

element

Agility Robotics, Inc.

RM-1700-21N3

FCC 15.247:2025

Low Power (SRD) DTS Transceiver

Report: AGRO0019.1 Rev. 01, Issue Date: August 18, 2025

TABLE OF CONTENTS

Section	Page Number
Certificate of Test	3
Revision History	4
Accreditations.....	5
Facilities	6
Measurement Uncertainty	7
Test Setup Block Diagrams.....	8
Product Description	11
Power Settings and Antennas	12
Configurations	13
Modifications	15
Spurious Radiated Emissions	16
Spurious Radiated Emissions - Simultaneous Transmissions.....	24
Output Power	32
Band Edge Compliance	35
Occupied Bandwidth (99%).....	38
End of Report.....	41

CERTIFICATE OF TEST

Last Date of Test: June 18, 2025
Agility Robotics, Inc.
EUT: RM-1700-21N3

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2025	ANSI C63.10:2020

Guidance

FCC KDB 558074 v05r02:2019

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions (Transmitter)	N/A	15.207	6.2	Not required for a battery powered EUT.
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 -8.6, 8.7	6.5, 6.6, 11.12.1, 11.13.2	
Duty Cycle	N/A	15.247, KDB 558074 -6.0	11.6	Not requested.
Output Power	Pass	15.247(b), KDB 558074 -8.3	11.9.1.1	
Equivalent Isotropic Radiated Power (EIRP)	N/A	15.247(b), KDB 558074 -8.3	11.9.1.1	Not required to show compliance of the module in the host.
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.5	11.11	
DTS Bandwidth (6 dB)	N/A	15.247(a), KDB 558074 -8.2	11.8.2	Not required to show compliance of the module in the host.
Occupied Bandwidth (99%)	Pass	KDB 558074 -2.1	6.9.3	
Spurious Conducted Emissions	N/A	15.247(d), KDB 558074 -8.5	11.11	Not required to show compliance of the module in the host.
Power Spectral Density	N/A	15.247(e), KDB 558074 -8.4	11.10.2	Not required to show compliance of the module in the host.
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	ANSI C63.4 - 12.2.4	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC.
Radiated Emissions for Receiver	N/A	15.101, 15.109	ANSI C63.4 - 12.2.5	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC.

Deviations From Test Standards

None

Approved By:

Cole Ghizzone, Operations Manager
Signed for and on behalf of Element

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Updated functional description if the EUT	2025-08-18	11
	Updated EUT name		1, 3, 11, 17, 20, 26
	Updated EUT serial number		17, 20, 26
	Updated configurations		13, 14
	Corrected the last date of test		3
	Added line entry for Spurious Radiated Emissions – Simultaneous Transmissions		15

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

FDA - Recognized by the FDA as an Accreditation Scheme for Conformity Assessment (ASCA)-accredited testing laboratory for basic safety and essential performance.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

SCOPE

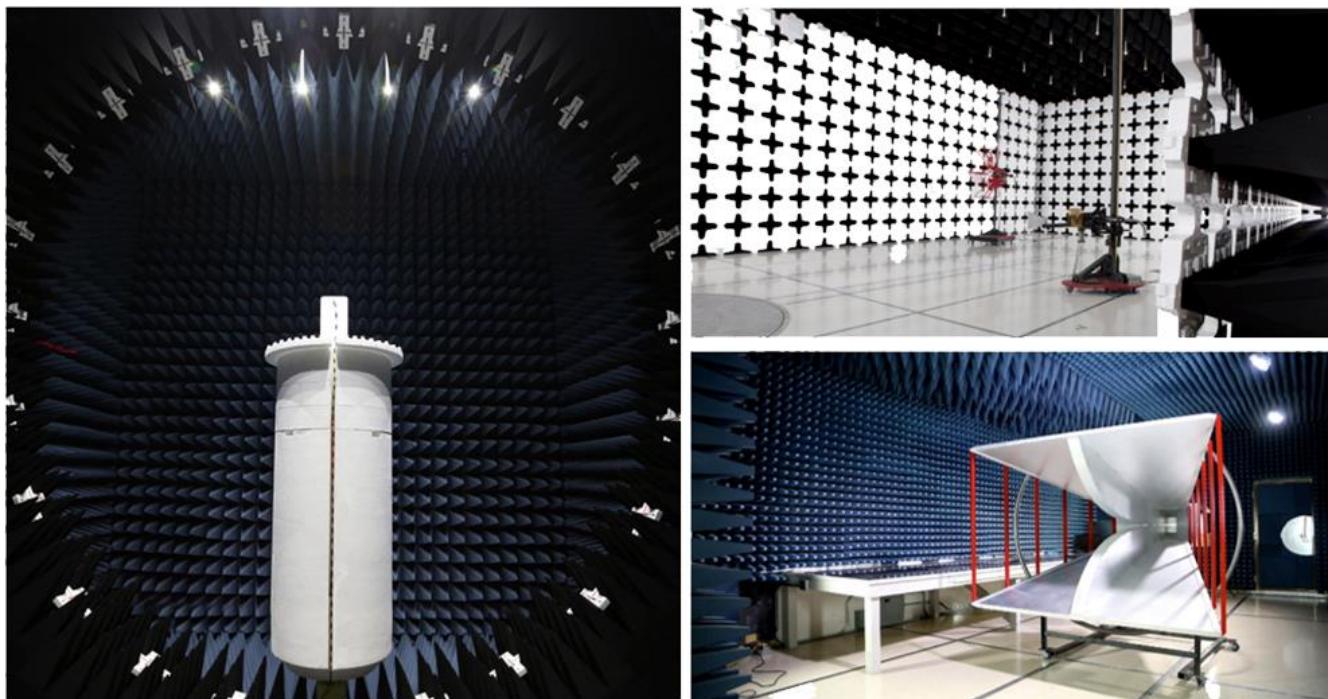
For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)

