

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 1 of 53

SAR TEST REPORT

Application No.: SZCR2405002032IT

Applicant: Shenzhen Viwoods Technology & Design Co., Ltd.

Address of Applicant: 812, Yangguangyuehai Building, No. 3818 Baishi Road, Nanshan District,

Shenzhen 51800 China

Manufacturer: Shenzhen Viwoods Technology & Design Co., Ltd.

Address of Manufacturer: 812, Yangguangyuehai Building, No. 3818 Baishi Road, Nanshan District,

Shenzhen 51800 China

Factory: Shenzhen Viwoods Technology & Design Co., Ltd.

Address of Factory: 812, Yangguangyuehai Building, No. 3818 Baishi Road, Nanshan District,

Shenzhen 51800 China

EUT Description: Smart Notebook

Model No.: AiPaper

Trade Mark: **▼** viwoods

FCC ID: 2BK06-SE03

Standards: FCC 47CFR §2.1093

Date of Receipt: 2024-09-12

Date of Test: 2024-09-13 to 2024-09-19

Date of Issue: 2024-09-23

PASS * Test Result:

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

EMC Laboratory Manager

Ceny. Ku

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@gs.com"

No.1 Workshop, Nr.10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 2 of 53

Revision Record			
Version	Description	Date	Remark
01		2024-09-23	

Authorized for issue by:		
	Leslai	
	Leo Lai/Project Engineer	-
	Exic Fu	
	Eric Fu/Reviewer	-

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 3 of 53

TEST SUMMARY

1201 0011111111111111111111111111111111		
Frequency Band	Maximum Reported SAR(W/kg)	
	Body	
WI-FI (2.4GHz)	0.76	
WI-FI (5GHz)	0.99	
ВТ	1.09	
SAR Limited(W/kg)	1.6	
Maximum Simultane	ous Transmission SAR (W/kg)	
Scenario	Body	
Sum SAR	NA	
SPLSR	/	
SPLSR Limited	0.04	

SZSAR-TRF-01 Rev. A/0 May15,2023

TEAT ALIMANA A DV

Report No.: SZCR240500203206

Page: 4 of 53

Contents

IES		/IWAR T		
1	Ge	eneral Information		
	1.1	General Description of EUT	5	
	1.2	Test Specification	7	
	1.3	RF exposure limits	8	
	1.4	Test Location	9	
	1.5	Test Facility	9	
	1.6	Deviation from Standards		
	1.7	Abnormalities from Standard Conditions	9	
2	La	boratory Environment	10	
3	SA	AR Measurements System Configuraion	11	
	3.1	The SAR Measurement System		
	3.2	Isotropic E-field Proble EX3DV4	13	
	3.3	Data Acquisition Electronics (DAE)	14	
	3.4	SAM Twin Phantom	14	
	3.5	ELI Phantom	15	
	3.6	Device Holder for Transmitters	16	
	3.7	Measurement Procedure	17	
4	SA	AR measurement variability and uncertainty	21	
	4.1	SAR measurement variability	21	
	4.2	SAR measurement uncertainty		
5	De	sciption of Test Position	23	
	5.1	The Body Test Position	23	
	5.2	Proximity Sensor Triggering Test	24	
6		AR System Verificaion Procedure		
	6.1	Tissue Simulate Liquid	28	
	6.2	SAR System Check		
7		st Configuration		
8	Te	st Result		
	8.1	SAR-based Exemption		
	8.2	Measurement of RF Conducted Power		
	8.3	Measurement of SAR Data		
	8.4	Multiple Transmitter Evaluation		
9		uipment list		
10		libration certificate		
11		otographs		
		A: Detailed System Check Results		
Appendix B: Detailed Test Results53				
		C: Calibration certificate		
App	endix	D: Photographs	53	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN. Doccheck@sgs.com

| Mo.1 Workshop, W-10, Middle Sedton, Science & Technology Part, Namshan District, Sherzhen, Guangdong, Chine 518057 | t (86-755) 26012053 | f (86-755) 26710594 | www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 | t (86-755) 26012053 | f (86-755) 26710594 | sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 5 of 53

1 General Information

1.1 General Description of EUT

Product Name:	Smart Notebook			
Model No.:	AiPaper			
Trade Mark:	❖ viwoods	♦ viwoods		
Product Phase:	production unit			
Device Type:	portable device			
Exposure Category:	uncontrolled enviro	onme	ent / general population	
HVIN:	AiPaper			
FVIN:	R2.5.9			
Test Software:	Firmware of the pr	oduc	t	
Power Setting:	Default			
Series No.:	TZ24030100045			
Antenna Type:	Monopole Antenna	Monopole Antenna		
Device Operating Configurations:				
Modulation Mode:	WIFI:DSSS,OFDM,; BT:GFSK, π/4DQPSK,8DPSK			
	Band		Tx(MHz)	Rx(MHz)
	WIFI 2.4G		2412~2462	2412~2462
Fraguency Panda	WIFI 5G		5150~5250	5150~5250
Frequency Bands:			5250~5350	5250~5350
			5725~5850	5725~5850
	BT		2402~2480	2402~2480
RF Cable:	☑Provided by applicant ☐Provided by the laboratory			
	Model:	SE03-1S2P		
Pottory Information:	Normal Voltage: 3,8 VDC			
Battery Information:	Rated capacity:	4100mAh		
	Manufacturer:	Shenzhen Viwoods Technology & Design Co., Ltd.		

