

TEST REPORT

Applicant: Hubei Linksci Technology Co., Ltd.
Address: 603, 6th Floor, No. 78, Shaxian Street East, Zhifang Street, Jiangxia District, Wuhan City, Hubei Province, China
Equipment Type: DKAM W TER MINATIAN RESISTOR
Model Name: LD220-DKAM-1
Brand Name: LINKSCI
FCC ID: 2BKRNL220-DKAM-1
Test Standard: 47 CFR Part 15 Subpart F
(refer to section 3.1)
Sample Arrival Date: Apr. 18, 2025
Test Date: Apr. 24, 2025 - Apr. 29, 2025
Date of Issue: May 19, 2025

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Julie zhu**Checked by:** Ye Hongji**Approved by:** Sunny Zou

(Technical Director)

Revision History

Version	Issue Date	Revisions
<u>Rev. 01</u>	<u>May 19, 2025</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	Test Laboratory	4
1.2	Test Location	4
2	PRODUCT INFORMATION	5
2.1	Applicant Information	5
2.2	Manufacturer Information.....	5
2.3	General Description for Equipment under Test (EUT).....	5
2.4	Technical Information	6
3	SUMMARY OF TEST RESULTS	7
3.1	Test Standards	7
3.2	Test Verdict	7
4	GENERAL TEST CONFIGURATIONS	8
4.1	Test Environments.....	8
4.2	Test Equipment List.....	8
4.3	Measurement Uncertainty.....	9
4.4	Description of Test Setup	9
5	TEST ITEMS	12
5.1	Antenna Requirements	12
5.2	Conducted Emission.....	13
5.3	UWB Bandwidth	14
5.4	Radiated Emissions	15
5.5	Radiated Emissions in UWB Bands	17
5.6	Peak Emissions within a 50MHz Bandwidth	18
ANNEX A	TEST RESULT	19

A.1	Conducted Emissions	19
A.2	UWB Bandwidth	20
A.3	Radiated Emissions	21
A.4	Radiated Emissions in UWB Bands	25
A.5	Peak Emissions within a 50MHz Bandwidth	27
ANNEX B	TEST SETUP PHOTOS	28
ANNEX C	EUT EXTERNAL PHOTOS.....	28
ANNEX D	EUT INTERNAL PHOTOS.....	28

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input checked="" type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China <input type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Hubei Linksci Technology Co., Ltd.
Address	603, 6th Floor, No. 78, Shaxian Street East, Zhifang Street, Jiangxia District, Wuhan City, Hubei Province, China

2.2 Manufacturer Information

Manufacturer	Hubei Linksci Technology Co., Ltd.
Address	603, 6th Floor, No. 78, Shaxian Street East, Zhifang Street, Jiangxia District, Wuhan City, Hubei Province, China

2.3 General Description for Equipment under Test (EUT)

EUT Name	DKAM W TER MINATIAN RESISTOR
Model Name Under Test	LD220-DKAM-1
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	FbaC
Software Version	V2.5
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Technical Information

Network and Wireless connectivity	Bluetooth BLE, UWB
-----------------------------------	--------------------

The requirement for the following technical information of the EUT was tested in this report:

Modulation Type	UWB
Product Type	<input checked="" type="checkbox"/> Mobile <input type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Operating Frequency	The frequency range used is 3100MHz - 10600MHz The frequency block is 6000MHz-8500MHz
Antenna Type	Shrapnel Antenna
Antenna Gain	4.91dBi

All channel was listed on the following table:

Channel number	Freq. (MHz)
5	6489.6
9	7987.2

Note: The above EUT information in section 2.4 and 2.5 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15 Subpart F	Ultra - Wideband Operation
2	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Test Verdict

No.	Description	FCC Part No.	Test Result	Verdict	Remark
1	Antenna Requirement	15.203	--	Pass	Note ¹
3	Conducted Emission	15.207	ANNEX A.1	N/A	Note ²
2	UWB Bandwidth	15.517(b)	ANNEX A.2	Pass	--
4	Radiated Emissions	15.517(c)/15.209	ANNEX A.3	Pass	--
5	Radiated Emissions in UWB Bands	15.517(d)	ANNEX A.4	Pass	--
6	Peak Emissions within a 50 MHz Bandwidth	15.517(e)	ANNEX A.5	Pass	--

Note 1: Please refer to section 5.1

Note 2: The EUT is an in-vehicle device, so the Conducted Emission test is not applicable.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