[Washington](#)


FACILITIES

Testing was performed at the following location(s)

Location	Labs ⁽¹⁾	Address	A2LA ⁽²⁾	ISED ⁽³⁾	BSMI ⁽⁴⁾	VCCI ⁽⁵⁾	CAB ⁽⁶⁾	FDA ⁽⁷⁾
<input type="checkbox"/> California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
<input type="checkbox"/> Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
<input checked="" type="checkbox"/> Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
<input type="checkbox"/> Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
<input type="checkbox"/> Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

See data sheets for specific labs

- (1) The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.)
- (2) A2LA Certificate No.
- (3) ISED Company No.
- (4) BSMI No.
- (5) VCCI Site Filing No.
- (6) CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MOC, NCC, OFCA
- (7) FDA ASCA No.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation reported is based on statistical analysis that was performed by the laboratory. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty ($k=2$) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable) and are available upon request.

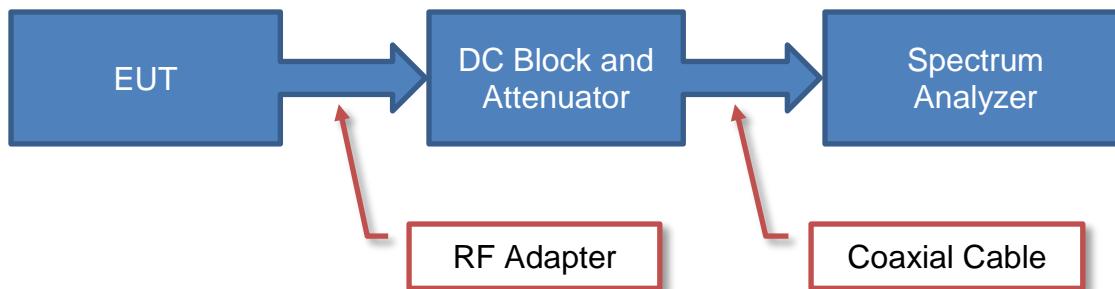
The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Various Measurements

Test	All Labs (+/-)
Frequency Accuracy (%)	0.0007
Amplitude Accuracy (dB)	1.2
Conducted Power (dB)	1.2
Radiated Power via Substitution (dB)	0.7
Temperature (degrees C)	0.7
Humidity (% RH)	2.5
Voltage (AC) (%)	1
Voltage (DC) (%)	0.7
Near-field Measurement of E-Field (dB)	1.89
Near-field Measurement of H-Field (dB)	2.65

Field Strength Measurements (dB)

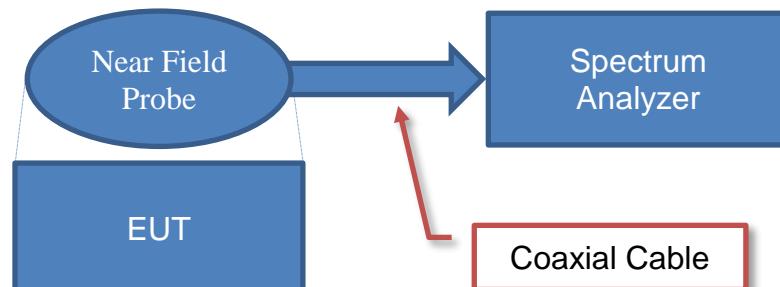
Range	EV01 (+/-)
10kHz-30MHz	1.8
30MHz-1GHz 3m	4.6
1GHz-6GHz	5.1
6GHz-40GHz	5.2


TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

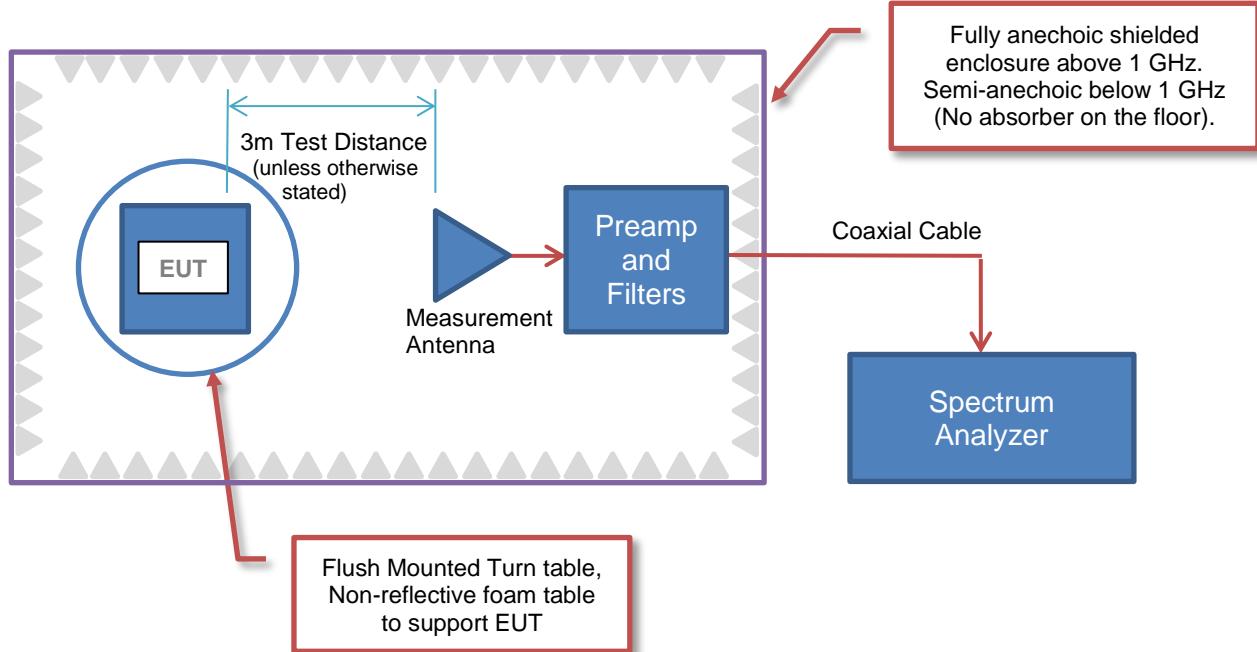
Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

