

FCC Test Report

Report No.: AGC07240250601FR02

FCC ID : 2BKRS-AUD-HDPHN

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Wireless Headphone

BRAND NAME: Noise

MODEL NAME

Master Buds Max, NBX101, NBX102, NBX103, NBX104,

NBX105, NBH0009

APPLICANT : Nexxbase Marketing Private Limited

DATE OF ISSUE : Jul. 14, 2025

STANDARD(S) : FCC Part 15 Subpart C §15.247

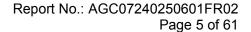
REPORT VERSION: V1.0

Attestation Of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 61

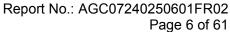

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jul. 14, 2025	Valid	Initial Release	


Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	8
3.1 Address of the Test Laboratory	8
3.2 Test Facility	
3.3 Environmental Conditions	g
3.4 Measurement Uncertainty	g
3.5 List of Equipment Use	10
4.System Test Configuration	12
4.1 EUT Configuration	12
4.2 EUT Exercise	12
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	12
4.5 Summary of Test Results	
5. Description of Test Modes	14
6. Duty Cycle Measurement	15
7. RF Output Power Measurement	
7.1 Provisions Applicable	16
7.2 Measurement Procedure	16
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	17
8. 6dB Bandwidth Measurement	21
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	
9. Power Spectral Density Measurement	29
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	
10. Conducted Band Edge and Out-of-Band Emissions	
10.1 Provisions Applicable	34

10.2 Measurement Procedure	34
10.3 Measurement Setup (Block Diagram of Configuration)	34
10.4 Measurement Results	35
11. Radiated Spurious Emission	46
11.1 Measurement Limit	46
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	49
11.4 Measurement Result	
12. AC Power Line Conducted Emission Test	
12.1 Measurement Limit	56
12.2 Measurement Setup (Block Diagram of Configuration)	56
12.3 Preliminary Procedure of Line Conducted Emission Test	57
12.4 Final Procedure of Line Conducted Emission Test	57
12.5 Measurement Result	57
Appendix I: Photographs of Test Setup	60
Appendix II: Photographs of Test EUT	60
•••	


1. General Information

Nexxbase Marketing Private Limited			
15th Floor, DLF City Phase 5, Two Horizon Centre, Golf course Road, Sector 43, Gurugram, Haryana 122002, India			
Senmai Electron Limited			
No.5 Shuiling Road, Zhouwu Industrial Zone, Dongcheng District, Dongguan City, Guangdong, China			
Senmai Electron Limited			
No.5 Shuiling Road, Zhouwu Industrial Zone, Dongcheng District, Dongguan City, Guangdong, China			
Wireless Headphone			
Noise			
Master Buds Max			
NBX101, NBX102, NBX103, NBX104,NBX105, NBHO009			
All the same except for the model name and appearance color			
Jun. 25, 2025			
Jun. 25, 2025~Jul. 09, 2025			
No any deviation from the test method			
Normal			
Pass			
AGCER-FCC-BLE-V1			

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	CxCs-Ci	
-	Cici Li (Project Engineer)	Jul. 14, 2025
Reviewed By	Joup Gai	
-	Jack Gui (Reviewer)	Jul. 14, 2025
Approved By	Angole Li	
-	Angela Li (Authorized Officer)	Jul. 14, 2025

2. Product Information

2.1 Product Technical Description

Technology Type	Bluetooth Low Energy		
Frequency Band	2400MHz-2483.5MHz		
Operation Frequency Range	2402MHz-2480MHz		
Bluetooth Version	V5.4		
Modulation Type	BLE ⊠ GFSK 1Mbps ⊠ GFSK 2Mbps		
Number of channels	40		
Carrier Frequency of Each Channel	40 Channels (37 Data channels + 3 Advertising channels)		
Channel Separation	2 MHz		
Maximum Transmitter Power	Bluetooth LE (1Mbps): 2.078dBm Bluetooth LE (2Mbps): 2.152dBm		
Hardware Version	V1.2		
Software Version	V0.4.2		
Antenna Designation	PCB Antenna		
Antenna Gain	-0.9dBi		
Power Supply	DC 3.7V 800mAh by battery or DC 5V from adapter		