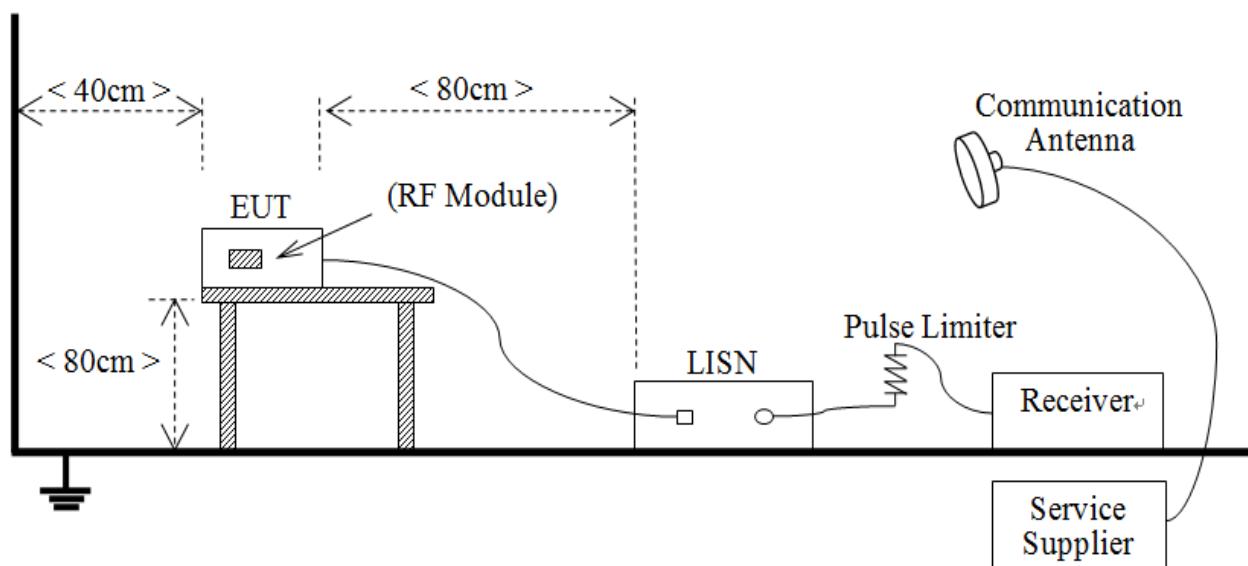
During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	46% to 61%				
Atmospheric Pressure	100 kPa to 102 kPa				
Temperature	NT (Normal Temperature)				+21.3°C to +26.9°C
Working Voltage of the EUT	NV (Normal Voltage)				12.0 V

4.2 Test Equipment List

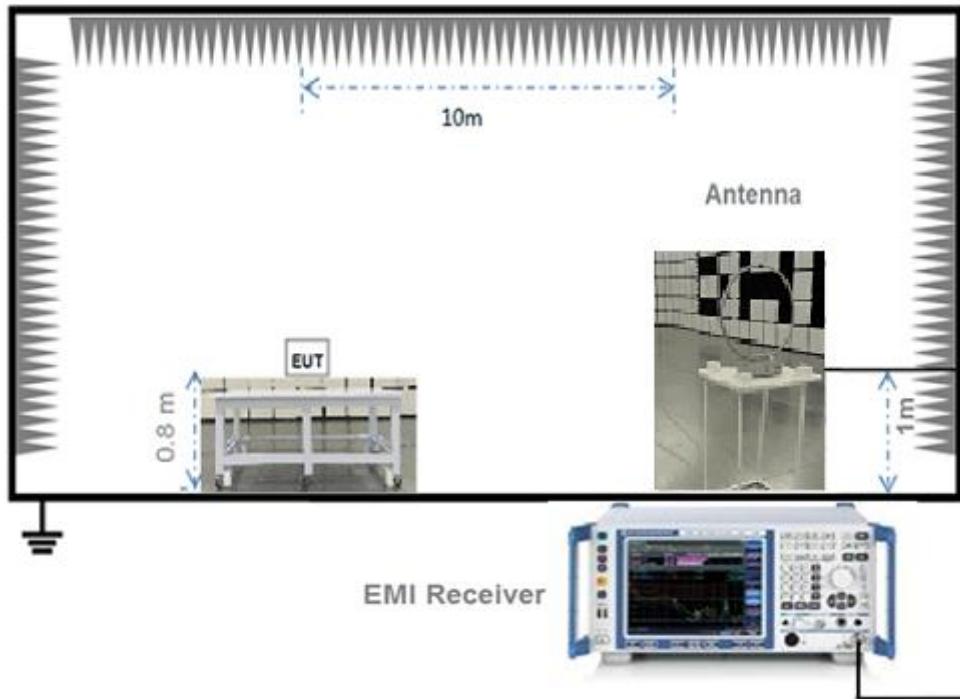
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2024.12.16	2025.12.15
Spectrum Analyzer	KEYSIGHT	N9020A	MY56060183	2024.08.01	2025.07.31
Spectrum Analyzer	KEYSIGHT	N9020A	MY52510065	2024.08.01	2025.07.31
Test Antenna-Horn	SCHWARZBECK	BBHA 9120D	01631	2025.02.22	2028.02.21
Test Antenna-Horn	A-INFO	LB-180400KF	J211060273	2024.06.15	2027.06.14
Anechoic Chamber	RAINFORD	9m*6m*6m	144	2022.02.19	2025.09.03
Amplifier	COM-MV	LSCX_LNA 1-12G-01	180602	2024.08.01	2025.07.31
Amplifier	COM-MV	XKu_LNA7-18G-01	180601	2024.08.01	2025.07.31
Amplifier	COM-MV	KA LNA18 40G-01	18050001	2024.12.05	2025.12.04
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2024.08.01	2025.07.31
Test Antenna-Bi-Log	SCHWARZBECK	VULB 9168	9168-01162	2023.08.04	2026.08.03
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22
Amplifier	COM-MV	ZT30-1000M	B2018054558	2024.11.28	2025.11.27
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	130	2024.07.13	2027.07.12
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2024.08.01	2025.07.31
Test Antenna-Bi-Log	SCHWARZBECK	VULB 9168	9168-01162	2023.08.04	2026.08.03
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22
Amplifier	COM-MV	ZT30-1000M	B2018054558	2024.11.28	2025.11.27
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	130	2024.07.13	2027.07.12