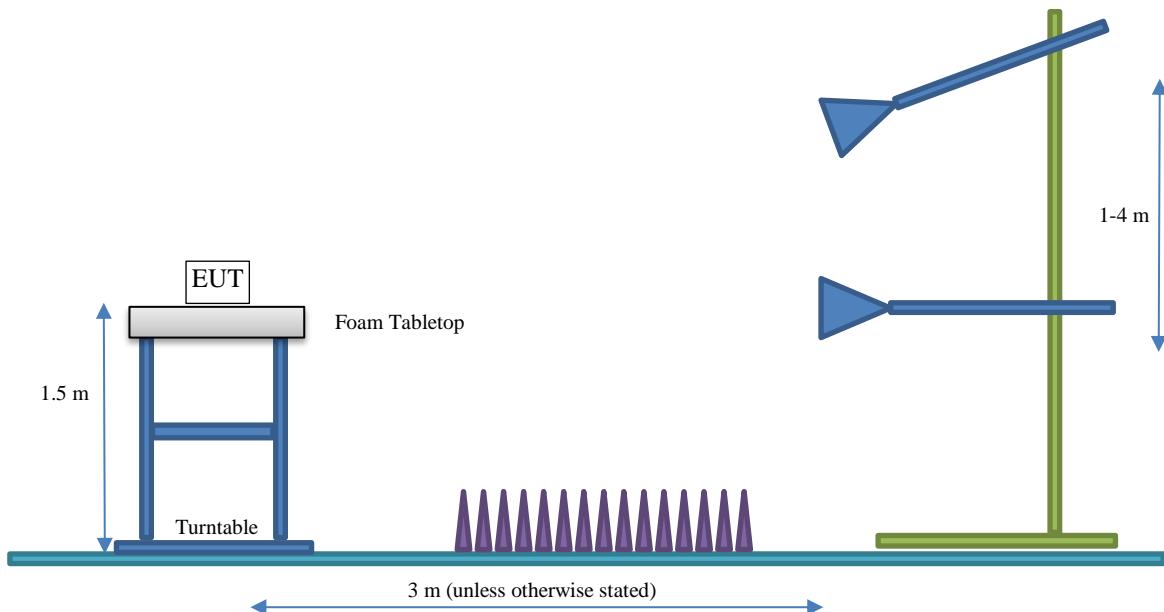
Sample Calculation (logarithmic units)

Radiated Emissions:

		Factor																	
Measured Level (Amplitude)	42.6	+	Antenna Factor	28.6	+	Cable Factor	3.1	-	Amplifier Gain	40.8	+	Distance Adjustment Factor	0.0	+	External Attenuation	0.0	=	Field Strength	33.5

Conducted Emissions:

		Factor											
Measured Level (Amplitude)	26.7	+	Transducer Factor	0.3	+	Cable Factor	0.1	+	External Attenuation	20.0	=	Adjusted Level	47.1


Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)	10.0	+	Substitution Antenna Factor (dBi)	6.0	-	EIRP to ERP (if applicable)	2.15	=	Measured power (dBm ERP/EIRP)	13.9/16.0
--	------	---	-----------------------------------	-----	---	-----------------------------	------	---	-------------------------------	-----------

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Agility Robotics, Inc.
Address:	4698 Truax Dr. SE
City, State, Zip:	Salem, OR 97317
Test Requested By:	Anish Mathew
EUT:	RM-1700-21N3
First Date of Test:	June 11, 2025
Last Date of Test:	June 18, 2025
Receipt Date of Samples:	June 11, 2025
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Low Power (SRD) radio module RM-1700-21N3, FCC ID: 2BKMIDIGITV4 with a new antenna which is integrated into the Digit V4 EVT host.

Testing Objective:

Seeking to demonstrate compliance of the Low Power (SRD) radio operation under FCC 15.247:2025

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit during normal operation.

ANTENNA GAIN (dBi)

Type	Provided by:	Frequency Range (MHz)	Gain (dBi)
Patch	Field Theory	902 – 928	2.6

The EUT was tested using the power settings provided by the manufacturer which were based upon:

Test software settings Software / firmware used for testing: 2024-10.4 R11306-C4A6851C72
 Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation type	Data Rate	Bandwidth (MHz)	Channel No.	Freq (MHz)	Power Setting (dBm)
OFDM	6 Mbps	5	1 (Low)	907	20
			11 (Mid)	915	
			21 (High)	923	
ODFM	6 Mbps	10	1 (Low)	909	20
			11 (Mid)	915	
			21 (High)	921	

CONFIGURATIONS

Configuration AGRO0019-1

Software/Firmware Running During Test	
Description	Version
Mesh Rider firmware (Doodle Labs)	2024-10.4 R11306-C4A6851C72

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Dual-Band Radio Module	Doodle Labs	RM-1700-21N3	G88V3M86W7

Peripherals in Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Robot	Agility Robotics, Inc.	Digit V4 EVT	14

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Dell	XPS 15 9520	3PFQKN3

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Cat 5 Ethernet	No	4.5	No	Robot	Laptop

Configuration AGRO0019-2

Software/Firmware Running During Test	
Description	Version
Mesh Rider firmware (Doodle Labs)	2024-10.4 R11306-C4A6851C72

