diagram of Module Switch

When the module switches from any operation mode to the next operation mode, there will be a switching delay

$T_{sc}$ . After switching to the next operation mode, the module will always work in the operation mode after the switching, if the module does not perform other operation mode switching. The operation mode switching has nothing to do with the previous operation mode of the module. The programmer only needs to perform the mode switching delay during the switching process, then selects MD0 and MD1 pins of low latency operation mode for the high- and low-level operations. And you can switch to the desired operation mode.

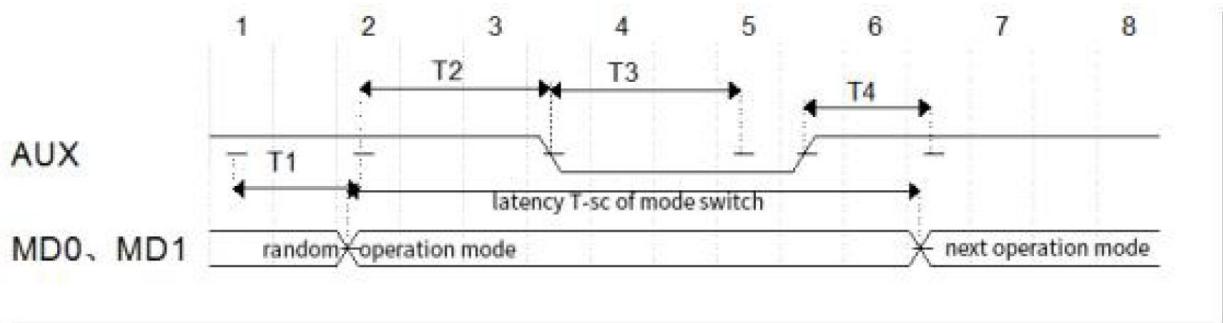
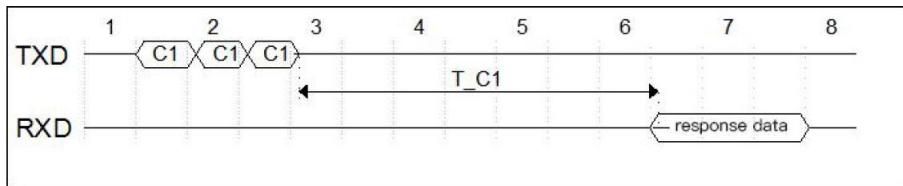



Table 8-1

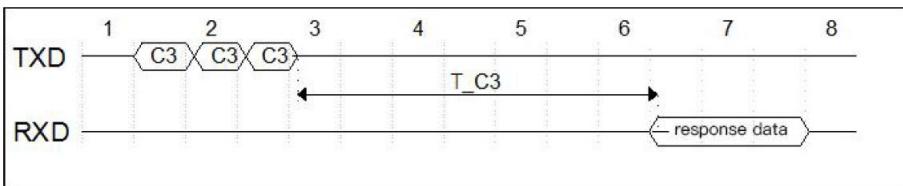
| Symbol | Explanation                                                                   | Min Value | Typical Value | Max Value | Unit |
|--------|-------------------------------------------------------------------------------|-----------|---------------|-----------|------|
| T1     | Wait till the last data packet is transmitted to make sure the module is idle |           | 2             |           | ms   |
| T2     | Debounce delay                                                                |           | 3             |           | ms   |
| T3     | Start modes switch                                                            |           | 3             |           | ms   |
| T4     | To tell if the mode switch is done                                            |           | 2             |           | ms   |
| T_sc   | Mode switch delay                                                             |           | 300           |           | us   |

Remarks:

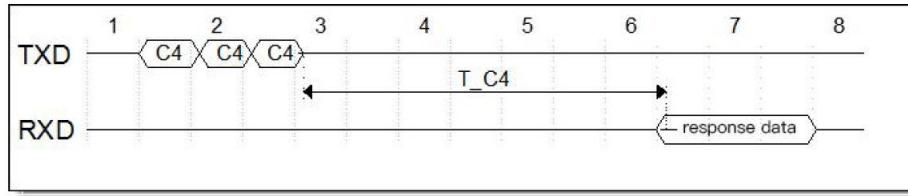
Modes can be switched when AUX is high level, at this time, the module is ideal; If AUX is low level, it means the module is busy. The sending (receiving) is not empty, the data has not been sent (received), and the user needs to add a delay. After waiting for the data to be sent and received, the working mode can be switched.


