

TEST REPORT

Reference No...... : WTN24D08199277W001
FCC ID..... : 2BKXX-67246
Applicant..... : blomus GmbH
Address..... : Zur Hubertushalle 4 59846 Sundern Germany
Manufacturer..... : blomus GmbH
Address..... : Zur Hubertushalle 4 59846 Sundern Germany
Product..... : Remote control
Model(s)..... : 67246
Standards..... : FCC 47CFR Part 15 Subpart C Section 15.231
Date of Receipt sample.... : 2024-09-12
Date of Test..... : 2024-09-12 to 2024-10-29
Date of Issue..... : 2024-11-25
Test Result..... : **Pass**

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Testing Group Co., Ltd.

Address: No. 77, Houjie Section, Guantai Road, Houjie Town, Dongguan City, Guangdong, China
Tel: +86-769-2267 6998
Fax: +86-769-2267 6828

Compiled by:

Estel Qian

Estel Qian / Project Engineer

Approved by:

Deval Qin

Deval Qin /Designated Reviewer

2 Contents

	Page
1 COVER PAGE.....	1
2 CONTENTS.....	2
3 REVISION HISTORY.....	3
4 GENERAL INFORMATION.....	4
4.1 GENERAL DESCRIPTION OF E.U.T.....	4
4.2 DETAILS OF E.U.T.	4
4.3 TEST MODE	4
5 EQUIPMENT USED DURING TEST.....	5
5.1 EQUIPMENTS LIST	5
5.2 MEASUREMENT UNCERTAINTY.....	6
5.3 TEST EQUIPMENT CALIBRATION	6
5.4 TEST FACILITY	6
5.5 SUBCONTRACTED	6
6 TEST SUMMARY.....	7
7 RADIATED SPURIOUS EMISSIONS	8
7.1 EUT OPERATION	8
7.2 TEST SETUP	9
7.3 SPECTRUM ANALYZER SETUP.....	10
7.4 TEST PROCEDURE	11
7.5 SUMMARY OF TEST RESULTS	11
8 PERIODIC OPERATION.....	13
9 EMISSION BANDWIDTH.....	16
9.1 TEST PROCEDURE	16
9.2 TEST RESULT	16
10 ANTENNA REQUIREMENT	18
11 RF EXPOSURE	18
12 PHOTOGRAPHS –TEST SETUP AND EUT	18

3 Revision History

Test Report No.	Date of Receipt Sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTN24D08199277W001	2024-09-12	2024-09-12 to 2024-10-29	2024-11-25	Original	-	Valid

4 General Information

4.1 General Description of E.U.T.

Product Name: Remote control
Model No.: 67246
Model Description: N/A
Test Sample No.: 1-1/1

4.2 Details of E.U.T.

Frequency Range: 433.9MHz
Type of Modulation: ASK
Antenna installation: FPC Antenna
Antenna Gain: 3dBi

Note:

#: The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, WALTEK lab has not verified the authenticity of its information.

Battery: DC 3V

4.3 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Channel
Transmitting	433.9MHz

5 Equipment Used during Test

5.1 Equipments List

3m Semi-anechoic Chamber for Radiation Emissions 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2024-04-22	2025-04-21
2	Amplifier	Agilent	8447D	2944A10178	2024-07-18	2025-07-17
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2024-07-21	2025-07-20
4	Coaxial Cable (below 1GHz)	Top	TYPE16(13M)	-	2024-04-22	2025-04-21
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2024-01-23	2025-01-22
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2024-07-18	2025-07-17
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2024-07-18	2025-07-17
8	Coaxial Cable (above 1GHz)	ZT26-NJ-NJ-8M/FA	1GHz-18GHz	NA	2024-04-22	2025-04-21
3m Semi-anechoic Chamber for Radiation Emissions Test site 2#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2024-04-22	2025-04-21
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2023-11-04	2024-11-03
3	Active Loop Antenna	Com-Power Corp.	AL-130R	10160007	2024-04-27	2025-04-26
4	Amplifier	ANRITSU	MH648A	M43381	2024-04-22	2025-04-21
5	Cable	HUBER+SUHNER	CBL2	525178	2024-04-22	2025-04-21
RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-07-18	2025-07-17
2	Spectrum Analyzer	R&S	FSP30	100091	2024-04-22	2025-04-21
3	Humidity Chamber	GF	GTH-225-40-1P	IAA061213	2024-07-18	2025-07-17
4	EXA Signal Analyzer	Keysight	N9010A	MY50520207	2024-04-22	2025-04-21