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Dual-Band Radio Module	Doodle Labs	RM-1700-21N3	00301A3AF371

Peripherals in Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
AC/DC Adapter	MX	MX15X1-0502500UU	None
USB-C to Ethernet Adapter	ANKER	A8341	ACDS2K0C11102121

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Dell	XPS 15 9520	3PFQKN3

CONFIGURATIONS

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.7	Yes	AC/DC Adapter	Dual-Band Radio Module
Ethernet	No	0.3	No	USB-C to Ethernet Adapter	Dual-Band Radio Module

Configuration AGRO0019-3

Software/Firmware Running During Test	
Description	Version
Mesh Rider firmware (Doodle Labs)	2024-10.4_R11306-C4A6851C72
DTRU (Intel Radio Control Software)	DTRU_06642_23.60.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Dual-Band Radio Module	Doodle Labs	RM-1700-21N3	G88V3M86W7

Peripherals in Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Robot	Agility Robotics, Inc.	Digit V4 EVT	14

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Dell	XPS 15 9520	3PFQKN3

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Cat 5 Ethernet	No	4.5	No	Robot	Laptop

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2025-06-13	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2025-06-17	Band Edge Compliance	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2025-06-17	Occupied Bandwidth (99%)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2025-06-17	Output Power	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
5	2025-06-18	Spurious Radiated Emissions – Simultaneous Transmissions	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as shown in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10).

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out-of-band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2024-11-25	2025-11-25
Antenna - Loop	EMCO	6502	AOA	2024-10-23	2026-10-23
Antenna - Biconilog	Teseq	CBL 6141B	AXR	2025-04-15	2027-04-15
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	2024-03-08	2026-03-08
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	2025-01-23	2026-01-23
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2024-10-28	2025-10-28
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2024-10-28	2025-10-28
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2024-10-28	2025-10-28
Cable	N/A	Bilog Cables	EVA	2024-10-29	2025-10-29
Cable	N/A	Double Ridge Horn Cables	EVB	2025-05-02	2026-05-02
Cable	None	Standard Gain Horn Cables	EVF	2024-10-28	2025-10-28
Attenuator	Coaxicom	3910-10	AWX	2024-10-28	2025-10-28
Filter - Low Pass	Micro-Tronics	LPM50004	LFD	2024-10-28	2025-10-28
Filter - High Pass	Micro-Tronics	HPM50108	HFV	2024-10-28	2025-10-28

FREQUENCY RANGE INVESTIGATED

9 kHz TO 12.4 GHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AGRO0019-1

MODES INVESTIGATED

Tx, Low Ch. = 907 MHz, Mid Ch. = 915 MHz, High Ch. = 923 MHz, 5 MHz BW

Tx, Low Ch. = 909 MHz, Mid Ch. = 915 MHz, High Ch. = 921 MHz, 10 MHz BW

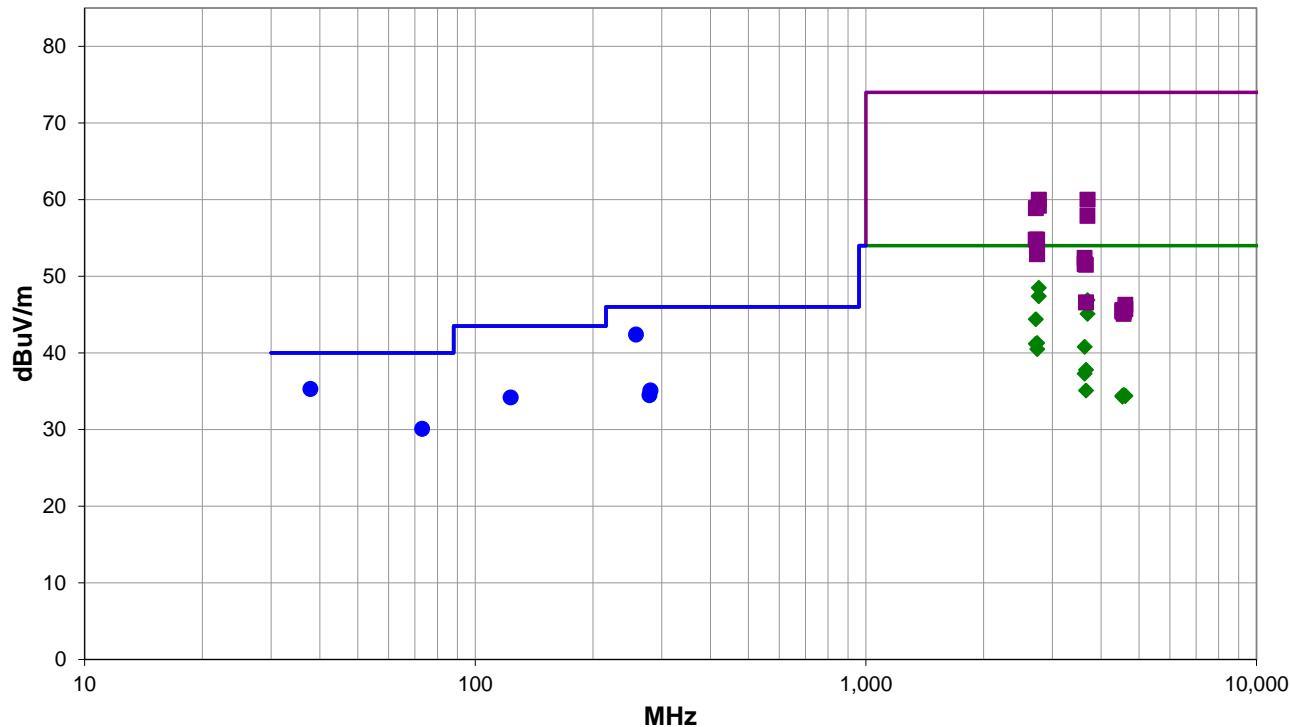
SPURIOUS RADIATED EMISSIONS

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	G88V3M86W7	Date:	2025-06-11
Customer:	Agility Robotics, Inc.	Temperature:	22.3°C
Attendees:	Kohl Kennedy	Relative Humidity:	42.6%
Customer Project:	None	Bar. Pressure (PMSL):	1015 mb
Tested By:	Jeff Alcocke	Job Site:	EV01
Power:	Battery	Configuration:	AGRO0019-1