Note: *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information , SGS is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Remark:

As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

remail: CN_Doccheck@sgs.com

No.1 Workshop, M-10, Middle Sedom, Science & Technology Park, Manshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

6 of 53 Page:

1.1.1 DUT Antenna Locations (Back View)

Please see the Appendix D

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 7 of 53

1.2 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radio frequency Radiation Exposure Evaluation: Portable Devices
IEEE Std C95.1 – 1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
KDB 865664 D01 v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 865664 D02 v01r02	RF Exposure Compliance Reporting and Documentation Considerations
KDB 616217 D04 v01r02	SAR EVALUATION CONSIDERATIONS FOR LAPTOP, NOTEBOOK, NETBOOK AND TABLET COMPUTERS

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 8 of 53

1.3 RF exposure limits

Human Exposure	Uncontrolled Environment	Controlled Environment	
Haman Exposure	General Population	Occupational	
Spatial Peak SAR*	1.60 mW/a	0.00.75141/5	
(Brain*Trunk)	1.60 mW/g	8.00 mW/g	
Spatial Average SAR**	0.08 mW/g	0.40 mW/g	
(Whole Body)	0.08 HIVV/g		
Spatial Peak SAR***	4.00 mW/a	20.00 mW/g	
(Hands/Feet/Ankle/Wrist)	4.00 mW/g		

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 9 of 53

1.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI (Member No. 1937)

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen EMC laboratory have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC –Designation Number: CN1336

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1336. Test Firm Registration Number: 787754.

Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

1.6 Deviation from Standards

None

1.7 Abnormalities from Standard Conditions

None

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 10 of 53

2 **Laboratory Environment**

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

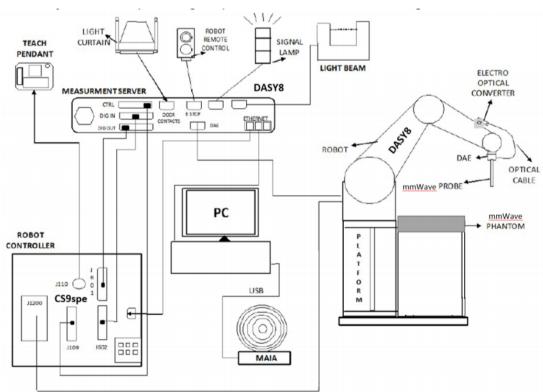
SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 11 of 53

3 **SAR Measurements System Configuration**

3.1 The SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

SAR Measurement System Configuration

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://iwww.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 12 of 53

- The function of the measurement server is to perform the time critical tasks such as signal filtering. control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows system.
- DASY software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

13 of 53 Page:

Isotropic E-field Proble EX3DV4 3.2

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Fraguency	10 MHz to > 6 GHz
Frequency	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis)
Directivity	± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g
Dynamic Kange	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
	Overall length: 337 mm (Tip: 20 mm)
Dimensions	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1 mm
	High precision dosimetric measurements in any exposure scenario (e.g.,
Application	very strong gradient fields); the only probe that enables compliance
	testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY52 SAR and higher, EASY4/MRI

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 14 of 53

3.3 **Data Acquisition Electronics (DAE)**

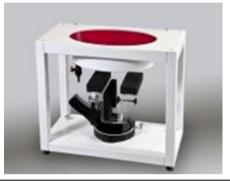
Model	DAE
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5µV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm	
(incl. Wooden	Width: 500 mm	
Support)	Height: adjustable feet	
Filling Volume	pprox 25 liters	
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 15 of 53

ELI Phantom 3.5

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2.0 ± 0.2 mm(bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	pprox 30 liters	
Wooden Support	SPEAG standard phantom table	

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4 but has reinforced top structure.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 16 of 53

3.6 **Device Holder for Transmitters**

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε=3 and loss tangent δ=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 17 of 53

3.7 **Measurement Procedure**

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

18 of 53 Page:

			≤ 3 GHz	> 3 GHz		
Maximum distance from			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°		
			\leq 2 GHz: \leq 15 mm 3 - 4 GHz: \leq 12 mm 2 - 3 GHz: \leq 12 mm 4 - 6 GHz: \leq 10 mm			
Maximum area scan sp	atial resol	ation: ∆x _{Area} , ∆y _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform	grid: ∆z _{Z∞m} (n)	3 - 4 GHz: ≤ ≤ 5 mm 4 - 5 GHz: ≤ 5 - 6 GHz: ≤			
Maximum zoom scan spatial resolution, normal to phantom surface	$\Delta z_{Z_{00m}}(1)$: between 1st two points closest to phantom surface		≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 19 of 53

3.7.2 Data storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factorDiode compression pointDcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters: - Conductivity ε

- Density p

These parameters must be set correctly in the software. They can be found in the component documents, or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With Vi = compensated signal of channel I (I = x, y, z)

Ui = input signal of channel I (I = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp I = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated: E-field probes:

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 20 of 53

 $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:

 $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

With Vi = compensated signal of channel I

Normi = sensor sensitivity of channel I (I = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel I in V/m

Hi = magnetic field strength of channel I in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$ The primary field data are used to calculate the derived field units.

