

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT FCC PART 15 SUBPART E 15.407

Report Reference No...... GRCTR240902013-03 FCC ID...... : 2BKQVAMR2401-1

Compiled by

(position+printed name+signature)..: Testing Engineer Jimmy Wang

Supervised by

(position+printed name+signature)..: Project Engineer Kelley Zhang

Approved by

(position+printed name+signature)..: Manager Sam Wang

Date of issue...... Oct. 17, 2024

Testing Laboratory Name...... Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone,

Address.....: Jiazitang Community, Fenghuang Street, Guangming District,

Shenzhen, China

Applicant's name....... Qudong Future (Shenzhen) Technology Co., Ltd.

Shenzhen, China

Test specification....:

Standard...... FCC Part 15 Subpart E 15.407

Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Smart Home Gym

Trade Mark..... AEKE

Model/Type reference...... AMR2402-1

1,AMR2601-1,AMR2602-1,AMR2701-1,AMR2702-1

Firmware Version...... V1.0

Hardware Version..... V1.0

Modulation: OFDM

Frequency...... From 5180MHz-5240MHz, 5745MHz-5825MHz

Ratings..... AC 120V/60Hz

Result..... PASS

TEST REPORT

Equipment under Test : Smart Home Gym

Model /Type : AMR2402-1

AMR2201-1,AMR2401-1,AMR2403-1,AMR2501-

Listed Models : 1,AMR2502-1,AMR2601-1,AMR2602-1,AMR2701-

1,AMR2702-1

Applicant : Qudong Future (Shenzhen) Technology Co., Ltd.

Address : 1001, Wanhai Building, No. 1031, Gongye 5th Road, Nanshan,

Shenzhen, China

Manufacturer : Qudong Future (Shenzhen) Technology Co., Ltd.

Address : 1001, Wanhai Building, No.1031, Gongye 5th Road, Nanshan,

Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	
2.2 Product Description	
2.3 Equipment Under Test	
2.4 Short description of the Equipment under Test (EUT)	
2.5 EUT operation mode	
2.6 Block Diagram of Test Setup	
2.7 Related Submittal(s) / Grant (s)	
2.8 Modifications	6
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	7
3.2 Test Facility	
3.3 Environmental conditions	7
3.4 Test Description	
3.5 Statement of the measurement uncertainty	8
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	10
4.1 AC Power Conducted Emission	10
4.2 Radiated Emissions	13
4.3 Maximum Conducted Average Output Power	20
4.4 Power Spectral Density	
4.5 Emission Bandwidth (26dB Bandwidth)	
4.6 Minimum Emission Bandwidth (6dB Bandwidth)	
4.7 Frequency Stability	
4.8 Automatically Discontinue Transmission	
4.9 Band edge for RF Conducted Emissions	41
5 TEST SETUP PHOTOS OF THE EUT	5 0
6 PHOTOS OF THE EUT	51

Report No.: GRCTR240902013-03 Page 4 of 51

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.407: UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES. ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices KDB 789033 D02: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

2 SUMMARY

Report No.: GRCTR240902013-03

2.1 General Remarks

Date of receipt of test sample	:	Sep. 18, 2024
Testing commenced on	:	Sep. 18, 2024
Testing concluded on	:	Oct. 17, 2024

2.2 Product Description

Draduat Names	Creat Harris Cure							
Product Name:	Smart Home Gym							
Model/Type reference:	AMR2402-1	AMR2402-1						
Listed Models:	1,AMR2701-1,AMR27	AMR2201-1,AMR2401-1,AMR2403-1,AMR2501-1,AMR2502-1,AMR2601-1,AMR2602-1,AMR2701-1,AMR2702-1(The products are identical in interior structure, electrical structures and components, just model names and color are different.)						
Power supply:	AC 120V/60Hz							
Sample ID:	GRCTR240902013-1; GRCTR240902013-2;							
WIFI								
	20MHz system	40MHz system	80MHz system	160MHz system				
Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11ac	802.11ac	N/A				
Operation frequency:	5180MHz-5240MHz 5745MHz-5825MHz	5190MHz-5230MHz 5755MHz-5795MHz	5210MHz 5775MHz	N/A				
Modulation:	OFDM	OFDM	OFDM	N/A				
Channel number:	9	4	2	N/A				
Channel separation:	20MHz	40MHz	80MHz	N/A				
Antenna type:	PCB antenna							
Antenna gain*(Supplied by the customer): 4.14 dBi for 5180MHz-5825MHz 3.27 dBi for 5745MHz-5825MHz								