Test Software:

Test Item	Software name	Software version
Conduction disturbance Radiated Emission(3m)	EZ-EMC	EZ-EMC(RA-03A1-1)

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (30M~1000MHz) ± 5.47 dB (1000M~25000MHz)
Confidence interval:95%. Confidence factor: k=2	

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R. China.

5.4 Test Facility

The test facility has a test site registered with the following organizations:

ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A.

Waltek Testing Group Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2016.

FCC Designation No.: CN1201. Test Firm Registration No.: 523476.

Waltek Testing Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration number 523476, September 10, 2019.

5.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

Yes No

If Yes, list the related test items and lab information:

Test Lab: N/A

Lab address: N/A

Test items: N/A

6 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	N/A*
Radiated Spurious Emissions	15.205(a) 15.209 15.231(a)	Pass
Periodic Operation	15.231(a)	Pass
Emission Bandwidth	15.231(c)	Pass
Antenna Requirement	15.203	Pass
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	Pass

Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable
*: The EUT is only powered by battery, no need to evaluate AC Power Conducted Emission.

7 Radiated Spurious Emissions

Test Requirement: FCC Part15 §15.231(a), (b)

Test Method: ANSI C63.10:2013

Test Result: PASS

Measurement Distance: 3m

Limit:

Fundamental Frequency (MHz)	Field Strength of Fundamental (uV/m)	Field Strength of Fundamental (dBuV/m)	Field Strength of Spurious Emission (uV/m)	Field Strength of Spurious Emission (dBuV/m)
44.66-40.70	2250	67	225	47
70-130	1250	62	125	42
130-174	1250 to 3750*	62 to 71.48*	125 to 375*	42 to 51.48*
174-260	3750	71.48	375	51.48
260-470	3750 to 12500*	71.48 to 81.94*	375 to 1250*	51.48 to 61.94*
Above 470	12500	81.94	1250	61.94

* linear interpolations

7.1 EUT Operation

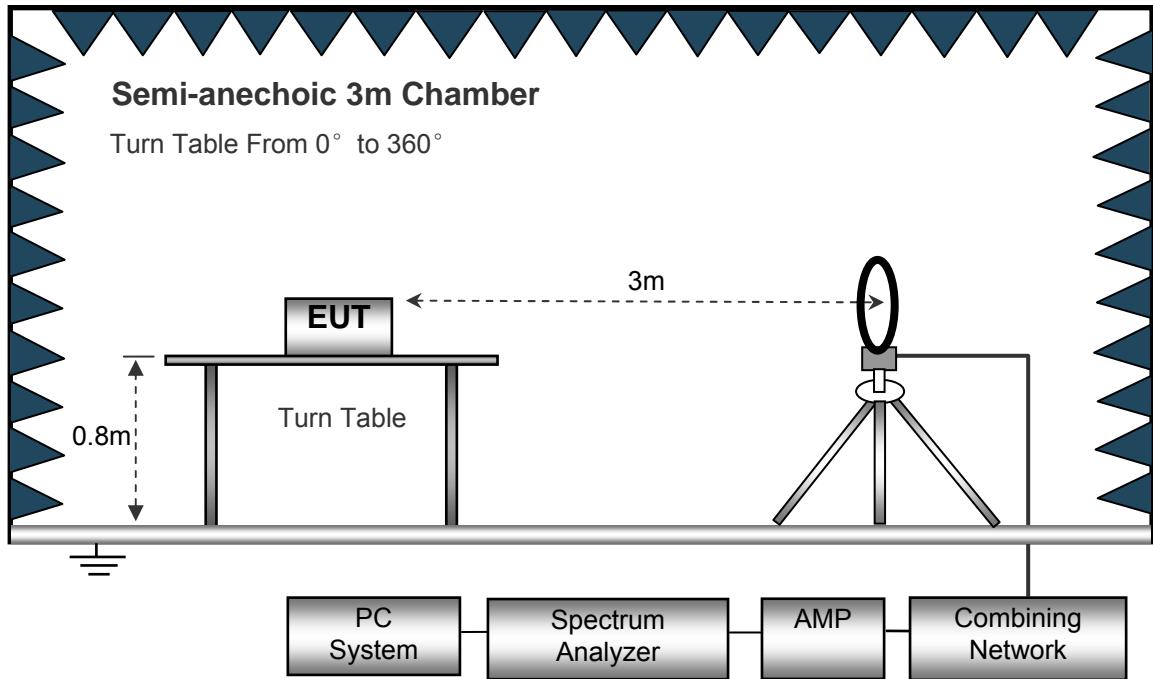
Operating Environment:

Temperature: 21.5 °C

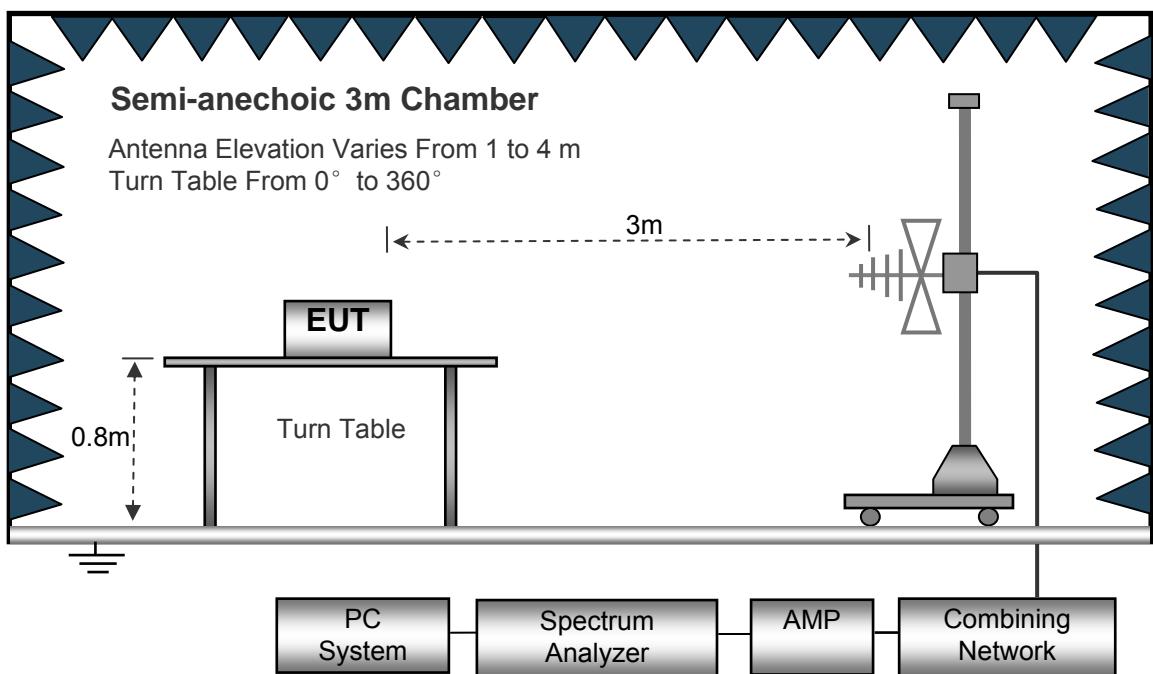
Humidity: 53.4 % RH

Atmospheric Pressure: 101.3kPa

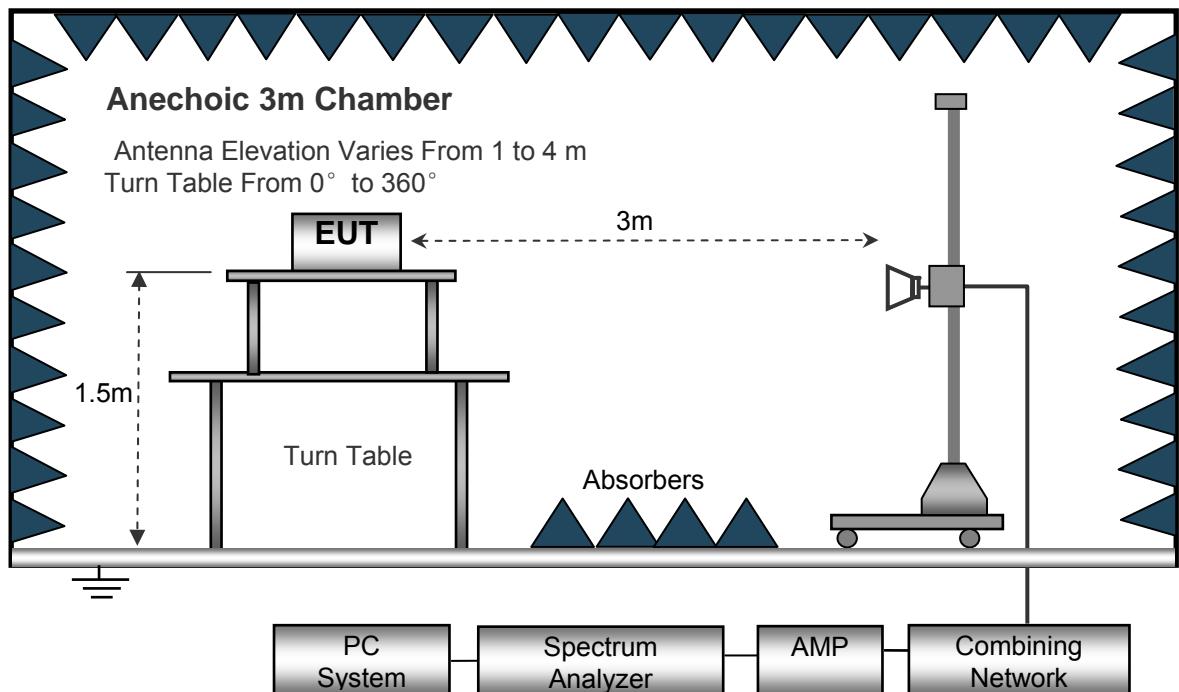
Test Voltage: DC 3V by Battery


EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.


The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz

Sweep Speed	Auto
IF Bandwidth.....	10kHz
Video Bandwidth.....	10kHz
Resolution Bandwidth.....	10kHz

30MHz ~ 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth.....	100kHz
Video Bandwidth.....	300kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth.....	1MHz
Video Bandwidth.....	3MHz

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above 1GHz, the EUT is 1.5m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9 kHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 5GHz