2.2 Test Frequency List

Frequency Band	Channel Number	Test Frequency		
	0	2402 MHz		
	1	2404 MHz		
2400~2483.5MHz	:	:		
	19	2440MHz		
	:	:		
	38	2478 MHz		
	39	2480 MHz		
Note: f = 2402 + 2*k MHz, k = 0,, 39 f is the operating frequency (MHz); k is the operating channel.				

Page 7 of 61

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BKRS-AUD-HDPHN**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices			
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules			

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -0.9dBi.

Page 8 of 61

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 9 of 61

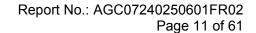
3.3 Environmental Conditions

	Normal Conditions
Temperature range (℃)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V

3.4 Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF Power, Conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF Power Density, Conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of Spurious Emissions, Conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %
Uncertainty of Dwell Time	U _c = ±2 %


Page 10 of 61

3.5 List of Equipment Use

• F	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2025-05-08	2026-05-07	
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2025-01-14	2026-01-13	
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2025-01-14	2026-01-13	
\boxtimes	AGC-ER-A007	6dB Fixed Attenuator	Mini circuits	BW-S6-2W263A+	N/A	2025-01-30	2026-01-29	
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2025-05-21	2026-05-20	
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• F	Radiated Spurious Emission						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2025-01-14	2026-01-13
	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2025-05-08	2026-05-07
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2025-05-08	2026-05-07
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2025-03-14	2027-03-13
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2025-03-27	2026-03-26
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2025-05-16	2026-05-15
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2025-05-16	2027-05-15
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2025-05-16	2027-05-15

• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-A171	Attenuator	Mini-Circuits	UNAT-10A+	N/A	2024-02-01	2026-01-31		
\boxtimes	AGC-EM-E023	Artificial Mains Network	R&S	ESH2-Z5	100086	2025-05-08	2026-05-07		
	AGC-EM-E116	Test Receiver	R&S	ESCI	100034	2025-05-08	2026-05-07		

• Te:	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A			
	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6			
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0			

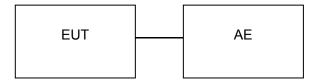
Page 12 of 61

4. System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

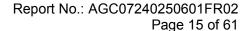
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Adapter	Xiaomi	MDY-16-EA	Input(AC):100-240V 50/60Hz 2.5A Output(DC):5V3A/9V3A/11V6.1A/20V5A/20V6A	1.0m unshielded
2	Control Box	USB-TTL			

No	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Battery	Hunan Shanli New Energy Technology Co., Ltd.	503048	DC 3.7V 800mAh	

Page 13 of 61

4.5 Summary of Test Results

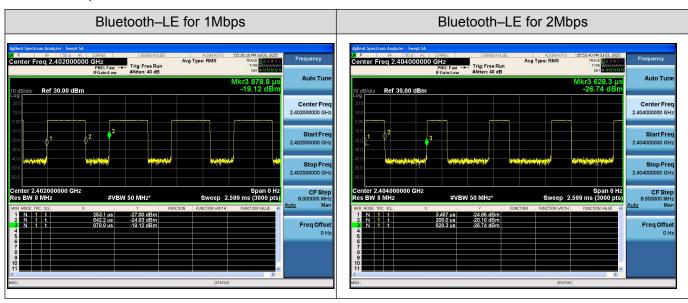
Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.209	Radiated Emission& Band Edge	Pass
7	§15.207	AC Power Line Conducted Emission	Pass