Remark:*When the information provided by the customer was used to calculate test results, if the information provided by the customer is not accurate, shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow)

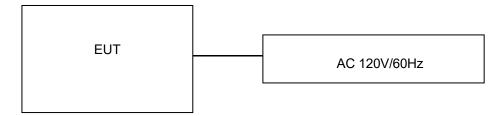
Report No.: GRCTR240902013-03 Page 6 of 51

2.4 Short description of the Equipment under Test (EUT)

This is a Smart Home Gym.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The Applicant provides communication tools software(SecureCRT) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) for testing meet KDB558074 test requirement.

Operation Frequency List WIFI on 5G Band:

	20MHz		20MHz 40MHz		80MHz		
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	36	5180	38	5190			
U-NII 1	40	5200	30	5190	42	5210	
(5150MHz-5250MHz)	44	5220	46	5230	42	3210	
	48	5240	40	3230			
	149	5745	151 5755				
U-NII 3	153	5765	131	3733	155	5775	
(5725MHz-5850MHz)	157	5785	159 5795		155	3773	
(37 23 WII 12-3030 WII 12)	161	5805	139	5195			
	165	5825					

Note: The line display in gray is those Channels/Frequencies select to test in this report for each operation mode.

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GRCTR240902013-03 Page 7 of 51

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature	15-35 ℃
Relative Humidity	30-60 %
Air Pressure	950-1050mbar

3.4 Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	PASS _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS

FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A Note 3
FCC Part 15.203/15.247(b)	Antenna Requirement	PASS
FCC Part 15.407(c)	Automatically Discontinue Transmission	PASS

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Note 4: N/A means "not applicable".

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth) Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability	11a/OFDM	6 Mbps
	11n(20MHz),11ac(20MHz)/OFDM	7.2 Mbps
	11n(40MHz),11ac(40MHz)/OFDM	15.0Mbps
	11ac(80MHz)/OFDM	65.0Mbps

3.5 Statement of the measurement uncertainty

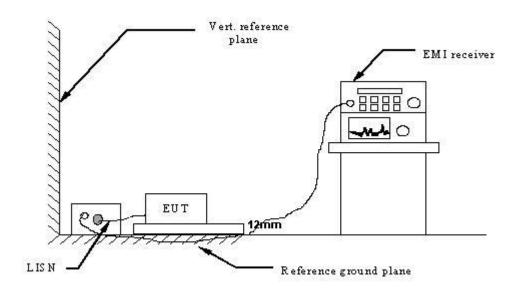
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Max output power	30MHz~18GHz	0.54 dB	(1)
Power spectral density	/	0.56 dB	(1)
Spectrum bandwidth	/	1.2%	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Equipment No.	Last Calibration Date	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2023/09/27	2024/09/19	2025/09/18
LISN	R&S	ENV216	GRCTEE010	2023/09/27	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESPI	GRCTEE017	2023/09/28	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESCI	GRCTEE008	2023/09/27	2024/09/19	2025/09/18
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2023/09/27	2024/09/19	2025/09/18
Spectrum Analyzer	R&S	FSP	GRCTEE003	2023/09/28	2024/09/20	2025/09/19
Vector Signal generator	Agilent	N5181A	GRCTEE007	2023/09/27	2024/09/19	2025/09/18
Analog Signal Generator	R&S	SML03	GRCTEE006	2023/09/27	2024/09/19	2025/09/18
Climate Chamber	QIYA	LCD-9530	GRCTES016	2023/09/27	2024/09/19	2025/09/18
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2023/09/28	N/A	2026/09/27
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2023/09/28	N/A	2026/09/27
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2023/10/15	N/A	2026/10/14
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2023/09/28	N/A	2026/09/27
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2023/09/27	2024/09/19	2025/09/18
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2023/09/28	2024/09/19	2025/09/18
Temperature/Humi dity Meter	Huaguan	HG-308	GRCTES037	2023/09/27	2024/09/19	2025/09/18
Directional coupler	NARDA	4226-10	GRCTEE004	2023/09/27	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2023/09/27	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2023/09/27	2024/09/19	2025/09/18
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2023/09/27	2024/09/19	2025/09/18
Power Sensor	Agilent	U2021XA	GRCTEE070	2023/09/27	2024/09/19	2025/09/18
Cable	Times	Cable-CE	GRCTEE086	2023/09/27	2024/09/19	2025/09/18
Cable	Times	Cable-RE-1	GRCTEE087	2023/09/27	2024/09/19	2025/09/18
Cable	Times	Cable-RE-2	GRCTEE088	2023/09/27	2024/09/19	2025/09/18
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A	N/A