### 8.3 Sequence Diagram of Module Command

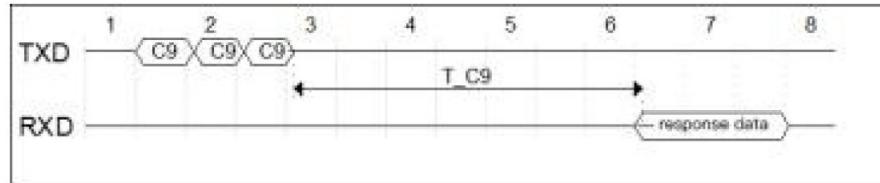
Sequence Diagram of Command as Below:


#### 8.3.1 Command of Parameter Configuration

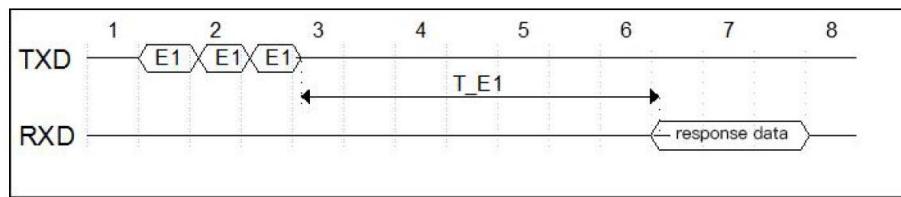



#### 8.3.2 Command of Reading Configured Parameter

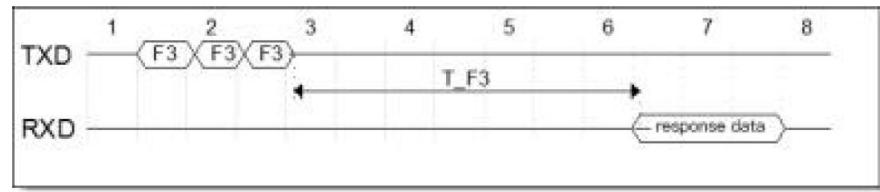