4.3 Measurement Uncertainty

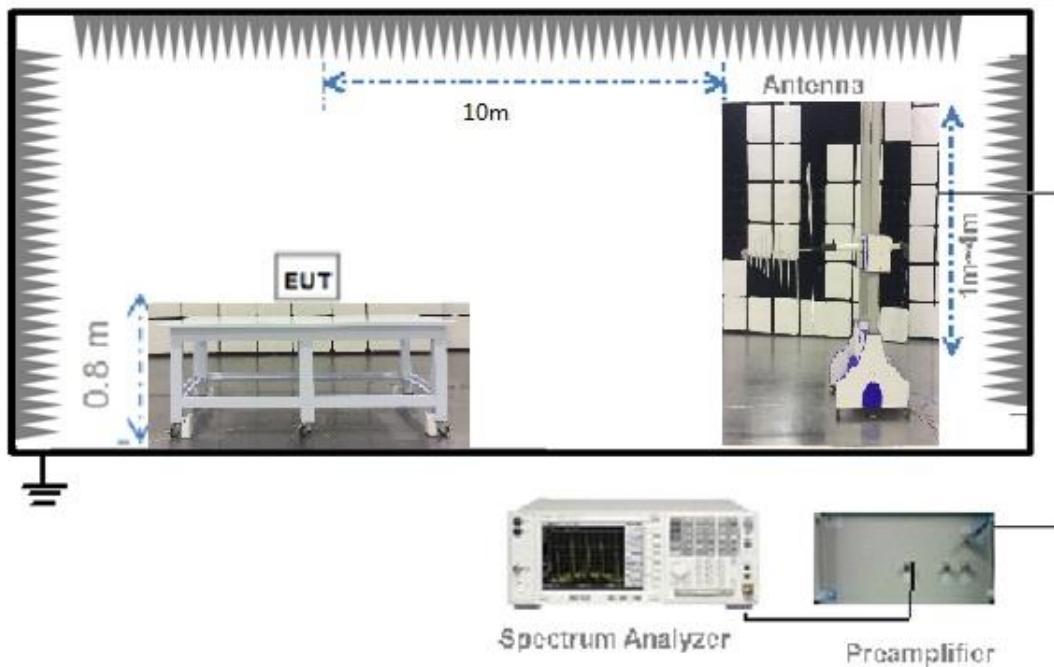

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

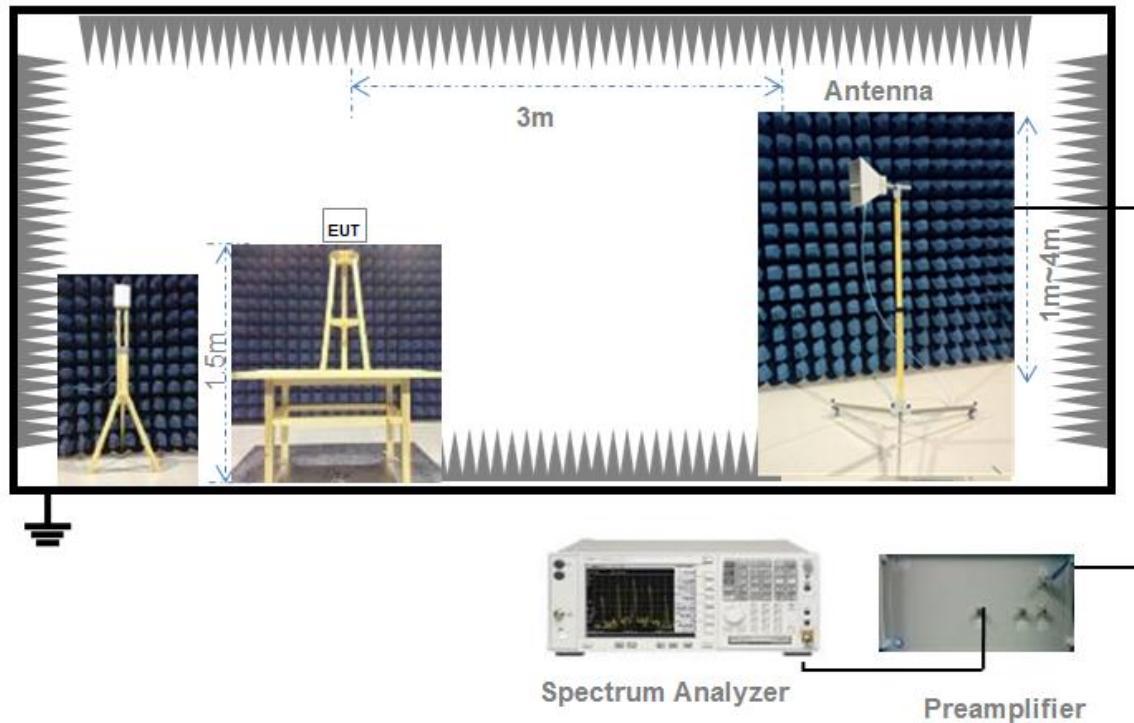
Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.8°C
Humidity	4%


4.4 Description of Test Setup

4.4.1 For AC Power Supply Port Test


(Diagram 1)

4.4.2 For Radiated Test (Below 30 MHz)


(Diagram 2)

4.4.3 For Radiated Test (30 MHz-1 GHz)

(Diagram 3)

4.4.4 For Radiated Test (Above 1 GHz)

(Diagram 4)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.2 Conducted Emission

5.2.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
0.50 - 30	60	50

5.2.2 Test Setup

See section 4.4.1 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.2.4 Test Result

Please refer to ANNEX A.1.

5.3 UWB Bandwidth

5.3.1 Limit

FCC §15.503(d)

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

FCC §15.517(b)

The UWB bandwidth of a UWB system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

5.3.2 Test Setups

See section 4.4.4 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Use the following spectrum analyzer settings:

RBW = 1 MHz

VBW \geq 3 MHz

Sweep = auto

Detector function = RMS

Trace = max hold

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Radiated Emissions

5.4.1 Limit

FCC §15.517(c)

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIPR in dBm
960–1610	-75.3
1610–1990	-53.3
1990–3100	-51.3
3100–10600	-41.3
Above 10600	-51.3

FCC §15.209