Report No.: GRCTR240902013-03 Page 10 of 51

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

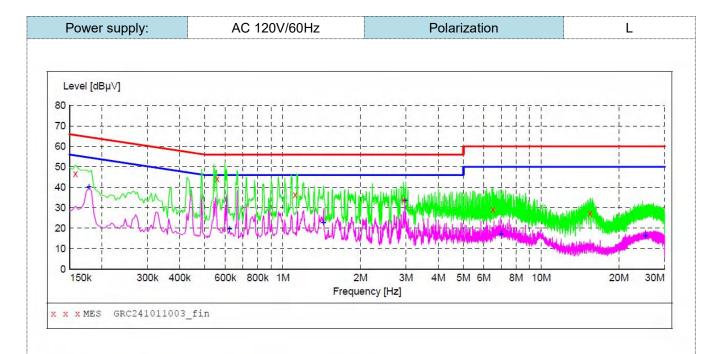
TEST CONFIGURATION

TEST PROCEDURE

- 1 Where floor-standing equipment is not typically installed with its base in direct electrical contact with,or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12mm thick) shall be placed under the EUT.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received power from variable frequency power supply, the AC 120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Frequency range (MHz)	Limit (dBuV)							
Frequency range (wiriz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

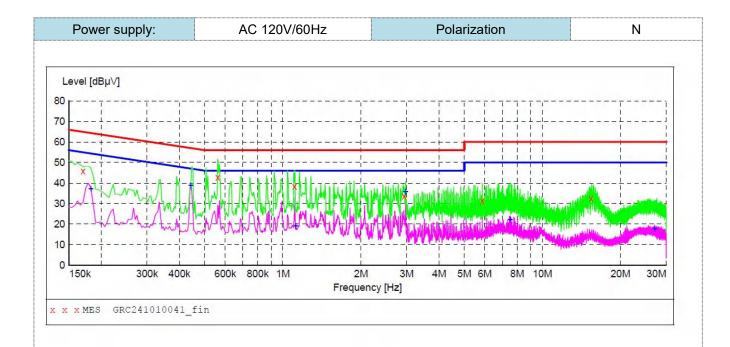
Report No.: GRCTR240902013-03 Page 11 of 51

TEST RESULTS

Remark:

1. All 802.11a/ 802.11ac(VHT20) /802.11ac(VHT40) /802.11ac(VHT80)/ 802.11n (VHT20) / 802.11n (VHT40) modes have been tested at low, middle, and high channel, only the worst case 802.11n (VHT20) low channel of U-NII 1 band was recorded.

MEASUREMENT RESULT: "GRC241011003_fin"


1	0/11/2024 9:	26AM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.158000	46.70	9.5	66	18.9	QP	L1	GND
	0.558000	44.20	9.7	56	11.8	QP	L1	GND
	1.118000	36.40	10.0	56	19.6	QP	L1	GND
	2.930000	34.00	10.0	56	22.0	QP	L1	GND
	6.518000	29.20	10.0	60	30.8	QP	L1	GND
	15.466000	27.10	10.1	60	32.9	QP	L1	GND

MEASUREMENT RESULT: "GRC241011003_fin2"

10/11/2024	9:26AM						
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.178000	40.40	9.5	55	14.2	AV	L1	GND
0.622000	19.80	9.6	46	26.2	AV	L1	GND
1.438000	22.70	10.0	46	23.3	AV	L1	GND
2.970000	33.60	10.0	46	12.4	AV	L1	GND
6.986000	17.30	10.0	50	32.7	AV	L1	GND
25.318000	16.30	10.2	50	33.7	AV	L1	GND

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Transducer (dB)

- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

MEASUREMENT RESULT: "GRC241010041_fin"