Frequency	Receiver Reading (PK)	Turn table Angle	RX Antenna		Corrected Factor	Corrected Amplitude (PK)	FCC Part 15.231/15.209/205	
			Height (m)	Polar			Limit	Margin
(MHz)	(dB μ V)	Degree	(m)	(H/V)	(dB/m)	(dB μ V/m)	(dB μ V/m)	(dB)
433.9	67.27	341	2.5	H	9.06	76.33	100.8	-24.47
433.9	73.98	216	1.2	V	9.06	83.04	100.8	-17.76
867.8	40.80	273	1.1	H	16.56	57.36	80.8	-23.44
867.8	43.92	124	1.0	V	16.56	60.48	80.8	-20.32
1301.70	69.22	349	1.1	H	-12.83	56.39	74.0	-17.61
1301.70	62.07	333	1.2	V	-12.83	49.24	74.0	-24.76
3037.30	67.55	215	1.4	H	-8.36	59.19	80.8	-21.61
3037.30	60.69	11	1.5	V	-8.36	52.33	80.8	-28.47
3905.10	62.08	11	1.3	H	-7.36	54.72	74.0	-19.28
3905.10	70.35	274	1.4	V	-7.36	62.99	74.0	-11.01
4339.00	58.74	206	1.6	H	-6.36	52.38	74.0	-21.62
4339.00	62.63	60	1.8	V	-6.36	56.27	74.0	-17.73

Note: the measurements were more than 20 dB below the limit and not reported.