 $SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space

 $P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service print available on request or accessible at https://www.sgs.com/ser/Terms-and-Conditions, Attention is drawn to the limitation indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained her indemnification and jurisdiction issues defined therein. Any noider of this document is advised that information cor the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their under the transaction documents. This document cannot be reproduced except in full, without prior written approva unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offend to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sam sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telepho-

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 21 of 53

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissueequivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is >

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 22 of 53

4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

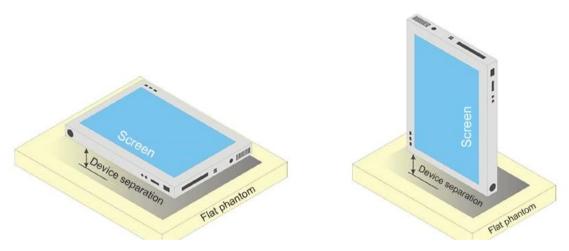
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206


Page: 23 of 53

5 **Desciption of Test Position**

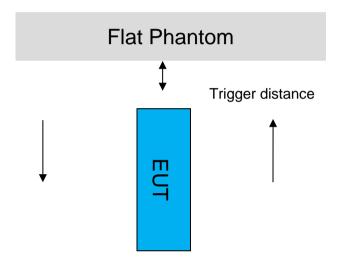
5.1 **The Body Test Position**

5.1.1 **Body-worn accessory exposure conditions**

This EUT was tested in different positions. They are Back Side and edge side of tablet. In these positions, the surface of EUT is touching phantom with 0 mm. The SAR Exclusion Threshold in KDB 447498 D04 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent device surface is used to determine if SAR testing is required for the adjacent surfaces, with the adjacent surface positioned against the phantom and the surface containing the antenna positioned perpendicular to the phantom.

F-11. Test positions for body-worn devices

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR240500203206

Page: 24 of 53

5.2 **Proximity Sensor Triggering Test**

Proximity sensor triggering distances:

The Proximity sensor triggering was applied to WLAN antenna. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed.

Proximity Sensor Triggering Distance(mm)						
Band	WIFI 2.4G/5G					
Position	Back Side 20mm					
POSITION	Bottom Side 20mm					

Note:

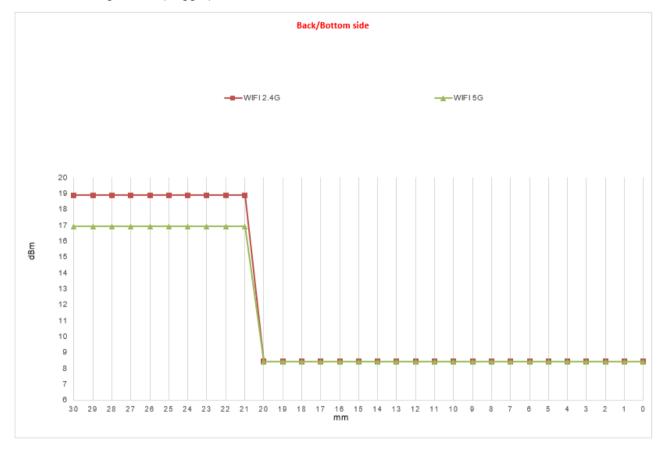
SAR tests with proximity sensor power reduction are only required for the sides of frequency bands in the table above. For the other sides or other frequency bands of the device, SAR is still tested at the maximum power level with sensor off.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

25 of 53 Page:

DUT Moving Toward(Trigger)the Phantom



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 26 of 53

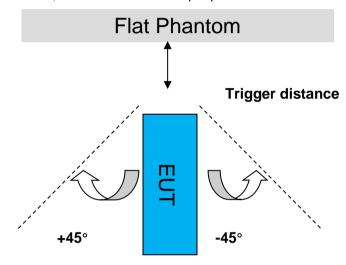
DUT Moving Away(Release) from the Phantom

Proximity sensor coverage

If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user, but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".

The proximity sensor and main antenna use same metallic electrode, so there is no spatial offset.

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR240500203206

Page: 27 of 53

Device tilt angle influences on proximity sensor triggering

The influence of device tilt angles to proximity sensor triggering was determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom.

Rotating the tablet around the edge next to the phantom in \leq 10° increments until the tablet is \pm 45° from the vertical position at 0°, and the maximum output power remains in the reduced mode.

Summary of Tablet Tilt Angle Influence on Proximity Sensor Triggering for Edge Side													
		Minimum trigger	Power Reduction Status										
Band (MHz)	Minimum trigger distance Per KDB616217§6.2	distance at which power reduction was maintained over ±45°	-45°	-35°	-25°	-15°	-5°	0°	5°	15°	25°	35°	45°
WIFI2.4G/5G	Bottom side:20mm	Bottom side:20mm	on	on	on	on	on	on	on	on	on	on	on

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 28 of 53

SAR System Verificaion Procedure 6

6.1 **Tissue Simulate Liquid**

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients (% by weight)	Frequency (MHz)								
	450	700-1000	1700-2000	2300-2500	2500-2700				
Water	38.56	40.30	55.24	55.00	54.92				
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23				
Sucrose	56.32	57.90	0	0	0				
HEC	0.98	0.24	0	0	0				
Bactericide	0.19	0.18	0	0	0				
Tween	0	0	44.45	44.80	44.85				