10/10/2024	4:40PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	45.90	9.5	65	19.1	QP	N	GND
0.562000	42.90	9.6	56	13.1	QP	N	GND
1.110000	38.40	10.0	56	17.6	QP	N	GND
2.934000	33.70	10.0	56	22.3	QP	N	GND
5.874000	31.30	10.0	60	28.7	QP	N	GND
15.426000	32.50	10.1	60	27.5	QP	N	GND

MEASUREMENT RESULT: "GRC241010041_fin2"

10/10/2024 4	- 40 DM						
10/10/2024 4 Frequency MHz	:40PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.182000	37.20	9.5	54	17.2	AV	N	GND
0.442000	38.80	9.8	47	8.2	AV	N	GND
1.122000	19.00	10.0	46	27.0	AV	N	GND
2.970000	35.70	10.0	46	10.3	AV	N	GND
7.510000	22.20	10.0	50	27.8	AV	N	GND
27.062000	17.70	10.2	50	32.3	AV	N	GND

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Transducer (dB)

- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

Report No.: GRCTR240902013-03 Page 13 of 51

4.2 Radiated Emissions

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

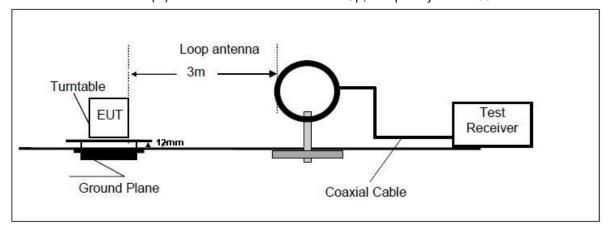
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)		
15.407(b)(2)	DV: 27/dDm/MU=\	DK:60 2/dB::\//m\
15.407(b)(3)	PK:-27(dBm/MHz)	PK:68.2(dBμV/m)
15.407(b)(4)		

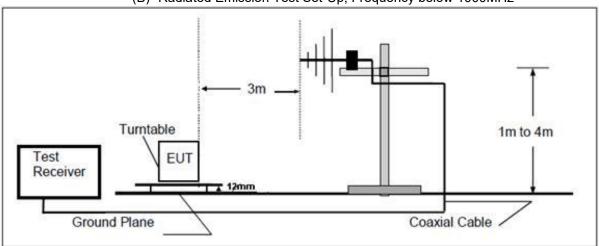
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

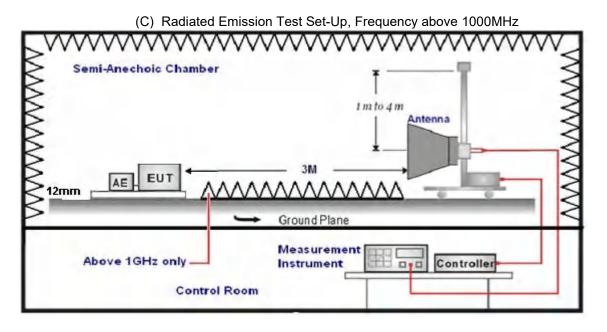
$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m}$$
, where P is the eirp (Watts)

(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

Tradition Chilippini										
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)							
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)							
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)							
1.705-30	3	20log(30)+ 40log(30/3)	30							
30-88	3	40.0	100							
88-216	3	43.5	150							
216-960	3	46.0	200							
Above 960	3	54.0	500							


Report No.: GRCTR240902013-03 Page 14 of 51


TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: GRCTR240902013-03 Page 15 of 51

Test Procedure

- 1. Below 1GHz measurement and above 1GHz measuremen the EUT were placed on a turntable which is 12mm above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