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency(MHz)	Field Strength (μ V/m)	Measurement Distance(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.4.2 Test Setups

See section 4.4.2 to 4.4.4 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The height of the antenna was varied from 1 to 4 meters. For each suspected emissions, the antenna tower was scan (from 1m to 4m) and the the turntables was turned (from 0° to 360°) to find the maximum reading.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

9 kHz to 960 MHz:

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz

VBW = 300 kHz

Sweep time = auto

Detector function = peak(Margin which is less than 3 dB will be repeated one by one using the quasi-peak)

Trace = max hold

960 MHz to 40 GHz:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

VBW = 3 MHz

Sweep time = 1s

Detector function = RMS

Trace = max hold

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Radiated Emissions in UWB Bands

5.5.1 Limit

FCC §15.517(d)

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIPR in dBm
1164–1240	-85.3
1559–1610	-85.3

5.5.2 Test Setups

See section 4.4.4 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The height of the antenna was varied from 1 to 4 meters. For each suspected emissions, the antenna tower was scan (from 1m to 4m) and the the turntables was turned (from 0° to 360°) to find the maximum reading.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 kHz

VBW = 3 kHz

Sweep time = 1s

Detector function = RMS

Trace = max hold

5.5.4 Test Result

Please refer to ANNEX A.4.