#### 8.2.3 Command of Reading Module Hardware Version




#### 8.2.4 Command of Module Reset




#### 8.3.5 command of restoring default parameters



#### 8.3.6 Handshake Command



#### 8.3.7. Command of reading module software version



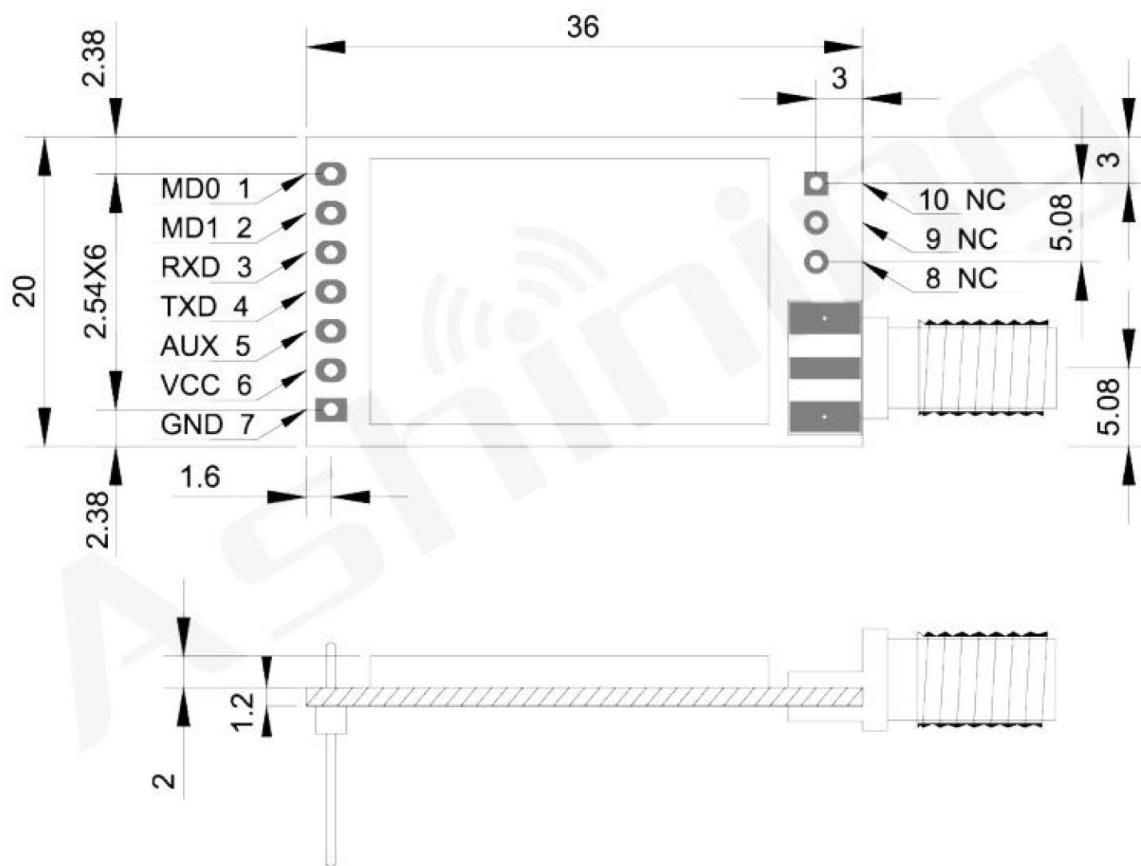
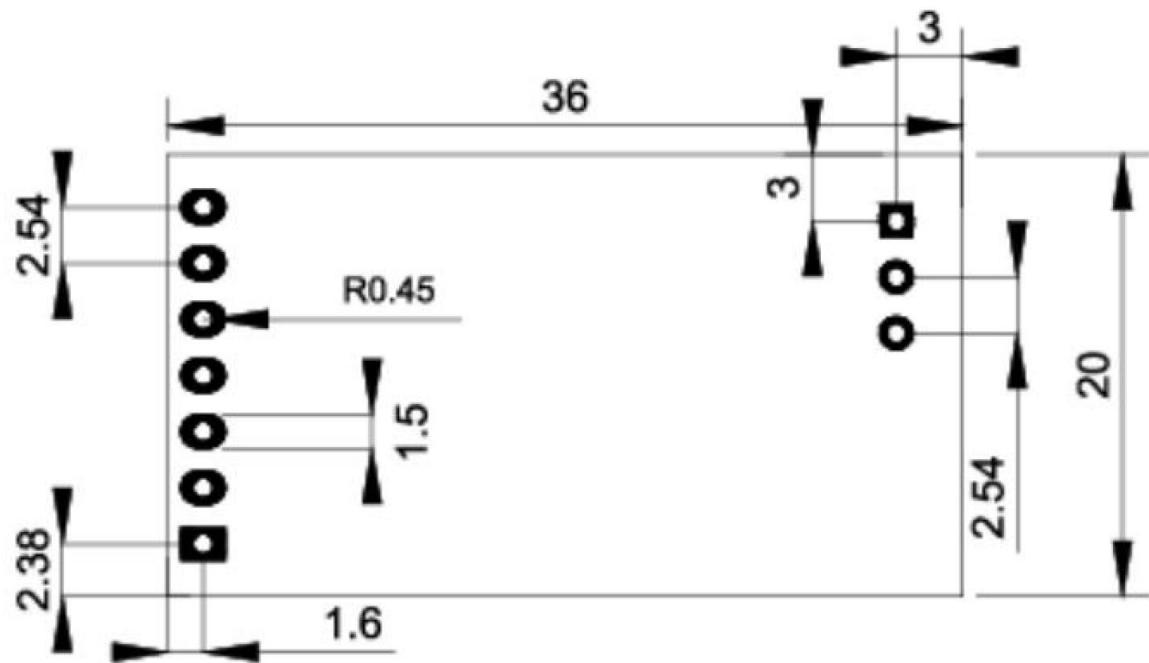

Remarks:

Table 8-1

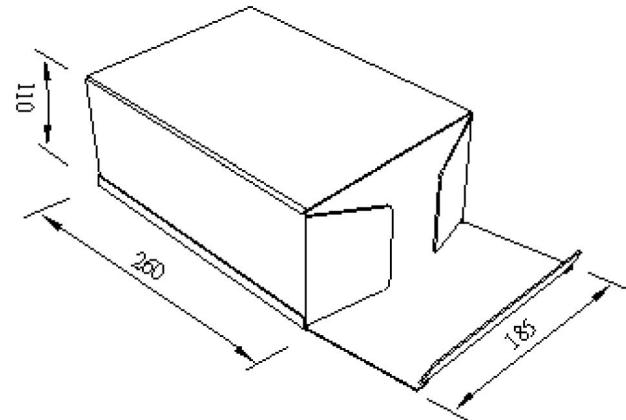
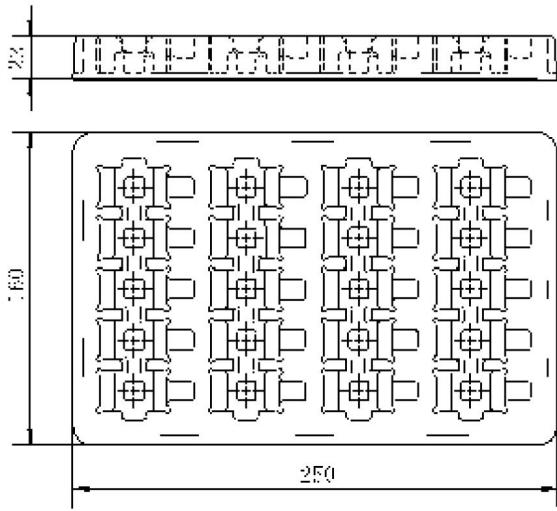

| Parameter name                                    | T_answer | Description                               | Min value | Typical value | Max value | Unit |
|---------------------------------------------------|----------|-------------------------------------------|-----------|---------------|-----------|------|
| Command response delay                            | T_C0/C2  | Parameter configuration delay             |           | 30            |           | ms   |
|                                                   | T_C1     | Reading module configured parameter delay |           | 5             |           | ms   |
|                                                   | T_C3     | Reading module hardware version delay     |           | 5             |           | ms   |
|                                                   | T_C4     | Waiting module reset delay                |           |               |           | ms   |
|                                                   | T_F3     | Reading module software version delay     |           | 5             |           | ms   |
| Delay of waiting for data transmission completion | T_Packet | Delay of one data packet transmission     |           |               |           | ms   |

## 9. Package Information

### 9.1 Machine Size (unit: mm)



9.2 Reference Pad Design (unit: mm)


## 10. Package Manner

### 10.1 Electrostatic Bag Package



10.2 Pallet Package (unit: mm)



## Important Remarks and Disclaimers

As the hardware and software of the product continue to improve, this manual may be subject to change, and the final version of the manual shall prevail.

Users of this product need to pay attention to the product dynamics on the official website, so that users can get the latest information of this product in time.

The pictures and diagrams used in this manual to explain the functions of this product are for reference only.

The data measured in this specification are all measured by our company at room temperature for reference only.

Please refer to the actual measurement for details.

Prime Land Outdoor LLC reserves the right of final interpretation and modification of all contents in this manual

### FCC Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### FCC Radiation Exposure Statement

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter. This modular must be installed and operated at a minimum distance of 20 cm between the radiator and user body.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID:2BL9N-024FD12 Or Contains FCC ID: 2BL9N-024FD12"

When the module is installed inside another device, the user manual of the host must contain the warning statements.

1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
  - (1) This device may not cause harmful interference.
  - (2) This device must accept any interference received, including interference that may cause undesired operation.
2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product.

Any company of the host device which install this modular with limit modular approval should perform the test of radiated emission and spurious emission according to FCC part 15C : 15.247 and 15.209 requirement, Only if the test result comply with FCC part 15C : 15.247 and 15.209 requirement, then the host can be sold legally.

Note 1: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Note 2: This product is only sold through our dealer network. It cannot be purchased online, mail order, or retail. Before new distributors sign up to sell our products, we will meet with them to understand if they have the professional knowledge and experience to operate this equipment. We only allow them to become distributors after review. In addition, after becoming a distributor, we require online completion of training courses, including videos, quizzes, and exams. After completing the course, we will issue a certificate and allow them to set up the device in our application. If they have not completed the course, the application will not allow them to set up and configure the device. We, the manufacturer, only grant this license to distributors.