AV = Peak +20Log₁₀(duty cycle) =PK+(-11.94) (refer to section 8 for more detail)

Frequency	PK	RX Antenna	Duty cycle Factor	Result	FCC Part 15.231/209/205	
					Polar	(dB)
(MHz)	(dB μ V/m)	(H/V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
433.9	76.33	H	-11.94	64.39	80.8	-16.41
433.9	83.04	V	-11.94	71.10	80.8	-9.70
867.8	57.36	H	-11.94	45.42	60.8	-15.38
867.8	60.48	V	-11.94	48.54	60.8	-12.26
1301.70	56.39	H	-11.94	44.45	54	-9.55
1301.70	49.24	V	-11.94	37.30	54	-16.70
3037.30	59.19	H	-11.94	47.25	60.8	-13.55
3037.30	52.33	V	-11.94	40.39	60.8	-20.41
3905.10	54.72	H	-11.94	42.78	54	-11.22
3905.10	62.99	V	-11.94	51.05	54	-2.95
4339.00	52.38	H	-11.94	40.44	54	-13.56
4339.00	56.27	V	-11.94	44.33	54	-9.67

8 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

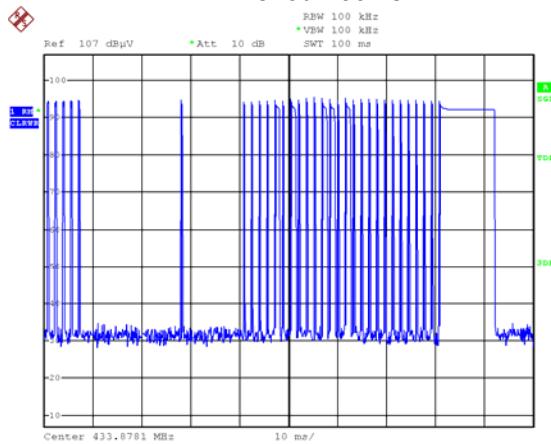
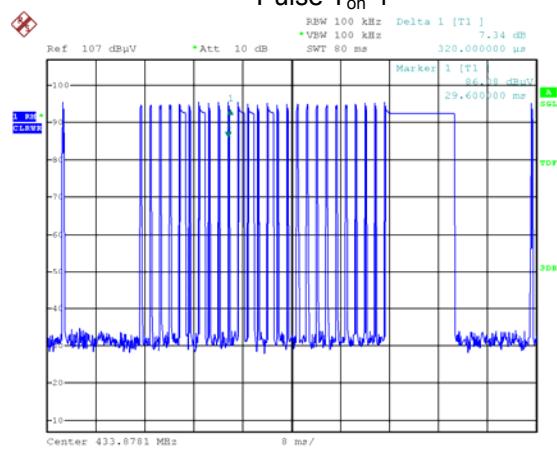
Duty Cycle(%)=Total On interval in a complete pulse train/ Length of a complete pulse train * %

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle (%)/100)