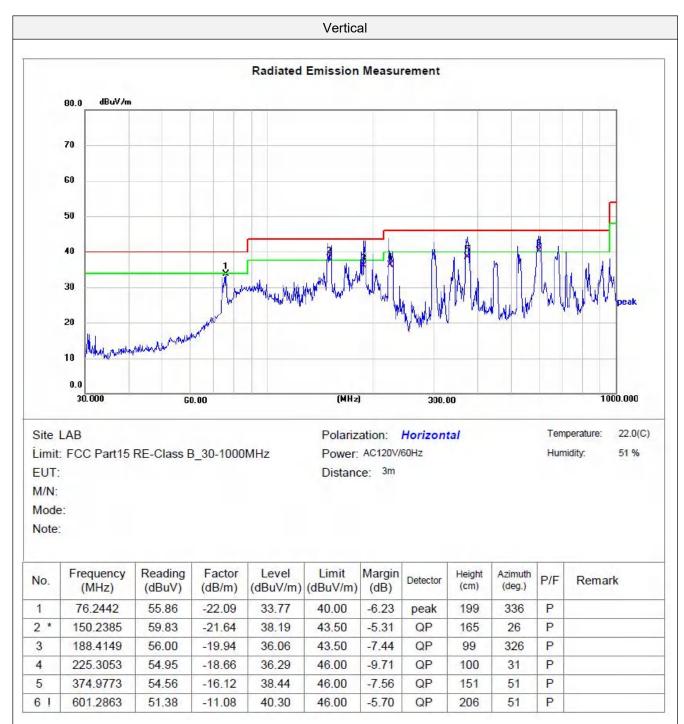
Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

TEST RESULTS

Remark:

1.This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. All 802.11a/ 802.11ac(VHT20) /802.11ac(VHT40) /802.11ac(VHT80)/ 802.11n (VHT20) / 802.11n (VHT40) modes have been tested for below 1GHz test, only the worst case 802.11n (VHT20) low channel of U-NII 1 band was recorded.

2.All 802.11a/ 802.11ac(VHT20) /802.11ac(VHT40) /802.11ac(VHT80)/ 802.11n (VHT20) / 802.11n (VHT40) modes have been tested for above 1GHz test, only the worst case 802.11n (VHT20) was recorded.


3.Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Horizontal Radiated Emission Measurement dBuV/m 80.0 70 60 50 40 30 20 10 0.0 30.000 (MHz) 1000.000 300.00 60.00 22.0(C) Temperature: Site LAB Vertical Polarization: Limit: FCC Part15 RE-Class B_30-1000MHz Power: AC120V/60Hz Humidity: 51 % EUT: Distance: 3m M/N: Mode: Note: Reading Factor Limit Frequency Level Margin Height Azimuth Detector P/F No. Remark (dBuV/m) (dBuV/m) (cm) (deg.) (MHz) (dBuV) (dB/m) (dB) 1 * 33.4449 55.73 -19.6836.05 40.00 -3.95peak 100 47 P P 55.6094 2! 52.22 -17.9234.30 40.00 -5.70100 351 peak -4.65 P 3! 152.5472 60.63 -21.78 38.85 43.50 QP 100 20 P 4! 304.6099 57.75 -16.9440.81 46.00 -5.19100 1 peak P 371.5445 -16.19 -6.085 56.11 39.92 46.00 QP 157 25 -11.45 40.27 46.00 P 6! 594.2372 51.72 -5.73QP 100 305

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Level (dB μ V/m) Limit (dB μ V/m)

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Level (dB μ V/m) - Limit (dB μ V/m)

Report No.: GRCTR240902013-03 Page 18 of 51

For 1GHz to 40GHz

Note: All 802.11a/ 802.11ac(VHT20) /802.11ac(VHT40) /802.11ac(VHT80)/ 802.11n (VHT20) / 802.11n (VHT40) modes have been tested for above 1GHz test, only the worst case 802.11n (HT20) was recorded.

U-NII 1 & 802.11n (HT20) Mode (above 1GHz)

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	52.79	PK	Н	68.20	15.41	71.69	29.91	5.87	54.68	-18.90
36.00	5150.00	38.86	AV	Η	54.00	15.14	57.76	29.91	5.87	54.68	-18.90
(5180MHz)	10360.00	49.92	PK	Ι	68.20	18.28	56.84	37.62	10.02	54.56	-6.92
		-	-		-		-	-			
40.00	10400.00	49.34	PK	Н	68.20	18.86	55.76	37.81	10.14	54.37	-6.42
(5200MHz)		-	-		-		-	-	-		
48.00	5350.50	53.77	PK	Н	68.20	14.43	72.34	30.24	5.93	54.74	-18.57
(5240MHz)	10480.00	49.65	PK	Н	68.20	18.55	56.17	37.95	10.17	54.64	-6.52