Salt: 99+% Pure Sodium Chloride Sucrose: 98+% Pure Sucrose Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients: (Manufactured by SPEAG)

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Table 1: Recipe of Tissue Simulate Liquid

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 29 of 53

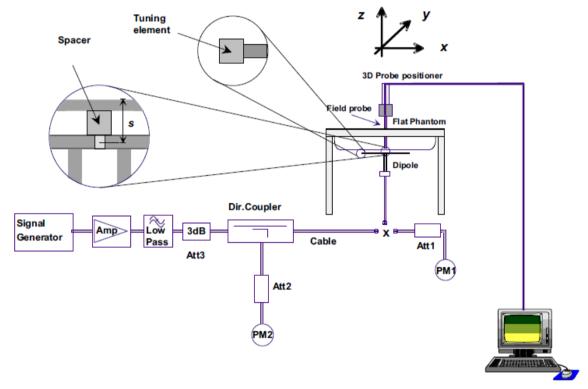
6.1.2 Measurement for Tissue Simulate Liquid

The Conductivity (σ) and Permittivity (ϵr) are listed in Table 2. For the SAR measurement given in this report.

The temperature variation of the Tissue Simulate Liquids was 22±2°C.

•	Measurement for Tissue Simulate Liquid											
Tissue	Measured Frequency	_	Tissue 5%)	Measure	d Tissue	Deviation (V	Liquid Temp.					
Type	(MHz)	٤r	σ(S/m)	٤r	σ(S/m)	ε _r	σ(S/m)	(°C)				
2450 Head	2450	39.2	1.80	38.400	1.790	-2.04%	-0.56%	22.6				
5250 Head	5250	35.9	4.71	36.800	4.700	2.51%	-0.21%	22.1				
5600 Head	5600	35.5	5.07	35.800	5.060	0.85%	-0.20%	22.1				
5750 Head	5750	35.4	5.22	35.400	5.230	0.00%	0.19%	22.1				

Table 2: Measurement result of Tissue electric parameters


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 30 of 53

6.2 **SAR System Check**

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. The microwave circuit arrangement used for SAR system Check

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 31 of 53

6.2.1 Justification for Extended SAR Dipole Calibrations

- 1) Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 20% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

32 of 53 Page:

6.2.2 Summary System Check Result(s)

SAR System Validation Result(s)												
Validation Kit		Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized to 1W)		(normalized	Target SAR (normalized to 1W) (±10%)	Devia (Within		Liquid Temp. (℃)		
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	1-g(W/kg)	10- g(W/kg)	(0)		
D2450V2	Head	13.30	6.33	53.20	25.32	52.7	24.6	0.95%	2.93%	22.6		
Validation Kit		Measured SAR 100mW	Measured SAR 100mW	Measured SAR (normalized to 1W)		(normalized	Target SAR (normalized to 1W) (±10%)			Liquid Temp. — (°C)		
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	1-g(W/kg)	10- g(W/kg)	(0)		
	Head(5.25GHz)	7.54	2.25	75.40	22.50	77.2	21.9	-2.33%	2.74%	22.1		
D5GHzV2	Head(5.6GHz)	7.98	2.29	79.80	22.90	81.1	22.8	-1.60%	0.44%	22.1		
	Head(5.75GHz)	7.66	2.16	76.60	21.60	77.8	21.7	-1.54%	-0.46%	22.1		

Table 3: SAR System Check Result

6.2.3 Detailed System Check Results

Please see the Appendix A

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t(86-755)26012053 f(86-755)26710594 sgs.china@sgs.com

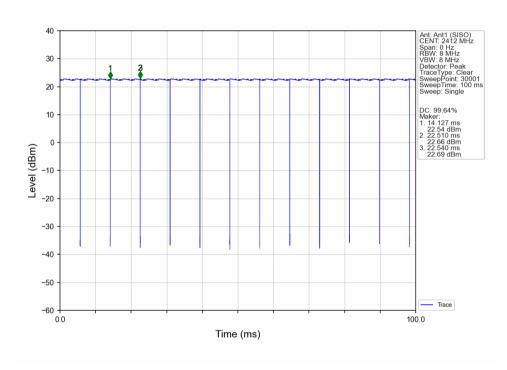
SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 33 of 53

7 Test Configuration

7.1 Operation Configuration


7.1.1 Wi-Fi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.1.1.1 Duty cycle

1) 2.4GHz Wi-Fi 802.11n:

WI-FI 802.11n40: Duty cycle=99.64%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

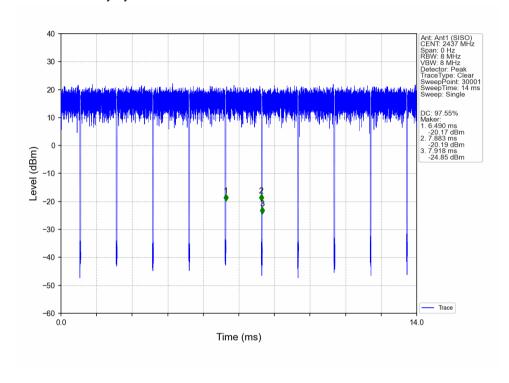
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, ore mail: CN_Doccheck@egs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Part, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 34 of 53