5. Description of Test Modes

	Summary Table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth-LE(1Mbps/2Mbps)/GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Battery powered)				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Battery powered)				
Radiated & Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Battery powered)				
Test Cases	Mode 4: Bluetooth Tx CH00_2404 MHz_2Mbps(Battery powered)				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps(Battery powered)				
	Mode 6: Bluetooth Tx CH39_2478 MHz_2Mbps(Battery powered)				
AC Conducted Emission	Mode 1: Standby mode + Battery + USB Cable (Charging from AC Adapter)				

Note:

- Only the result of the worst case was recorded in the report, if no other cases.
- 2. The battery is full-charged during the test.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.
- The manufacturer of RF external cable claims that the cable loss is 0.5dB, and the cable loss and attenuator have been compensated into the Corrections Configuration of measuring equipment.
- 6. Input correction factor includes external cable loss and attenuator amplitude compensation. The formula is: Input compensation coefficient (dB) = Cable Loss (dB) + Attenuator attenuation value (dB)


6. Duty Cycle Measurement

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE_1Mbps	389.1	62	2.08	2.57
BLE_2Mbps	204.533	33	4.81	4.89

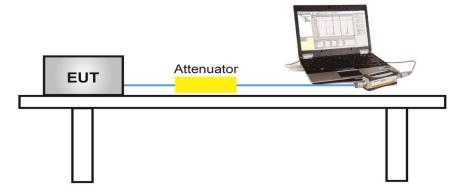
Remark:

- 1. Duty Cycle factor = 10 * log (1/ Duty cycle)
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value
- The test plots as follows:

Page 16 of 61

7. RF Output Power Measurement

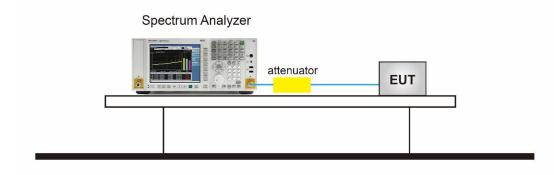
7.1 Provisions Applicable

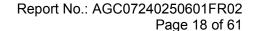

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

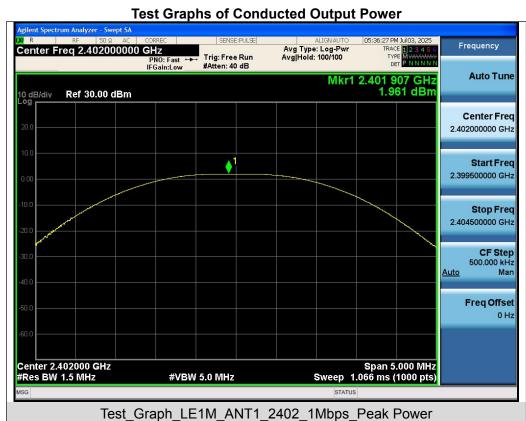
7.2 Measurement Procedure

- For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW≥DTS bandwidth
- Set the VBW≥[3 × RBW].
- 4. Span≥[3 × RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- ☐ For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

7.3 Measurement Setup (Block Diagram of Configuration)


☐ For Average power test setup


Page 17 of 61



7.4 Measurement Result

Test Data of Conducted Output Power						
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail		
	2402	1.961	≤30	Pass		
GFSK_1Mbps	2440	2.078	≤30	Pass		
	2480	1.942	≤30	Pass		
	2404	2.029	≤30	Pass		
GFSK_2Mbps	2440	2.152	≤30	Pass		
	2478	2.059	≤30	Pass		