TEST PARAMETERS

Run #:	6	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	---	--------------------	---	---------------------	-----------

COMMENTS


Please reference data comments below for channel

EUT OPERATING MODES

Tx, Low Ch. = 907 MHz, Mid Ch. = 915 MHz, High Ch. = 923 MHz, 5 MHz BW, Power = 20 dBm

DEVIATIONS FROM TEST STANDARD

None

Run #: 6

PK AV QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #6

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
257.823	44.1	-1.7	1.0	91.0	3.0	0.0	Vert	QP	0.0	42.4	46.0	-3.6	Mid Channel
37.826	32.5	2.8	1.0	233.0	3.0	0.0	Vert	QP	0.0	35.3	40.0	-4.7	Mid Channel
2770.017	51.5	-3.0	2.4	171.0	3.0	0.0	Horz	AV	0.0	48.5	54.0	-5.5	High Channel
2769.858	50.4	-3.0	1.0	258.0	3.0	0.0	Vert	AV	0.0	47.4	54.0	-6.6	High Channel
3691.958	43.8	3.1	1.5	181.0	3.0	0.0	Horz	AV	0.0	46.9	54.0	-7.1	High Channel
3692.083	42.0	3.1	1.2	170.0	3.0	0.0	Vert	AV	0.0	45.1	54.0	-8.9	High Channel
123.100	37.6	-3.4	1.8	260.0	3.0	0.0	Horz	QP	0.0	34.2	43.5	-9.3	Mid Channel
2722.350	47.7	-3.3	3.2	111.0	3.0	0.0	Horz	AV	0.0	44.4	54.0	-9.6	Low Channel
73.103	38.6	-8.5	2.5	104.0	3.0	0.0	Vert	QP	0.0	30.1	40.0	-9.9	Mid Channel
280.785	36.7	-1.6	1.0	89.0	3.0	0.0	Vert	QP	0.0	35.1	46.0	-10.9	Mid Channel
279.021	36.1	-1.6	2.4	296.0	3.0	0.0	Horz	QP	0.0	34.5	46.0	-11.5	Mid Channel
2743.833	44.5	-3.2	3.7	86.0	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	Mid Channel
2721.750	44.5	-3.3	1.5	211.0	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8	Low Channel
3629.967	38.3	2.5	1.5	183.0	3.0	0.0	Horz	AV	0.0	40.8	54.0	-13.2	Low Channel
2745.292	43.7	-3.2	1.0	215.0	3.0	0.0	Vert	AV	0.0	40.5	54.0	-13.5	Mid Channel
2771.467	63.0	-3.0	2.4	171.0	3.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0	High Channel
3692.225	56.9	3.1	1.5	181.0	3.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0	High Channel
2771.492	62.2	-3.0	1.0	258.0	3.0	0.0	Vert	PK	0.0	59.2	74.0	-14.8	High Channel
2722.875	62.2	-3.3	3.2	111.0	3.0	0.0	Horz	PK	0.0	58.9	74.0	-15.1	Low Channel
3690.058	54.8	3.1	1.2	170.0	3.0	0.0	Vert	PK	0.0	57.9	74.0	-16.1	High Channel
3660.542	34.9	2.9	1.5	127.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	Mid Channel
3629.742	34.8	2.5	1.1	100.0	3.0	0.0	Vert	AV	0.0	37.3	54.0	-16.7	Low Channel
3659.958	32.2	2.9	1.5	89.0	3.0	0.0	Vert	AV	0.0	35.1	54.0	-18.9	Mid Channel
2743.667	58.0	-3.2	3.7	86.0	3.0	0.0	Horz	PK	0.0	54.8	74.0	-19.2	Mid Channel
2721.158	58.1	-3.3	1.5	211.0	3.0	0.0	Vert	PK	0.0	54.8	74.0	-19.2	Low Channel
4569.292	28.6	5.9	1.5	275.0	3.0	0.0	Horz	AV	0.0	34.5	54.0	-19.5	Mid Channel
4567.292	28.6	5.9	2.0	247.0	3.0	0.0	Vert	AV	0.0	34.5	54.0	-19.5	Mid Channel
4535.758	28.6	5.8	1.5	171.0	3.0	0.0	Horz	AV	0.0	34.4	54.0	-19.6	Low Channel
4613.242	28.4	6.0	1.5	97.0	3.0	0.0	Horz	AV	0.0	34.4	54.0	-19.6	High Channel
4612.758	28.4	6.0	2.5	45.0	3.0	0.0	Vert	AV	0.0	34.4	54.0	-19.6	High Channel
4535.150	28.5	5.8	1.5	31.0	3.0	0.0	Vert	AV	0.0	34.3	54.0	-19.7	Low Channel
2743.417	56.1	-3.2	1.0	215.0	3.0	0.0	Vert	PK	0.0	52.9	74.0	-21.1	Mid Channel
3629.367	49.9	2.5	1.5	183.0	3.0	0.0	Horz	PK	0.0	52.4	74.0	-21.6	Low Channel
3629.925	49.1	2.5	1.1	100.0	3.0	0.0	Vert	PK	0.0	51.6	74.0	-22.4	Low Channel
3657.958	48.7	2.8	1.5	127.0	3.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	Mid Channel
3660.542	43.7	2.9	1.5	89.0	3.0	0.0	Vert	PK	0.0	46.6	74.0	-27.4	Mid Channel
4615.692	40.3	6.0	2.5	45.0	3.0	0.0	Vert	PK	0.0	46.3	74.0	-27.7	High Channel
4613.467	39.7	6.0	1.5	97.0	3.0	0.0	Horz	PK	0.0	45.7	74.0	-28.3	High Channel
4532.525	39.8	5.8	1.5	171.0	3.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	Low Channel
4570.750	39.5	5.9	2.0	247.0	3.0	0.0	Vert	PK	0.0	45.4	74.0	-28.6	Mid Channel