2) 5GHz Wi-Fi 802.11n:

WLAN5G 802.11n40 duty cycle:97.55%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ss.com"

|Ma.1 Windshop, N-ID, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区№-10栋1号厂房 邮编:518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 35 of 53

7.1.1.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1). When the reported SAR of the initial test position is \leq 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2). When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3). For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

7.1.1.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

7.1.1.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

|Mat ||Workshop, N=10, Middle Section, Science & Technology Part, Nanshan District, Shenzhan, Guengdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区№-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 36 of 53

1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

- 2) . When the highest *reported* SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

7.1.1.5 2.4 GHz Wi-Fi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

|Mat ||Workshop, N=10, ||Models Section, Science & Technology Part, ||Kanshan District, Shenzhan, Guangdong, China 5180557 t (868-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M−10栋1号厂房 邮编:518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 37 of 53

highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

7.1.1.6 5 GHz Wi-Fi SAR Procedures

U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 38 of 53

disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- If multiple configurations have the same specified maximum output power and largest channel bandwidth. 2) the lowest order modulation among the largest channel bandwidth configurations is selected.
- If multiple configurations have the same specified maximum output power, largest channel bandwidth and 3) lowest order modulation, the lowest data rate configuration among these configurations is selected.
- When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - The channel closest to mid-band frequency is selected for SAR measurement.
 - For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

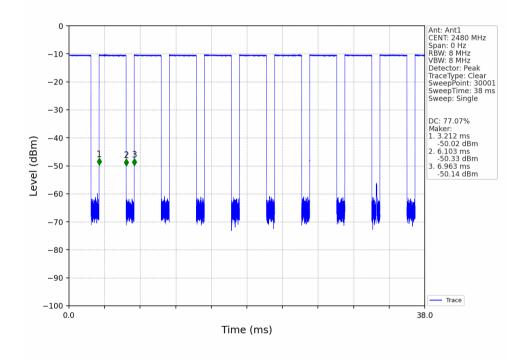
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's soile responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. to the fullest extent of the term of the sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Member of the SGS Group (SGS SA)

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206


Page: 39 of 53

7.1.2 Bluetooth Test Configuration

For the Bluetooth SAR tests, a communication link is set up with the test mode software for BT mode test. Bluetooth USES frequency hopping technology to divide the transmitted data into packets and transmit the packets respectively through 79 designated Bluetooth channels, 1MHz Bandwidth, frequency hops at 1600 hops/second per the Bluetooth standard. The Radio Frequency Channel Number (RFCN) is allocated to 0, 39 and 78 respectively in the case of 2402~2480 MHz during the test at each test frequency channel, the EUT is operated at the RF continuous emission mode.

7.1.2.1 Duty cycle

Bluetooth duty cycle: 77.07%

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 40 of 53

8 Test Result

8.1 **SAR-based Exemption**

The following SAR test exclusion Thresholds based on KDB 447498 D04 Interim General RF Exposure

Guidance v01 Appendix B B 4

<u> </u>	didance vo i Appendix B B.4																		
Band	d Exposure f		Pmax	Pmax	sep	oarati	on dis	stance	(cm)		Cal	culated	l Value		SAF	R Te	st (Y	es or	· No)
banu	Condition	(GHz)	(dBm)	(mw)					Bottom side			Right side	Top side						Bottom side
WIFI 2.4G	Body 0mm	2.462	19.00	79.43	0.20	6.00	9.20	23.60	0.20	0.48	309.44	698.04	3060.00	0.48	Yes	No	No	No	Yes
WIFI 5.2G	Body 0mm	5.400	17.00	50.12	0.20	6.00	9.20	23.60	0.20	0.22	252.00	611.45	3060.00	0.22	Yes	No	No	No	Yes
WIFI 5.3G	Body 0mm	5.300	17.00	50.12	0.20	6.00	9.20	23.60	0.20	0.22	253.23	613.38	3060.00	0.22	Yes	No	No	No	Yes
WIFI 5.8G	Body 0mm	5.800	17.00	50.12	0.20	6.00	9.20	23.60	0.20	0.20	247.33	604.12	3060.00	0.20	Yes	No	No	No	Yes
ВТ	Body 0mm	2.480	10.00	10.00	0.20	6.00	9.20	23.60	0.20	0.47	308.85	697.18	3060.00	0.47	Yes	No	No	No	Yes

Note:

- 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D04, the 1-g and 10-g SAR test exclusion thresholds for 300 MHz to 6 GHz This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by Formula (B.2).

$$P_{\text{th }}(\text{mW}) = ERP_{20 \text{ cm}}(\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20}\operatorname{cm}\sqrt{f}}\right)$$

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 41 of 53

and f is in GHz, d is the separation distance (cm), and ERP20cm is per Formula (B.1).