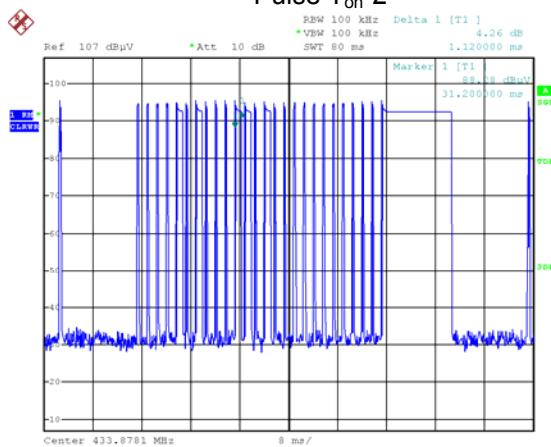
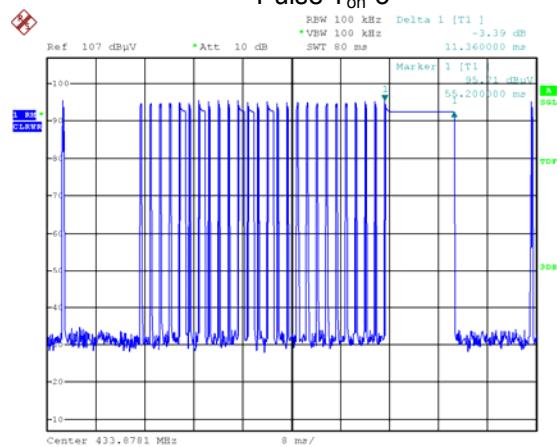
Total transmission time(ms)	26*0.32 + 5*1.12 + 1*11.36=25.28
Length of a complete transmission period(ms)	100
Duty Cycle (%)	25.28
Duty Cycle Correction Factor(dB)	-11.94

Refer to the duty cycle plot (as below), this device meets the FCC requirement.

Length of a complete pulse train:



Remark:

According to FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.



Refer to the duty cycle plot (as below)

Test Plot

Period-100ms

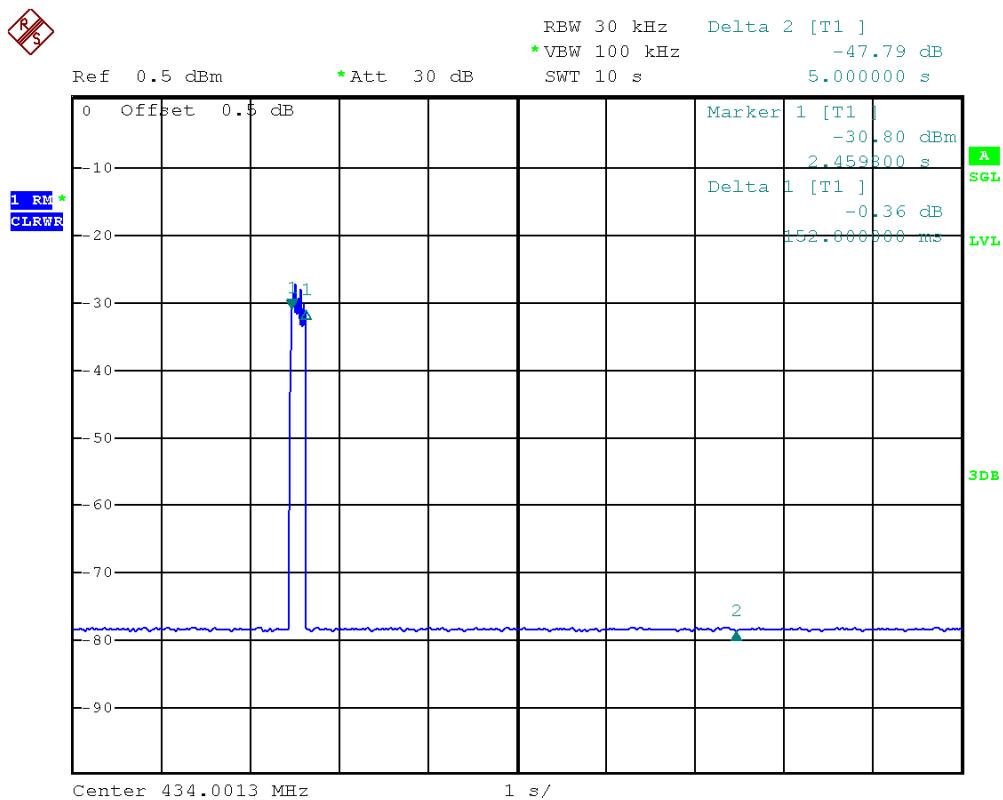
Pulse T_{on-1}

Date: 29.OCT.2024 09:16:13

Pulse T_{on-2}Pulse T_{on-3}

Date: 29.OCT.2024 09:16:44

Date: 29.OCT.2024 09:17:17


According to FCC Part15.231(a)