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4535.067	39.6	5.8	1.5	31.0	3.0	0.0	Vert	PK	0.0	45.4	74.0	-28.6	Low Channel
4566.583	39.2	5.9	1.5	275.0	3.0	0.0	Horz	PK	0.0	45.1	74.0	-28.9	Mid Channel

CONCLUSION

Pass

Tested By

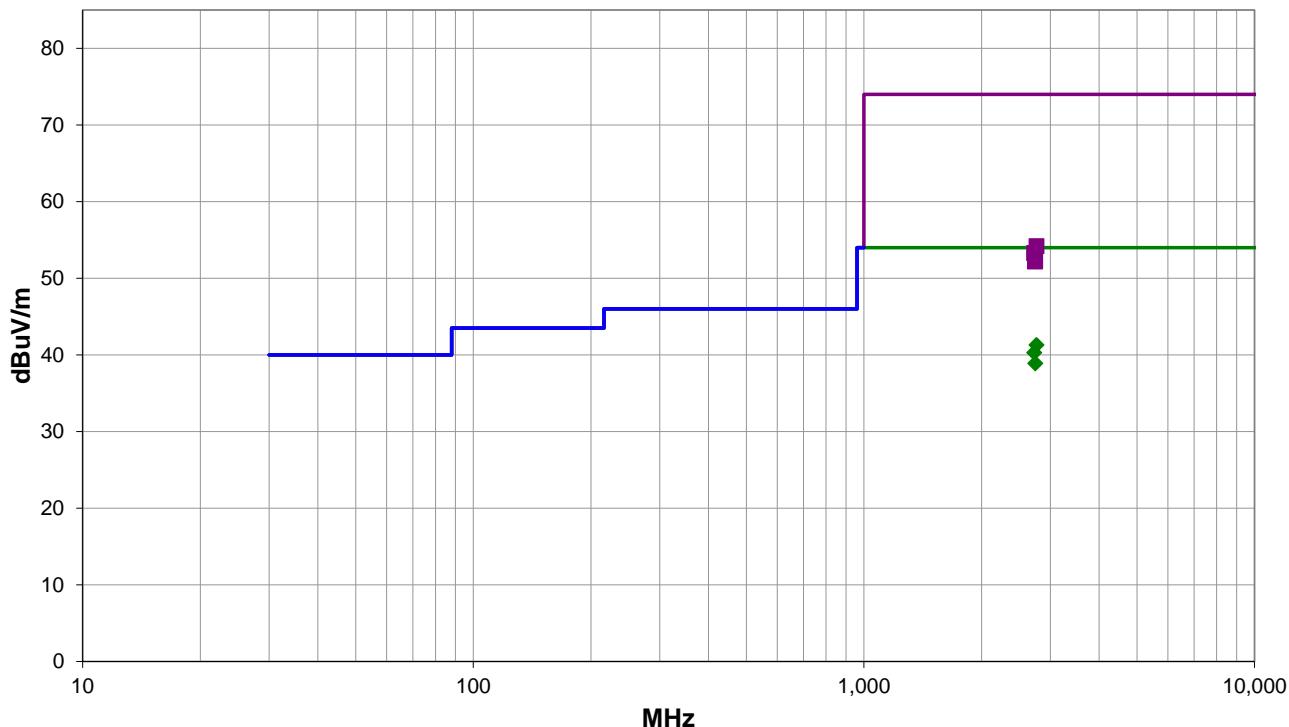
SPURIOUS RADIATED EMISSIONS

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	G88V3M86W7	Date:	2025-06-11
Customer:	Agility Robotics, Inc.	Temperature:	22.3°C
Attendees:	Kohl Kennedy	Relative Humidity:	42.6%
Customer Project:	None	Bar. Pressure (PMSL):	1015 mb
Tested By:	Jeff Alcocke	Job Site:	EV01
Power:	Battery	Configuration:	AGRO0019-1

TEST PARAMETERS

Run #:	7	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	---	--------------------	---	---------------------	-----------

COMMENTS


Measuring worst case harmonic

EUT OPERATING MODES

Tx, Low Ch. = 909 MHz, Mid Ch. = 915 MHz, High Ch. = 921 MHz, 10 MHz BW, Power = 20 dBm