5.6 Peak Emissions within a 50MHz Bandwidth

5.6.1 Limit

FCC §15.517(e)

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

It is acceptable to employ an RBW of less than 50 MHz (but no less than 1 MHz) when performing the required peak power measurements. When this approach is employed, the peak emissions EIRP limit (0 dBm / 50 MHz) is converted to a limit commensurate with the RBW by employing a $[20 \log (RBW/50 \text{ MHz})]$ relationship. For example, the peak power limit could be expressed in a 1 MHz bandwidth as follows in Equation :

$$\text{EIRP}_{1 \text{ MHz}} = \text{EIRP}_{50 \text{ MHz}} + 20 \log (1 \text{ MHz} / 50 \text{ MHz}) = 0 \text{ dBm} + (-34 \text{ dBm}) = -34 \text{ dBm}$$

5.6.2 Test Setups

See section 4.4.4 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The height of the antenna was varied from 1 to 4 meters. For each suspected emissions, the antenna tower was scan (from 1m to 4m) and the the turntables was turned (from 0° to 360°) to find the maximum reading.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

VBW = 3 MHz

Sweep = auto

Detector function = peak

Trace = max hold

5.6.4 Test Result

Please refer to ANNEX A.5.

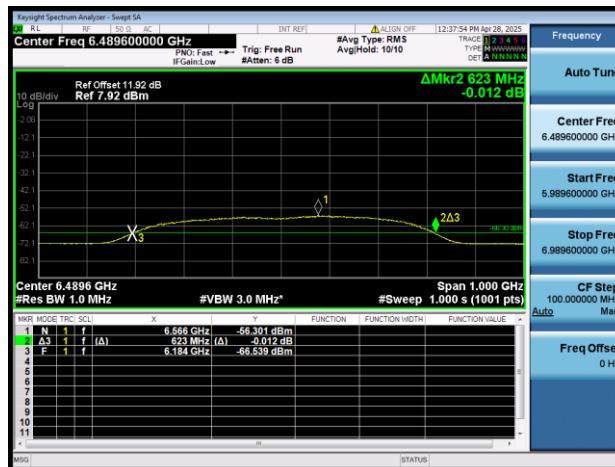
ANNEX A TEST RESULT

A.1 Conducted Emissions

Note: Not applicable.