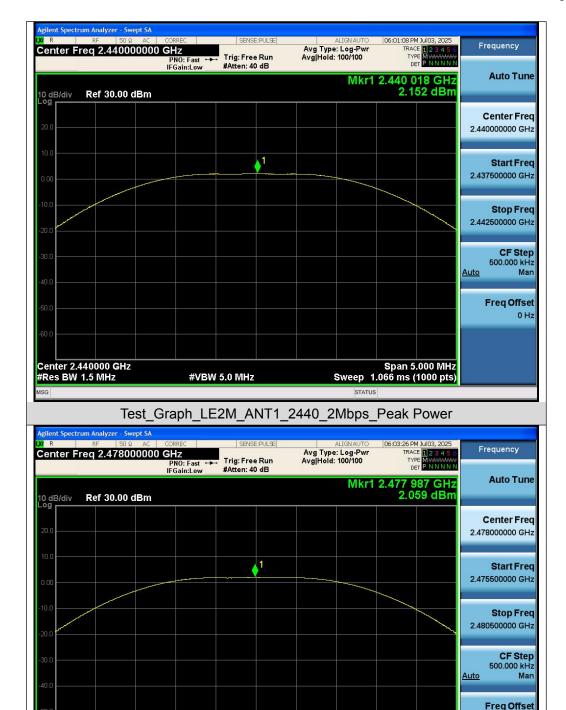
500,000 kHz

Freq Offset 0 Hz

Auto

Span 5.000 MHz Sweep 1.066 ms (1000 pts)

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Test Graph LE2M ANT1 2404 2Mbps Peak Power

#VBW 5.0 MHz

Center 2.404000 GHz #Res BW 1.5 MHz

0 Hz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test Graph LE2M ANT1 2478 2Mbps Peak Power

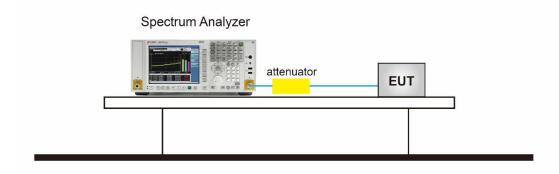
#VBW 5.0 MHz

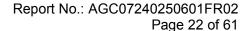
Span 5.000 MHz Sweep 1.066 ms (1000 pts)

Center 2.478000 GHz #Res BW 1.5 MHz

Page 21 of 61

8. 6dB Bandwidth Measurement


8.1 Provisions Applicable


The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

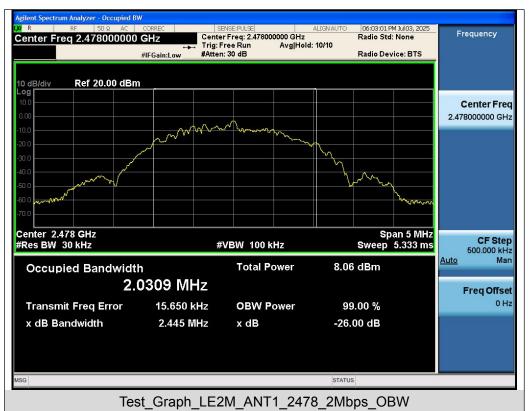
- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss
 was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

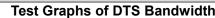
8.3 Measurement Setup (Block Diagram of Configuration)

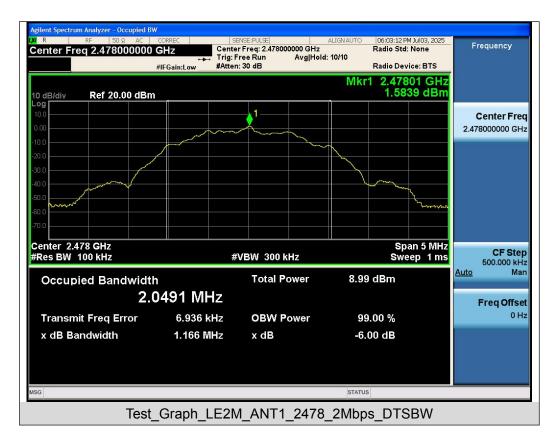
8.4 Measurement Results

Test Data of Occupied Bandwidth and DTS Bandwidth						
Test Mode	Test Frequency (MHz)	Occupied Bandwidth (MHz)	DTS BW (MHz)	DTS BW Limits	Pass or Fail	
	2402	1.030	0.683	≥0.5	Pass	
GFSK_1Mbps	2440	1.031	0.678	≥0.5	Pass	
	2480	1.030	0.685	≥0.5	Pass	
	2404	2.032	1.172	≥0.5	Pass	
GFSK_2Mbps	2440	2.031	1.164	≥0.5	Pass	
	2478	2.031	1.166	≥0.5	Pass	