The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW)

					Dis	stance	(mm)	,			
		5	10	15	20	25	30	35	40	45	50
$\widehat{\mathbf{z}}$	300	39	65	88	110	129	148	166	184	201	217
(MHz)	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
enc	1900	3	12	26	44	66	92	122	157	195	236
Frequency	2450	3	10	_ 22	38	59	83	111	143	179	219
Fr	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

- 5. when 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds.
- 6. The SAR-based exemption formula of § 1.1307(b)(3)(i)(B), repeated here as Formula (B.2), applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

42 of 53 Page:

Measurement of RF Conducted Power

		WIFI 2.4G Sen	sor on		
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	1	2412		8.45	9.00
802.11b	6	2437	1	8.06	9.00
	11	2462		8.19	9.00
	1	2412		8.03	9.00
802.11g	6	2437	6	8.27	9.00
	11	2462		8.16	9.00
	1	2412		8.01	9.00
802.11n HT20	6	2437	6.5	8.18	9.00
20	11	2462		7.96	9.00
	3	2422		8.20	9.00
802.11n HT40	6	2437	13.5	8.04	9.00
	9	2452		8.09	9.00

		WIFI 2.4G Sens	sor off		
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	1	2412		18.9	19.00
802.11b	6	2437	1	17.58	19.00
	11	2462		18.8	19.00
	1	2412		16.62	17.00
802.11g	6	2437	6	15.71	17.00
	11	2462		16.01	17.00
	1	2412		15.47	16.00
802.11n HT20	6	2437	6.5	14.76	16.00
20	11	2462		15.82	16.00
	3	2422		15.30	16.00
802.11n HT40	6	2437	13.5	14.08	16.00
10	9	2452		14.82	16.00

Table 4: Conducted Power of 2.4G WIFI

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 43 of 53

			WIFI 5G Sensor on			
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		8.11	9.50
	U-NII-1	40	5200		8.18	9.50
	U-INII- I	44	5220		8.14	9.50
		48	5240		8.00	9.50
		52	5260		8.05	9.50
	LLAULOA	56	5280		8.01	9.50
802.11a	U-NII-2A	60	5300	6	8.36	9.50
		64	5320		8.09	9.50
		149	5745		8.41	9.50
		153	5765		8.40	9.50
	U-NII-3	157	5785		8.09	9.50
		161	5805		8.08	9.50
		165	5825		8.12	9.50
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		7.92	9.00
		40	5200		8.01	9.00
	U-NII-1	44	5220		8.00	9.00
		48	5240		8.04	9.00
-		52	5260		7.97	9.00
		56	5280		7.96	9.00
802.11n-HT20	U-NII-2A	60	5300	MCS0	8.11	9.00
		64	5320		8.36	9.00
-		149	5745		8.25	9.00
		153	5765		8.22	9.00
	U-NII-3	157	5785		7.81	9.00
		161	5805		7.78	9.00
		165	5825		7.91	9.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	LI NUL 4	38	5190		8.26	9.00
	U-NII-1	46	5230		7.99	9.00
000 44 - 1740	LLAULOA	54	5270	Moss	8.10	9.00
802.11n-HT40	U-NII-2A	62	5310	MCS0	8.46	9.00
ļ	11 100 0	151	5755		7.99	9.00
	U-NII-3	159	5795		7.78	9.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
000 44 = = 00	11 NU 4	36	5180	MOSS	7.92	9.00
802.11ac-20	U-NII-1	U-NII-1	5200	MCS0	8.13	9.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven items approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@ass.com"

or email: CN_Doccheck@sgs.com
Wo.1Wortshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shienzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 44 of 53

		44	5220		8.09	9.00
		48	5240]	8.15	9.00
		52	5260]	7.94	9.00
	U-NII-2A	56	5280		7.93	9.00
	U-INII-ZA	60	5300		8.11	9.00
		64	5320		8.35	9.00
		149	5745		7.98	9.00
		153	5765		7.97	9.00
	U-NII-3	157	5785		7.81	9.00
		161	5805		7.77	9.00
		165	5825		7.84	9.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		8.01	9.00
	U-INII-1	46	5230		7.88	9.00
802.11ac-40	U-NII-2A	54	5270	MCS0	8.12	9.00
602.11aC-40	U-MII-ZA	62	5310	MCSU	8.47	9.00
	U-NII-3	151	5755		7.97	9.00
	U-INII-3	159	5795		7.99	9.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	42	5210		8.24	9.00
802.11ac 80M	U-NII-2A	58	5290	MCS0	8.37	9.00
30	U-NII-3	155	5775]	8.06	9.00

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 45 of 53

			WIFI 5G Senso	or off		
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		16.06	17.00
	U-NII-1	40	5200		16.03	17.00
	U-INII-1	44	5220		15.98	17.00
		48	5240		16.15	17.00
		52	5260		15.90	17.00
	U-NII-2A	56	5280		15.84	17.00
802.11a	U-INII-ZA	60	5300	6	15.73	17.00
		64	5320		15.94	17.00
		149	5745		16.94	17.00
		153	5765		16.89	17.00
	U-NII-3	157	5785		16.57	17.00
		161	161 5805		16.52	17.00
		165	5825		16.26	17.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		14.87	16.00
	11 1111 4	40	5200		14.95	16.00
	U-NII-1	44	5220		15.04	16.00
		48	5240		15.11	16.00
		52	5260		15.17	16.00
	U-NII-2A	56	5280		15.25	16.00
802.11n- HT20	U-MII-ZA	60	5300	MCS0	15.03	16.00
20		64	5320		15.08	16.00
		149	5745		15.32	16.00
		153	5765		15.28	16.00
	U-NII-3	157	5785		14.99	16.00
		161	5805		14.94	16.00
		165	5825		14.68	16.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	11 NIII 4	38	5190		14.98	16.00
	U-NII-1	46	5230		14.94	16.00
802.11n-	II NIII OA	54	5270	MCCO	14.91	16.00
HT40	U-NII-2A	62	5310	MCS0	15.38	16.00
	11 1111 2	151	5755		15.31	16.00
	U-NII-3	159	5795		14.82	16.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
802.11ac-	U-NII-1	36	5180	MCS0	14.10	16.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven items approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@ass.com"

or email: CN.Doccheck@sgs.com
Wo.1Workshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 46 of 53