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Test result

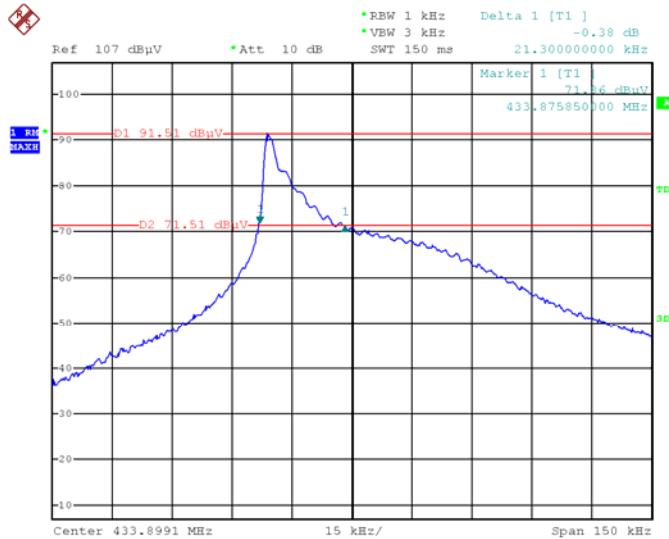
Duration Time (ms)	Limit (s)	Result
152.8	<5.0	Compliance

Test Plot

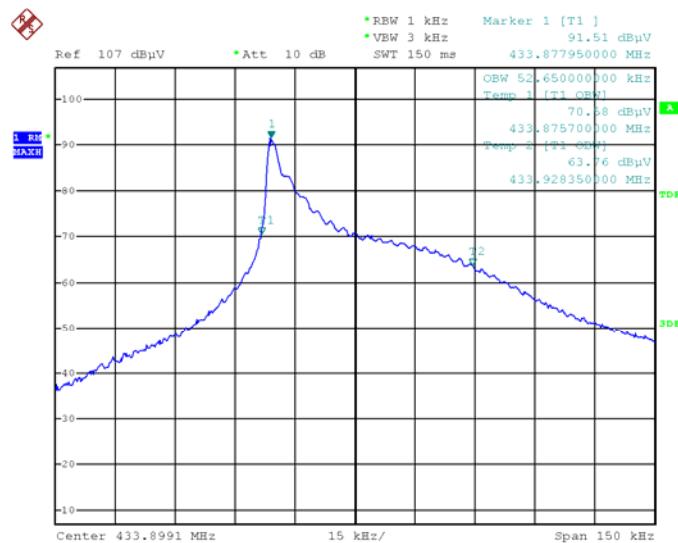
Date: 29.OCT.2024 09:45:11

9 Emission Bandwidth

Test Requirement:	FCC Part15.231(c)
Test Method:	FCC Part15.231(c)
Limit	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.


9.1 Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer. EUT and its simulators are placed on a table, let EUT working in test mode, then test it.
2. The bandwidth of the fundamental frequency was measure by spectrum analyser with:
RBW=1% to 5% of OBW, VBW=3 times of RBW.
The 20 dB bandwidth and 99% bandwidth were recorded.


9.2 Test Result

Frequency (MHz)	20dB Bandwidth Emission(kHz)	99% Bandwidth Emission(kHz)	Limit (kHz)	Result
433.9	21.30	52.65	1084.5	Compliance

Test Plot

Date: 29.OCT.2024 09:12:42

Date: 29.OCT.2024 09:12:04

10 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an FPC Antenna fulfil the requirement of this section.

Note: Please refer to EUT photos for more details.

11 RF Exposure

Remark: Please refer to MPE test report: WTN24D08199277W002.

12 Photographs –Test Setup and EUT

Note: Please refer to appendix: Appendix-67246-Photos.

=====End of Report=====