A.2 UWB Bandwidth

Test Data

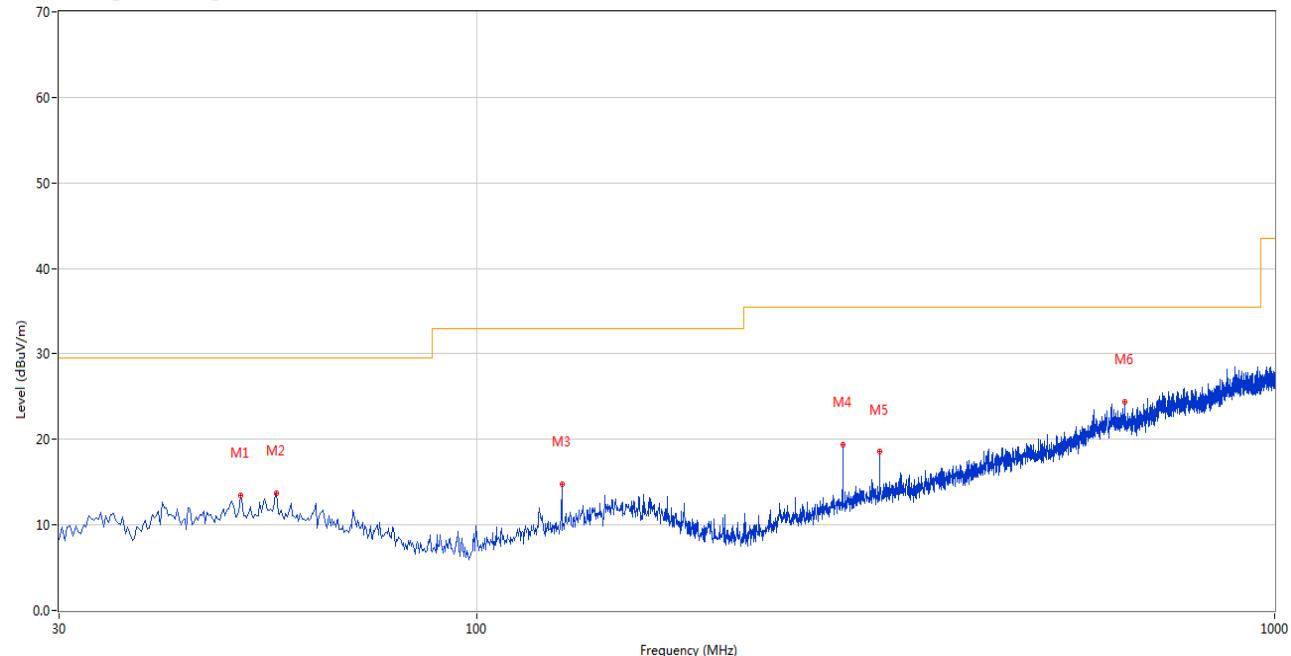

Channel	F _M (MHz)	F _L (MHz)	F _H (MHz)	UWB Bandwidth (MHz)	Limit (MHz)	Verdict
CH5	6566	6184	6807	618.25	UWB Bandwidth \geq 500 MHz 10 dB bandwidth contained between 3100 to 10600 MHz	Pass
CH9	7911	7657	8291	628.63	10 dB bandwidth contained between 3100 to 10600 MHz	Pass

Test Data and Plots

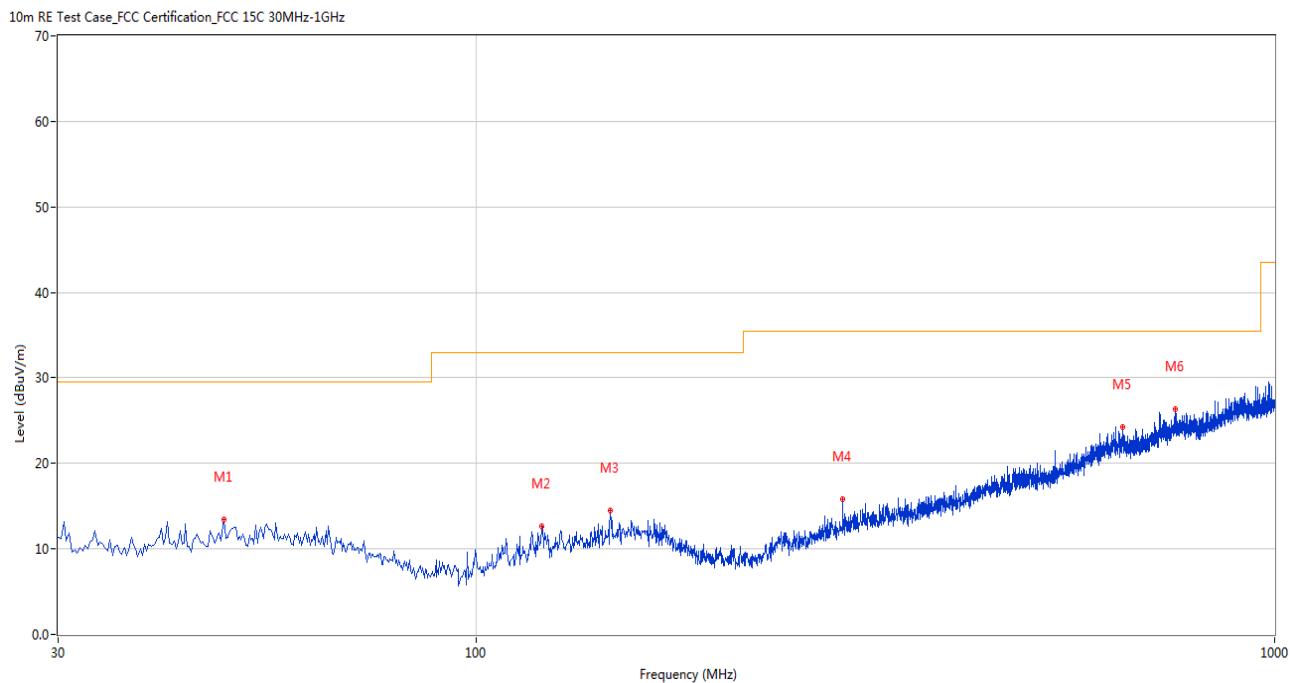
10 dB Bandwidth

6489.6MHz

7987.2MHz


A.3 Radiated Emissions

Note: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.209 was not reported.