DEVIATIONS FROM TEST STANDARD

None

Run #: 7

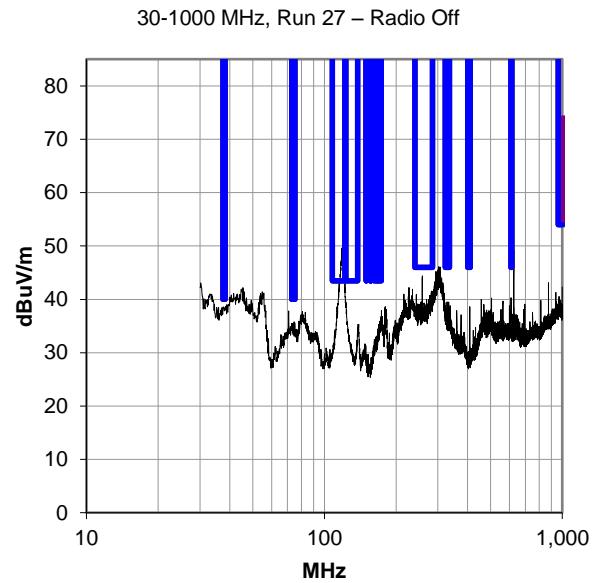
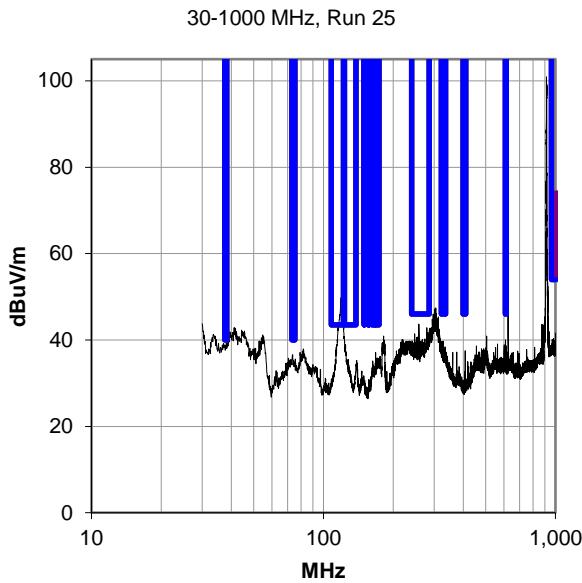
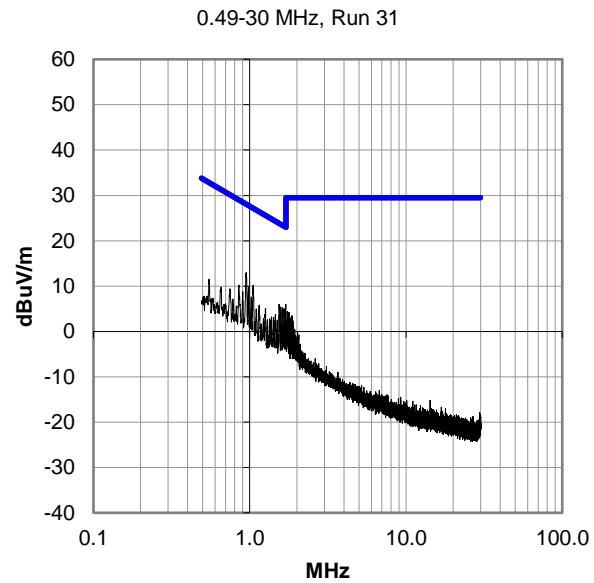
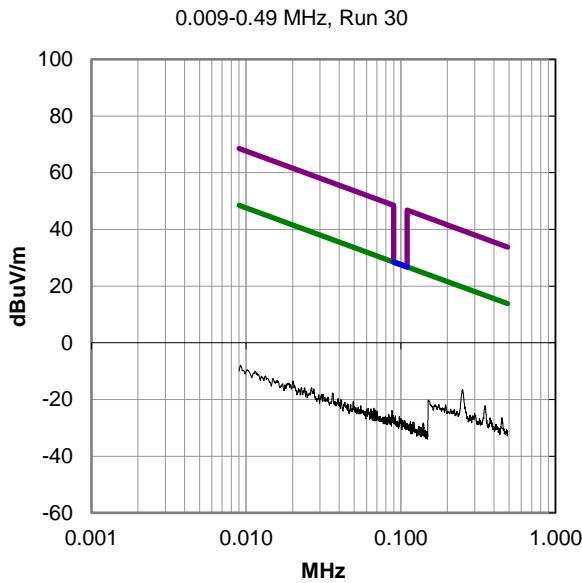
PK AV QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #7

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2765.500	44.3	-3.0	2.1	187.0	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	High Channel
2728.792	43.6	-3.3	1.5	184.0	3.0	0.0	Horz	AV	0.0	40.3	54.0	-13.7	Low Channel
2745.917	42.0	-3.1	3.7	133.0	3.0	0.0	Horz	AV	0.0	38.9	54.0	-15.1	Mid Channel
2765.583	57.2	-3.0	2.1	187.0	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	High Channel
2729.458	56.6	-3.3	1.5	184.0	3.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	Low Channel
2741.750	55.5	-3.3	3.7	133.0	3.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	Mid Channel