Test Graphs of Occupied Bandwidth 05:36:01 PM Jul 03, 2025 Radio Std: None Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency Center Freq 2.402000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref 20.00 dBm Center Freq 2 402000000 GHz Center 2.402 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.2 ms CF Step 300.000 kHz #VBW 100 kHz Mar Occupied Bandwidth **Total Power** 8.52 dBm 1.0301 MHz Freq Offset 0 Hz **Transmit Freq Error** -1.634 kHz **OBW Power** 99.00 % 1.272 MHz x dB Bandwidth x dB -26.00 dB Test Graph LE1M ANT1 2402 1Mbps OBW

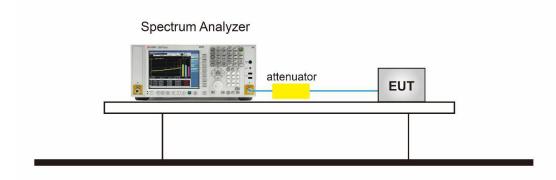






Page 29 of 61

9. Power Spectral Density Measurement

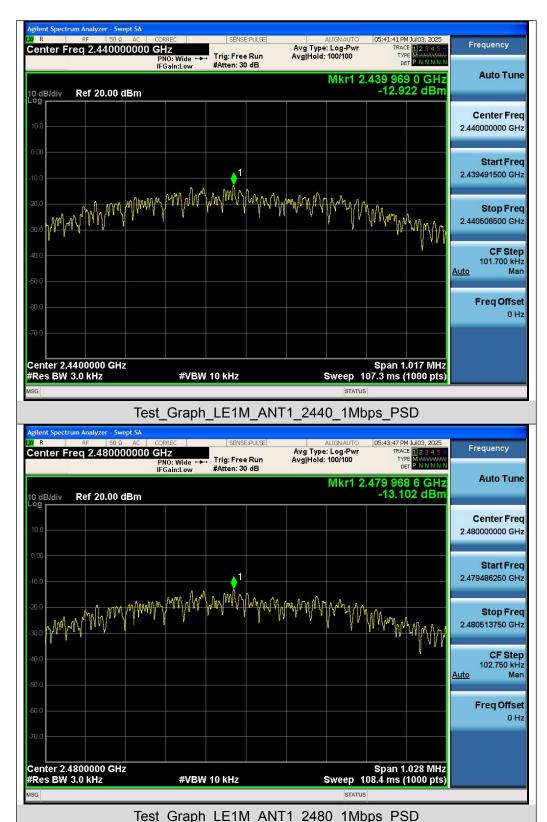

9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

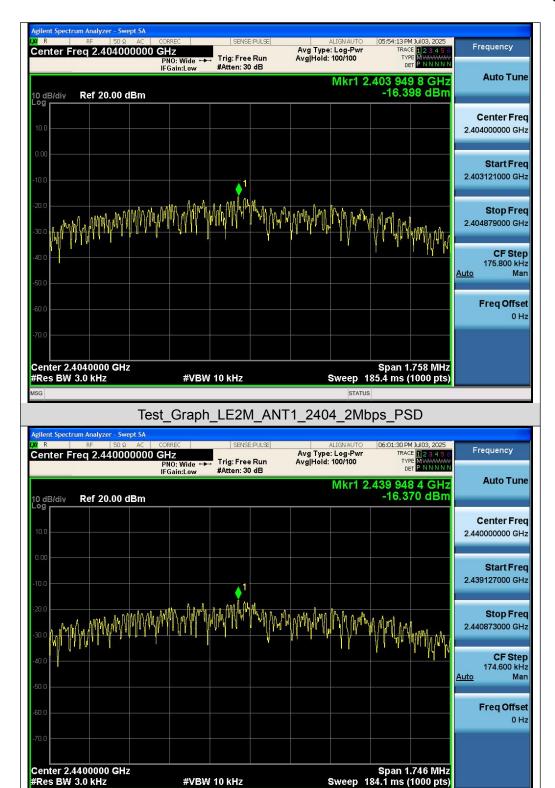
9.2 Measurement Procedure

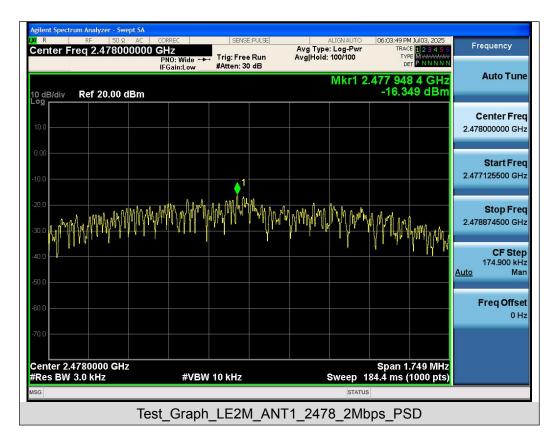
- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.3 Measurement Setup (Block Diagram of Configuration)


9.4 Measurement Results

Test Data of Conducted Output Power Spectral Density						