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	53.13	PK	V	68.20	15.07	72.03	29.91	5.87	54.68	-18.90
36.00	5150.00	40.52	AV	V	54.00	13.48	59.42	29.91	5.87	54.68	-18.90
(5180MHz)	10360.00	49.68	PK	V	68.20	18.52	56.60	37.62	10.02	54.56	-6.92
			-		-		-				
40.00	10400.00	49.95	PK	V	68.20	18.25	56.37	37.81	10.14	54.37	-6.42
(5200MHz)		-	-		-		-	-			
48.00	5350.50	53.04	PK	V	68.20	15.16	71.61	30.24	5.93	54.74	-18.57
(5240MHz)	10480.00	50.15	PK	V	68.20	18.05	56.67	37.95	10.17	54.64	-6.52
		_			_						

Report No.: GRCTR240902013-03 Page 19 of 51

U-NII 3 & 802.11n (HT20) Mode (above 1GHz)

	2 1 2 2 2 2 2 2 1 (1										
Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5650.00	53.83	PK	Н	68.30	14.47	72.19	30.54	5.74	54.64	-18.36
	5700.00	52.97	PK	Н	105.30	52.33	71.19	30.61	5.83	54.66	-18.22
149.00	5720.00	52.25	PK	Η	110.90	58.65	70.12	30.82	6.02	54.71	-17.87
	5725.00	51.86	PK	Н	122.30	70.44	69.71	30.83	6.05	54.73	-17.85
(5745MHz)	11490.00	49.46	PK	Н	68.20	18.74	54.21	39.23	10.83	54.81	-4.75
		-	-		-					-	
157.00	11570.00	49.67	PK	Н	68.20	18.53	54.12	39.34	10.96	54.75	-4.45
(5785MHz)		-	-		-		-			-	-
	5850.00	52.21	PK	Н	122.30	70.09	69.93	30.85	6.08	54.65	-17.72
165.00	5855.00	52.77	PK	Н	110.90	58.13	70.48	30.87	6.10	54.68	-17.71
	5875.00	53.83	PK	Н	105.30	51.47	71.52	30.90	6.13	54.72	-17.69
	5925.00	53.85	PK	Н	68.30	14.45	71.39	30.94	6.15	54.63	-17.54
(5825MHz)	11650.00	49.38	PK	Н	68.20	18.82	53.09	39.42	11.15	54.28	-3.71
		-			-		-	-			

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5650.00	54.28	PK	V	68.30	14.02	72.64	30.54	5.74	54.64	-18.36
	5700.00	53.82	PK	V	105.30	51.48	72.04	30.61	5.83	54.66	-18.22
149.00	5720.00	53.01	PK	٧	110.90	57.89	70.88	30.82	6.02	54.71	-17.87
	5725.00	51.87	PK	V	122.30	70.43	69.72	30.83	6.05	54.73	-17.85
(5745MHz)	11490.00	49.75	PK	V	68.20	18.45	54.50	39.23	10.83	54.81	-4.75
		-	-		-	-	-	-	-	-	-
157.00	11570.00	49.84	PK	V	68.20	18.36	54.29	39.34	10.96	54.75	-4.45
(5785MHz)											
	5850.00	51.94	PK	V	122.30	70.36	69.66	30.85	6.08	54.65	-17.72
165.00	5855.00	52.10	PK	V	110.90	58.80	69.81	30.87	6.10	54.68	-17.71
	5875.00	52.69	PK	V	105.30	52.61	70.38	30.90	6.13	54.72	-17.69
	5925.00	51.23	PK	V	68.20	16.97	68.77	30.94	6.15	54.63	-17.54
(5825MHz)	11650.00	49.83	PK	V	68.20	18.37	53.54	39.42	11.15	54.28	-3.71
		-	-		-		-	-		-	

REMARKS:

- Emission level (dBuV/m) = Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.

- 4. -- Mean the other emission levels were very low against the limit.
 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Worst case data at 6Mbps at IEEE 802.11a, MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20 ,IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80.

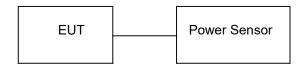
Report No.: GRCTR240902013-03 Page 20 of 51

4.3 Maximum Conducted Average Output Power

<u>Limit</u>

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.