Test Data and Plots

30 MHz to 1 GHz, ANT H

10m RE Test Case_FCC Certification_FCC 15C 30MHz-1GHz

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	50.607	13.45	-25.98	29.5	16.05	Peak	15.00	200	Horizontal	Pass
2	56.183	13.77	-26.23	29.5	15.73	Peak	0.00	200	Horizontal	Pass
3	127.946	14.80	-27.27	33.0	18.20	Peak	101.00	100	Horizontal	Pass
4	287.956	19.33	-25.18	35.5	16.17	Peak	10.00	200	Horizontal	Pass
5	319.958	18.52	-24.36	35.5	16.98	Peak	0.00	200	Horizontal	Pass
6	649.918	24.42	-15.64	35.5	11.08	Peak	7.00	200	Horizontal	Pass

30 MHz to 1 GHz, ANT V

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	48.425	13.51	-26.07	29.5	15.99	Peak	0.00	200	Vertical	Pass
2	120.915	12.69	-28.08	33.0	20.31	Peak	0.00	200	Vertical	Pass
3	147.341	14.55	-25.58	33.0	18.45	Peak	0.00	200	Vertical	Pass
4	287.956	15.88	-25.18	35.5	19.62	Peak	360.00	100	Vertical	Pass
5	646.038	24.23	-15.56	35.5	11.27	Peak	0.00	200	Vertical	Pass
6	750.530	26.36	-13.30	35.5	9.14	Peak	178.00	100	Vertical	Pass

Note: The spurious above 18G is noise only, do not show on the report.

6489.6 MHz ANT H

Frequency (MHz)	Result (dBm)	Factor (dB)	Limit (dBm)	Margin (dB)	Table (o)	ANT	EUT	Verdict
1332.225	44.04	74.0	29.96	Peak	236.00	400	Horizontal	Pass
1332.225	29.45	54.0	24.55	AV	236.00	400	Horizontal	Pass
2974.347	47.74	74.0	26.26	Peak	131.00	100	Horizontal	Pass
2974.347	43.41	54.0	10.59	AV	131.00	100	Horizontal	Pass
4915.125	49.73	74.0	24.27	Peak	168.00	200	Horizontal	Pass
4915.125	41.05	54.0	12.95	AV	168.00	200	Horizontal	Pass
7630.048	53.78	74.0	20.22	Peak	103.00	400	Horizontal	Pass
7630.048	42.28	54.0	11.72	AV	103.00	400	Horizontal	Pass
12476.177	50.62	74.0	23.38	Peak	278.00	100	Horizontal	Pass
12476.177	43.22	54.0	10.78	AV	278.00	100	Horizontal	Pass
16853.371	56.45	74.0	17.55	Peak	260.00	100	Horizontal	Pass
16853.371	44.77	54.0	9.23	AV	260.00	100	Horizontal	Pass

6489.6 MHz ANT V

Frequency (MHz)	Result (dBm)	Factor (dB)	Limit (dBm)	Margin (dB)	Table (o)	ANT	EUT	Verdict
1467.072	45.23	74.0	28.77	Peak	179.00	100	Vertical	Pass
1467.072	29.51	54.0	24.49	AV	179.00	100	Vertical	Pass
2988.633	49.65	74.0	24.35	Peak	287.00	200	Vertical	Pass
2988.633	39.37	54.0	14.63	AV	287.00	200	Vertical	Pass
4920.555	49.37	74.0	24.63	Peak	313.00	200	Vertical	Pass
4920.555	42.49	54.0	11.51	AV	313.00	200	Vertical	Pass
7968.567	53.68	74.0	20.32	Peak	49.00	300	Vertical	Pass
7968.567	44.55	54.0	9.45	AV	49.00	300	Vertical	Pass
12440.577	51.09	74.0	22.91	Peak	110.00	100	Vertical	Pass
12440.577	42.68	54.0	11.32	AV	110.00	100	Vertical	Pass
17455.257	53.87	74.0	20.13	Peak	4.00	200	Vertical	Pass
17455.257	47.57	54.0	6.43	AV	4.00	200	Vertical	Pass

7987.2 MHz ANT H

Frequency (MHz)	Result (dBm)	Factor (dB)	Limit (dBm)	Margin (dB)	Table (o)	ANT	EUT	Verdict
1338.467	40.53	74.0	33.47	Peak	112.00	300	Horizontal	Pass
1338.467	30.27	54.0	23.73	AV	112.00	300	Horizontal	Pass
2972.044	48.10	74.0	25.90	Peak	230.00	300	Horizontal	Pass
2972.044	40.39	54.0	13.61	AV	230.00	300	Horizontal	Pass
4913.159	52.43	74.0	21.57	Peak	231.00	200	Horizontal	Pass
4913.159	44.33	54.0	9.67	AV	231.00	200	Horizontal	Pass
7625.666	52.66	74.0	21.34	Peak	255.00	100	Horizontal	Pass
7625.666	40.01	54.0	13.99	AV	255.00	100	Horizontal	Pass
12476.018	53.76	74.0	20.24	Peak	46.00	400	Horizontal	Pass
12476.018	45.30	54.0	8.70	AV	46.00	400	Horizontal	Pass
16860.420	52.71	74.0	21.29	Peak	34.00	400	Horizontal	Pass
16860.420	41.29	54.0	12.71	AV	34.00	400	Horizontal	Pass