Test Mode	Test Frequency (MHz)	Power density (dBm/3kHz)	Limit (dBm/3kHz)	Pass or Fail		
	2402	-13.192	≪8	Pass		
GFSK_1Mbps	2440	-12.922	≤8	Pass		
	2480	-13.102	≪8	Pass		
	2404	-16.398	≪8	Pass		
GFSK_2Mbps	2440	-16.370	≤8	Pass		
	2478	-16.349	≪8	Pass		


Test Graphs of Conducted Output Power Spectral Density

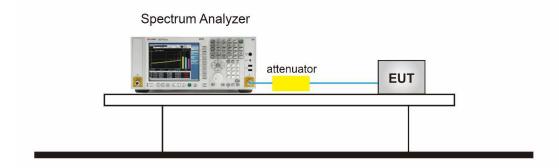


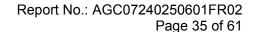
Test Graph LE2M ANT1 2440 2Mbps PSD

#VBW 10 kHz

Page 34 of 61

10. Conducted Band Edge and Out-of-Band Emissions

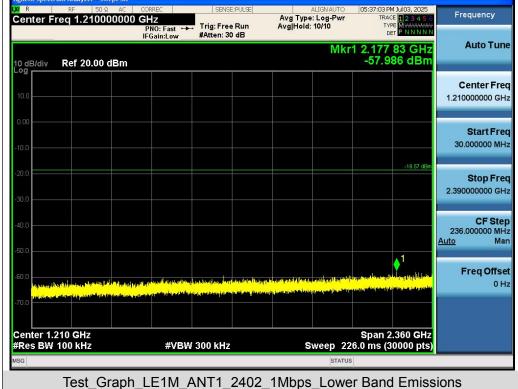

10.1 Provisions Applicable


The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

10.2 Measurement Procedure

- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to ≥ 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW ≥ 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- 9. Input compensation coefficient (dB) = Cable Loss (dB) + Attenuator attenuation value (dB)
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize
- 8. Input compensation coefficient (dB) = Cable Loss (dB) + Attenuator attenuation value (dB)