For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

U-NII 1

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	36	12.39			
802.11a	40	11.76	23.98	Pass	
	48	11.49			
	36	12.94			
802.11n(HT20)	40	11.51	23.98	Pass	
	48	11.13			
000 44=/UT40)	38	10.92	22.00	Pass	
802.11n(HT40)	46	9.16	23.98		
	36	11.33			
802.11ac(VHT20)	40	10.80	23.98	Pass	
	48	10.41			
902 11aa/\/\UT40\	38	10.84	00.00	Door	
802.11ac(VHT40)	46	9.17	23.98	Pass	
802.11ac(VHT80)	42	9.15	23.98	Pass	

U-NII 3

0-IAII 2								
Туре	Channel	Output power (dBm)	Limit (dBm)	Result				
	149	14.74						
802.11a	157	14.33	30.00	Pass				
	165	14.10						
	149	14.49						
802.11n(HT20)	157	14.09	30.00	Pass				
	165	13.76						
902 44¤/UT40\	151	12.95	30.00	Door				
802.11n(HT40)	159	12.62	30.00	Pass				
	149	13.70	30.00					
802.11ac(VHT20)	157	13.39		Pass				
	165	13.01						
902 11aa/\/UT40\	151	12.72	00.00	Doos				
802.11ac(VHT40)	159	12.48	30.00	Pass				
802.11ac(VHT80)	155	11.89	30.00	Pass				

Report No.: GRCTR240902013-03 Page 22 of 51

4.4 Power Spectral Density

<u>Limit</u>

- (1) For the band 5.15 5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2

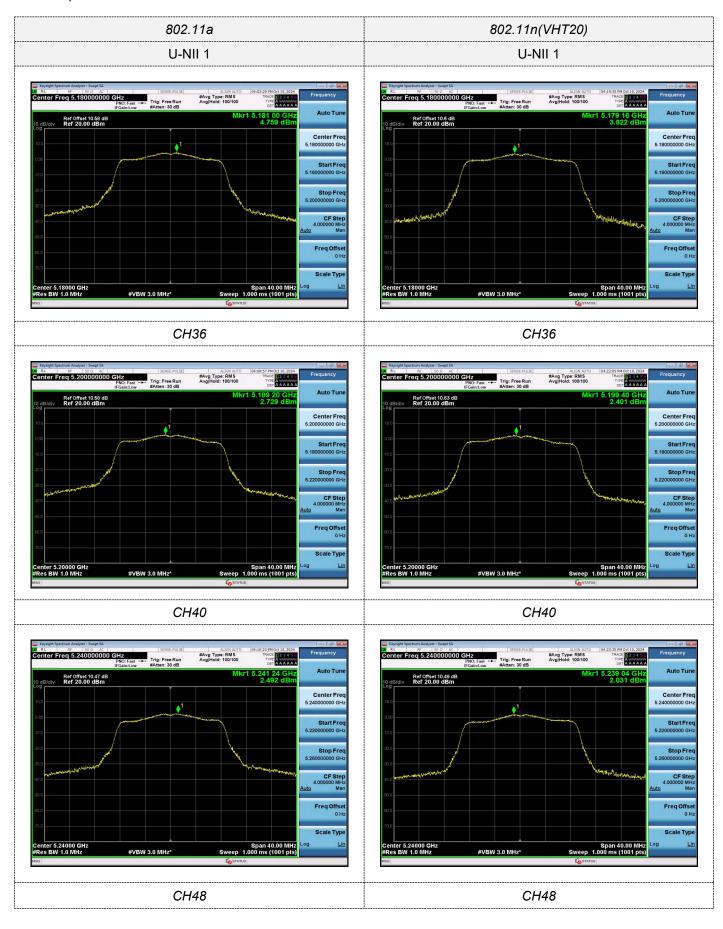
Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