20	İ	40	5200	l i	14.13	16.00
20						
		44	5220		14.20	16.00
		48	5240		14.27	16.00
		52	5260		14.35	16.00
	U-NII-2A	56	5280		14.39	16.00
	U-INII-ZA	60	5300		14.44	16.00
		64	5320		14.45	16.00
		149	5745		14.29	16.00
		153	5765		14.24	16.00
	U-NII-3	157	5785		14.02	16.00
		161	5805		13.96	15.00
		165	5825		13.33	15.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		14.26	16.00
	U-INII-I				-	10.00
		46	5230		14.21	16.00
802.11ac-		46 54	5230 5270	MOOO	14.21 14.18	
802.11ac- 40	U-NII-2A			MCS0		16.00
	_	54	5270	MCS0	14.18	16.00 16.00
	U-NII-2A U-NII-3	54 62	5270 5310	MCS0	14.18 14.73	16.00 16.00 16.00
	_	54 62 151	5270 5310 5755	MCS0 Data Rate(Mbps)	14.18 14.73 14.66	16.00 16.00 16.00 15.00
40 5GHz	U-NII-3	54 62 151 159	5270 5310 5755 5795	Data	14.18 14.73 14.66 13.78 Average Power	16.00 16.00 16.00 15.00
40	U-NII-3	54 62 151 159 Channel	5270 5310 5755 5795 Frequency(MHz)	Data	14.18 14.73 14.66 13.78 Average Power (dBm)	16.00 16.00 16.00 15.00 15.00 Tune up

Table 5: Conducted Power of 5G WIFI

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 47 of 53

В	T	Average Conducted	Power(dBm)
Band	Channel	GFSK	Tune up
	0	8.91	10.00
	39	7.43	8.00
	78	5.00	6.00
	Channel	π/4DQPSK	Tune up
	0	8.73	10.00
ВТ	39	7.19	8.00
	78	4.32	6.00
	Channel	8DPSK	Tune up
	0	8.65	10.00
	39	7.25	8.00
	78	4.47	6.00
Band	Channel	GFSK	Tune up
	0	4.21	6.00
	Channel	GFSK	Tune up
BLE 1M	19	4.45	6.00
	Channel	0	Tune up
	39	4.63	6.00

Table 6: Conducted Power of BT

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 48 of 53

8.3 Measurement of SAR Data

8.3.1 SAR Result of WIFI 2.4G

				Wi-Fi 2	.4G SAR	Test Reco	ord				
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
Test data (Separate 0mm) Sensor on											
Back side	802.11b	1/2412	99.64%	1.004	0.623	0.04	8.45	9.00	1.135	0.710	22.3
Bottom side	802.11b	1/2412	99.64%	1.004	0.537	0.01	8.45	9.00	1.135	0.612	22.3
Back side	802.11b	6/2437	99.64%	1.004	0.524	0.05	8.06	9.00	1.242	0.653	22.3
Back side	802.11b	11/2462	99.64%	1.004	0.630	0.09	8.19	9.00	1.205	0.762	22.3
				Test data (Separate :	20mm) Sei	nsor off				
Back side with 19mm	802.11b	1/2412	99.64%	1.004	0.549	0.02	18.9	19	1.023	0.564	22.2
Bottom side with 19mm	802.11b	1/2412	99.64%	1.004	0.465	0.02	18.9	19	1.023	0.478	22.2

Table 7: SAR of WIFI 2.4G for Body.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 49 of 53

8.3.2 SAR Result of WIFI 5G

				Wi-Fi	5G SAR T	est Rec	ord Ant0					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)			Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)	
	Test data of U-NII-2A(Separate 0mm) Sensor on											
Back side	802.11a	60/5300	97.55%	1.025	0.662	-0.07	8.36	9.50	1.300	0.882	22.3	
Bottom side	802.11a	60/5300	97.55%	1.025	0.402	0.05	8.36	9.50	1.300	0.536	22.3	
Back side	802.11a	52/5260	97.48%	1.026	0.537	0.03	8.05	9.50	1.396	0.769	22.3	
Back side	802.11a	64/5320	97.55%	1.025	0.537	0.09	8.09	9.50	1.384	0.762	22.3	
				Test dat	a (Separat	e 20mm)	Sensor off					
Back side with 19mm	802.11a	64/5320	97.55%	1.025	0.472	0.04	15.94	17.00	1.276	0.618	22.2	
Bottom side with 19mm	802.11a	64/5320	97.55%	1.025	0.334	0.03	15.94	17.00	1.276	0.437	22.2	
			Test	data of	U-NII-3(Se	eparate 0	mm) Sensor o	on				
Back side	802.11a	149/5745	97.55%	1.025	0.751	0.05	8.41	9.50	1.285	0.989	22.3	
Back side	802.11a	165/5825	97.55%	1.025	0.688	0.02	8.12	9.50	1.374	0.969	22.3	
Back side	802.11a	157/5785	97.55%	1.025	0.697	0.15	8.09	9.50	1.384	0.989	22.3	
Bottom side	802.11a	149/5745	97.55%	1.025	0.362	0.01	8.41	9.50	1.285	0.477	22.3	
				Test dat	a (Separat	e 20mm)	Sensor off					
Back side with 19mm	802.11a	149/5745	97.48%	1.026	0.728	0.03	16.94	17.00	1.014	0.757	22.2	
Bottom side with 19mm	802.11a	149/5745	97.55%	1.025	0.498	0.05	16.94	17.00	1.014	0.518	22.2	