7987.2 MHz ANT V

Frequency (MHz)	Result (dBm)	Factor (dB)	Limit (dBm)	Margin (dB)	Table (o)	ANT	EUT	Verdict
1469.682	44.61	74.0	29.39	Peak	259.00	200	Vertical	Pass
1469.682	28.47	54.0	25.53	AV	259.00	200	Vertical	Pass
2993.092	50.83	74.0	23.17	Peak	243.00	100	Vertical	Pass
2993.092	42.54	54.0	11.46	AV	243.00	100	Vertical	Pass
4920.575	50.00	74.0	24.00	Peak	144.00	200	Vertical	Pass
4920.575	41.32	54.0	12.68	AV	144.00	200	Vertical	Pass
7966.631	53.87	74.0	20.13	Peak	270.00	100	Vertical	Pass
7966.631	44.57	54.0	9.43	AV	270.00	100	Vertical	Pass
12444.426	52.70	74.0	21.30	Peak	173.00	300	Vertical	Pass
12444.426	42.56	54.0	11.44	AV	173.00	300	Vertical	Pass
17453.321	52.74	74.0	21.26	Peak	284.00	300	Vertical	Pass
17453.321	47.74	54.0	6.26	AV	284.00	300	Vertical	Pass

A.4 Radiated Emissions in UWB Bands

Test Data and Plots

6489.6 MHz ANT H

Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table (Degree)	Height (cm)	Antenna	Verdict
1177.999	-96.67	-85.3	11.37	162.00	100	Horizontal	Pass
1585.265	-99.16	-85.3	13.86	237.00	200	Horizontal	Pass

6489.6 MHz ANT V

Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table (Degree)	Height (cm)	Antenna	Verdict
1231.267	-99.45	-85.3	14.15	25.00	200	Horizontal	Pass
1572.515	-96.95	-85.3	11.65	105.00	100	Horizontal	Pass

7987.2 MHz ANT H

Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table (Degree)	Height (cm)	Antenna	Verdict
1177.434	-98.69	-85.3	13.39	273.00	200	Horizontal	Pass
1585.265	-97.4	-85.3	12.10	162.00	100	Horizontal	Pass

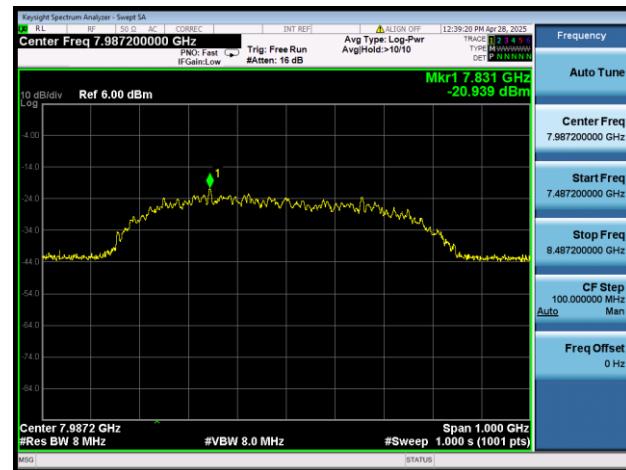
7987.2 MHz ANT V

Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table (Degree)	Height (cm)	Antenna	Verdict
1232.465	-96.97	-85.3	11.67	164.00	200	Horizontal	Pass
1572.515	-99.38	-85.3	14.08	213.00	300	Horizontal	Pass

A.5 Peak Emissions within a 50MHz Bandwidth

Note: the correct factor of RBW 8MHz to 50MHz is $20 \log (50\text{MHz}/8 \text{MHz}) = 15.92$

Test Data


Measured Channel (MHz)	Measured Peak e.i.r.p. power (dBm/8 MHz)	Peak e.i.r.p. power (dBm/50 MHz)	Limit (dBm/50 MHz)	Verdict
6489.6	-21.61	-5.69	≤ 0	Pass
7987.2	-20.94	-5.02	≤ 0	Pass

Test Data and Plot

6489.6MHz

7987.2MHz

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-SZ2540844-AR.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-SZ2540844-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-SZ2540844-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--