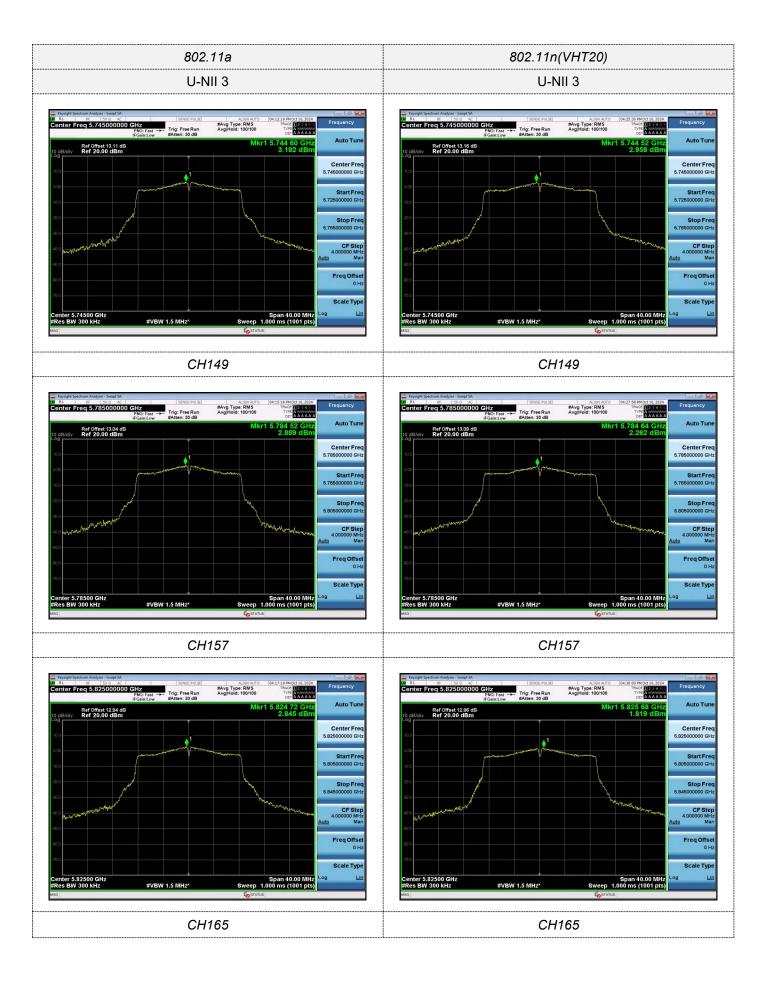
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 300KHz for U-NII 3 band.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to encompass the entire EBW.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

Test Configuration


Test Results

Туре	Bands	Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
	U-NII 1	36	4.76		Pass
802.11a		40	2.73		
		48	2.49		
		36	3.82		
802.11n (HT20)	U-NII 1	40	2.40		
(=0)		48	2.03		
802.11n	U-NII 1	38	0.01		
(HT40)		46	-1.87	11	
	U-NII 1	36	4.70		
802.11ac (VHT20)		40	2.38		
(****=3)		48	1.63		
802.11ac	U-NII 1	38	0.36		
(VHT40)		46	-2.03		
802.11ac (VHT80)	U-NII 1	42	-3.87		

Туре	Bands	Channel	Power Spectral Density (dBm/300KHz)	Power Spectral Density (dBm/500KHz)	Limit (dBm/500KHz)	Result		
802.11a		149	3.19	5.408				
	U-NII 3	157	2.89	5.108				
		165	2.85	5.068				
	U-NII 3	149	2.96	5.178				
802.11n (HT20)		157	2.26	4.478				
(11120)		165	1.82	4.038				
802.11n	U-NII 3	LI NIII 2	LI MII 2	151	-0.40	1.818		_
(HT40)		159	-0.59	1.628	30	Pass		
	U-NII 3	149	2.92	5.138]			
802.11ac (VHT20)		157	2.70	4.918				
(*****20)		165	2.17	4.388				
802.11ac (VHT40)	U-NII 3	151	-0.85	1.368				
		159	-0.31	1.908				
802.11ac (VHT40)	U-NII 3	155	-2.99	-0.772				


Remark: P.S.D(dBm/500KHz)= P.S.D(dBm/300KHz)+10 log (500 kHz/300KHz).

Test plot as follows

Report No.: GRCTR240902013-03 Page 30 of 51

4.5 Emission Bandwidth (26dB Bandwidth)

<u>Limit</u>

N/A

Test Procedure

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

Test Configuration

Test Results

Туре	Bands	Channel	26dB Bandwidth (MHz)	Limit (MHz)	Result
		36	21.080	N/A	Pass
802.11a	U-NII 1	40	21.160		
		48	21.440		
		36	20.960		
802.11n(HT20)	U-NII 1	40	21.160		
		48	21.040		
902 44m/UT40\	LI NIII 4	38	39.120		
802.11n(HT40)	U-NII 1	46	43.200		
		36	21.040		
802.11ac(VHT20)	U-NII 1	40	21.040		
		48	20.920		
902 11cc/\/LIT40\	11 NII 4	38	39.520		
802.11ac(VHT40)	U-NII 1	46	39.360		
802.11ac(VHT40)	U-NII 1	42	81.120		