Table 8: SAR of WIFI 5G for Body.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

Page: 50 of 53

8.3.3 SAR Result of BT

	Bluetooth SAR Test Record Ant0													
Test position	Test mode	Test ch./Freq.	_	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	_	Liquid Temp.(℃)			
				Test	data (Se	parate 0r	nm)							
Back side	DH5	0/2402	76.86%	1.301	0.549	0.03	8.91	10.00	1.285	0.918	22.3			
Back side	DH5	39/2441	76.85%	1.301	0.633	0.01	7.43	8.00	1.140	0.939	22.3			
Back side	DH5	78/2480	77.07%	1.298	0.574	0.09	5.00	6.00	1.259	0.938	22.3			
Bottom side	DH5	0/2402	76.86%	1.301	0.587	0.08	8.91	10.00	1.285	0.982	22.3			
Bottom side	DH5	39/2441	76.85%	1.301	0.735	-0.03	7.43	8.00	1.140	1.091	22.3			
Bottom side	DH5	78/2480	77.07%	1.298	0.661	-0.12	5.00	6.00	1.259	1.080	22.3			

Table 9: SAR of BT for Body.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

51 of 53 Page:

Multiple Transmitter Evaluation 8.4

8.4.1 Simultaneous SAR test evaluation

No.	Simultaneous Tx Combination	Body
1	WLAN 2.4GHz + WLAN 5GHz	No
2	WLAN 2.4GHz + BT	No
3	WLAN 5GHz+ BT	No

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

52 of 53 Page:

Equipment list

Test Platform		SPEAG DASY Professional							
	Description	SAR Test System (Frequency range 300MHz-6GHz)							
So	ftware Reference	cDASY8 V16.2.4.2524							
Hardware Reference									
Equipment		Manufacturer	Model	Inventory No.	Calibration Date	Due date of calibration			
\boxtimes	Test Phantom	SPEAG	SAM Twin	SZ-WSR-A-027	NCR	NCR			
\boxtimes	DAE	SPEAG	DAE4	SZ-WSR-M-029	2024/1/3	2025/1/2			
\boxtimes	E-Field Probe	SPEAG	EX3DV4	SZ-WSR-M-027	2024/7/17	2025/7/16			
\boxtimes	Validation Kits	SPEAG	D2450V2	SZ-WSR-M-039	2022/11/02	2025/11/01			
\boxtimes	Validation Kits	SPEAG	D5GHzV2	SZ-WSR-M-046	2022/11/01	2025/10/31			
\boxtimes	Dielectric parameter probes	SPEAG	DAKS-3.5	SZ-WSR-M-053	2024/06/26	2025/06/25			
	Vector Network Analyzer and Vector Reflectometer	SPEAG	DAKS_VNA R140	SZ-WSR-M-054	2024/06/26	2025/06/25			
	RF Bi-Directional Coupler	Agilent	86205- 60001	SZ-WSR-A-004	NCR	NCR			
	Signal Generator	Agilent	N5171B	SZ-WSR-M-006	2024/01/30	2025/01/29			
\boxtimes	Preamplifier	Mini-Circuits	ZHL-42W	SZ-WSR-A-001	NCR	NCR			
\boxtimes	Preamplifier	Compliance Directions Systems Inc.	AMP28-3W	SZ-WSR-A-002	NCR	NCR			
\boxtimes	Power Meter	Agilent	E4416A	SZ-WSR-M-007	2024/01/30	2025/01/29			
	Power Sensor	Agilent	8481H	SZ-WSR-M-008	2024/01/30	2025/01/29			
\boxtimes	Power Sensor	R&S	NRP-Z92	SZ-WSR-M-009	2024/01/30	2025/01/29			
\boxtimes	Attenuator	SHX	TS2-3dB	SZ-WSR-A-012	NCR	NCR			
\boxtimes	Speed reading thermometer	Zhengzhou Boyang Instrument	TP3001	SZ-WSR-M-014	2024/05/30	2025/05/29			
\boxtimes	Temperature	MingGao	T809	SZ-WSR-M-015	2024/05/30	2025/05/29			
\boxtimes	Temperature	MingGao	T809	SZ-WSR-M-016	2024/05/30	2025/05/29			
\boxtimes	Humidity and Temperature Indicator	CHIGAO	HTC-1	SZ-WSR-M-013	2024/05/28	2025/05/27			

Note: All the equipment are within the valid period when the tests are performed.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500203206

53 of 53 Page:

Calibration certificate 10

Please see the Appendix C

Photographs 11

Please see the Appendix D

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

--- End of report ---