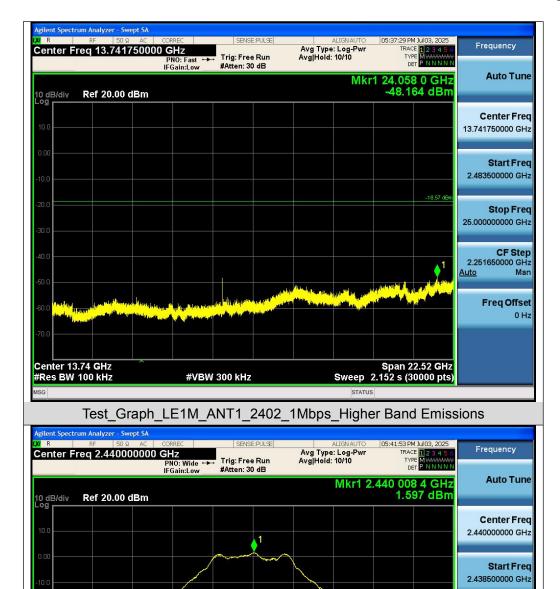
10.3 Measurement Setup (Block Diagram of Configuration)



10.4 Measurement Results

Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

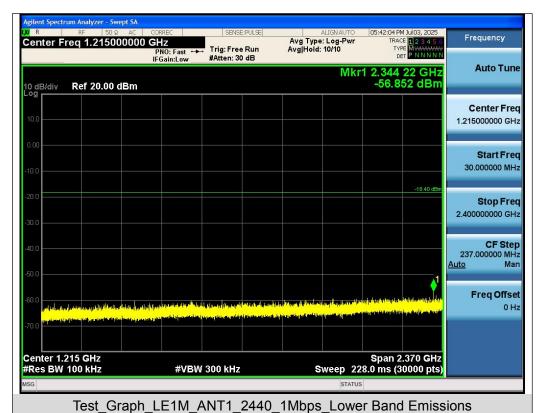
Stop Freq 2.441500000 GHz


CF Step 300.000 kHz Man

Freq Offset 0 Hz

Auto

Span 3.000 MHz Sweep 2.000 ms (30000 pts)


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test Graph LE1M ANT1 2440 1Mbps Reference Level

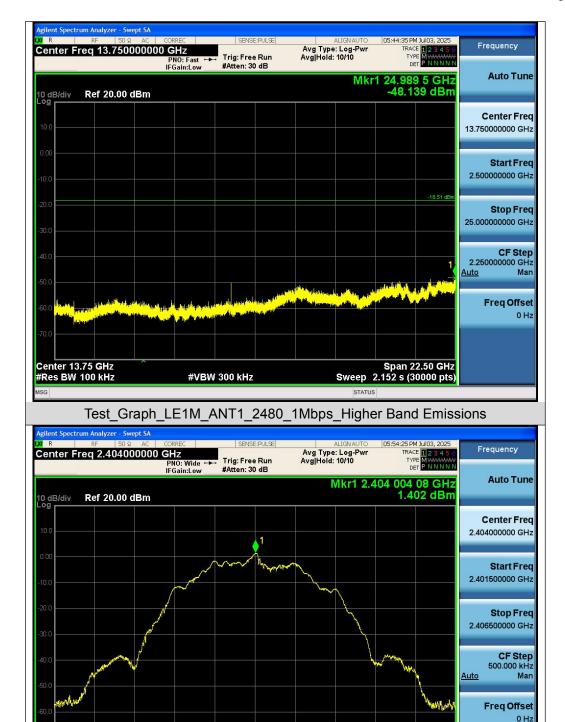
#VBW 300 kHz

Center 2.440000 GHz #Res BW 100 kHz

Freq Offset 0 Hz

Span 2.370 GHz

Sweep 228.0 ms (30000 pts)


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_LE1M_ANT1_2480_1Mbps_Lower Band Emissions

#VBW 300 kHz

Center 1.215 GHz #Res BW 100 kHz

Test Graph LE2M ANT1 2404 2Mbps Reference Level

#VBW 300 kHz

Span 5.000 MHz Sweep 2.000 ms (30000 pts)

Center 2.404000 GHz #Res BW 100 kHz