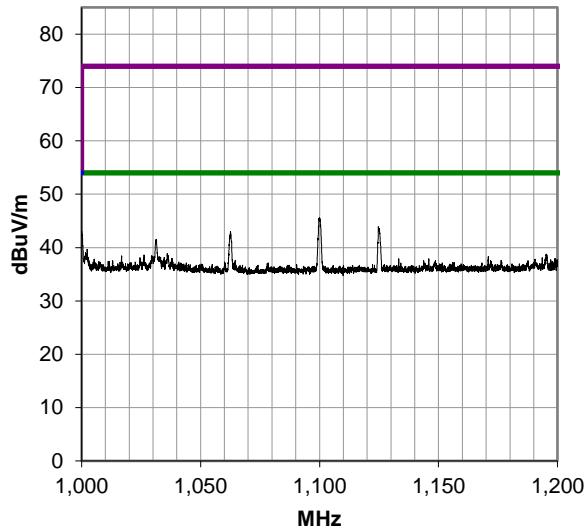
CONCLUSION

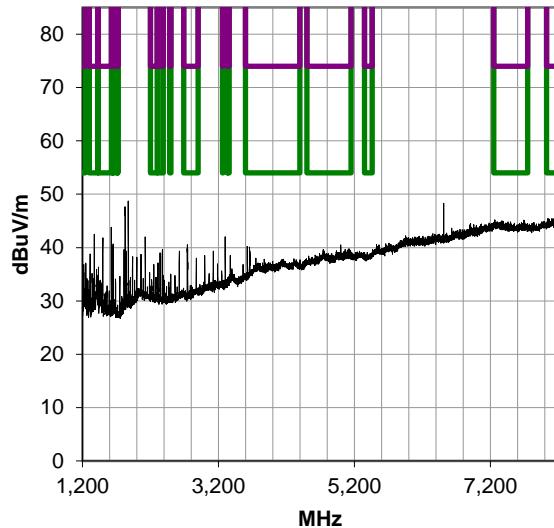




Pass

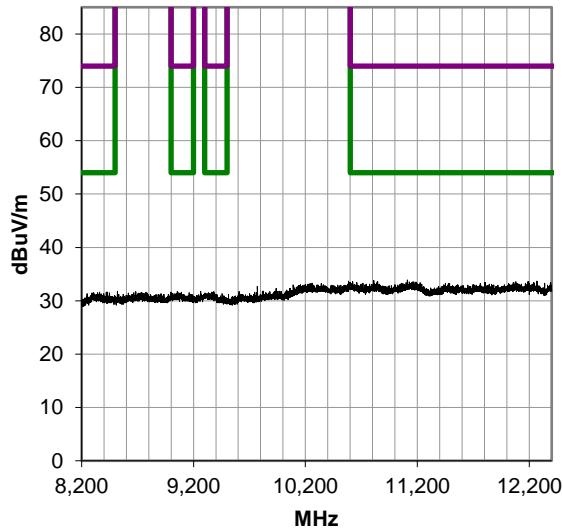
Tested By

SPURIOUS RADIATED EMISSIONS

PRESCAN DATA


Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.


SPURIOUS RADIATED EMISSIONS


1000-1200 MHz, Run 37

1200-8200 MHz, Run 3

8200-12400 MHz, Run 4

SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

TEST DESCRIPTION

A comparison of the transmit frequencies and harmonics of the radios in the EUT that could simultaneously transmit was performed. The comparison identified any frequencies or harmonics that overlap. Those modes were investigated for any non-compliance due to frequency mixing.

For each mode, the spectrum was investigated throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on any individual emissions from frequency mixing found in the preview scans were collected and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter were used to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

PK = Peak Detector
AV = RMS Detector

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2024-11-25	2025-11-25
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	2024-03-08	2026-03-08
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	2025-01-23	2026-01-23
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	2025-01-23	2026-01-23
Antenna - Standard Gain	ETS Lindgren	3160-09	AVI	2025-01-23	2026-01-23
Antenna - Standard Gain	ETS Lindgren	3160-10	AIW	2025-01-23	2026-01-23
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2024-10-28	2025-10-28
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2024-10-28	2025-10-28
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2024-10-28	2025-10-28
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	2025-04-27	2026-04-27
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	PAE	2025-04-25	2026-04-25
Cable	N/A	Double Ridge Horn Cables	EVB	2025-05-02	2026-05-02
Cable	None	Standard Gain Horn Cables	EVF	2024-10-28	2025-10-28
Cable	ESM Cable Corp.	TTBJ141-KMKG-72	EVY	2025-04-27	2026-04-27
Cable	ESM Cable Corp.	KNKN-72 SMA Cable	EVZ	2025-04-25	2026-04-25
Filter - High Pass	Micro-Tronics	HPM50111	HFO	2024-10-28	2025-10-28
Filter - High Pass	Micro-Tronics	HPM50108	HFV	2024-10-28	2025-10-28

FREQUENCY RANGE INVESTIGATED: 900 MHz SRD and 2.4 GHz Wi-Fi

2.8 GHz TO 26.5 GHz

FREQUENCY RANGE INVESTIGATED: 900 MHz SRD and 6 GHz Wi-Fi

1.2 GHz TO 40 GHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AGRO0019-3

SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

MODES INVESTIGATED: 900 MHz SRD and 2.4 GHz WiFi

Tx, High Ch. = 923 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain A, High Ch. = 2462 MHz, 6 Mbps, PWR = 16.5 dBm
Tx, High Ch. = 923 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain B, High Ch. = 2462 MHz, 6 Mbps, PWR = 16.5 dBm
Tx, Low Ch. = 907 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain A, Low Ch. = 2412 MHz, 6 Mbps, PWR = 16.5 dBm
Tx, Low Ch. = 907 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain B, Low Ch. = 2412 MHz, 6 Mbps, PWR = 16.5 dBm
Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain A, Mid Ch. = 2437 MHz, 6 Mbps, PWR = 20 dBm
Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain B, Mid Ch. = 2437 MHz, 6 Mbps, PWR = 20 dBm
Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm, 2.4 GHz WiFi = idle
900 MHz SRD idle and 802.11g, Chain A, Mid Ch. = 2437 MHz, 6 Mbps, Power = 20 dBm

*MODES INVESTIGATED: 900 MHz SRD and 6 GHz WiFi

Tx, High Ch. = 923 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain A, Ch. 9 = 5995 MHz, 6 Mbps, PWR = 4.5 dBm
Tx, High Ch. = 923 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain B, Ch. 9 = 5995 MHz, 6 Mbps, PWR = 4.5 dBm
Tx, Low Ch. = 907 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain A, Ch. 81 = 6335 MHz, 6 Mbps, PWR = 4.5 dBm
Tx, Low Ch. = 907 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain B, Ch. 81 = 6355 MHz, 6 Mbps, PWR = 4.5 dBm
Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain A, Ch. 181 = 6855 MHz, 6 Mbps, PWR = 3.75 dBm
Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain B, Ch. 181 = 6855 MHz, 6 Mbps, PWR = 3.75 dBm

*No emissions were noted.

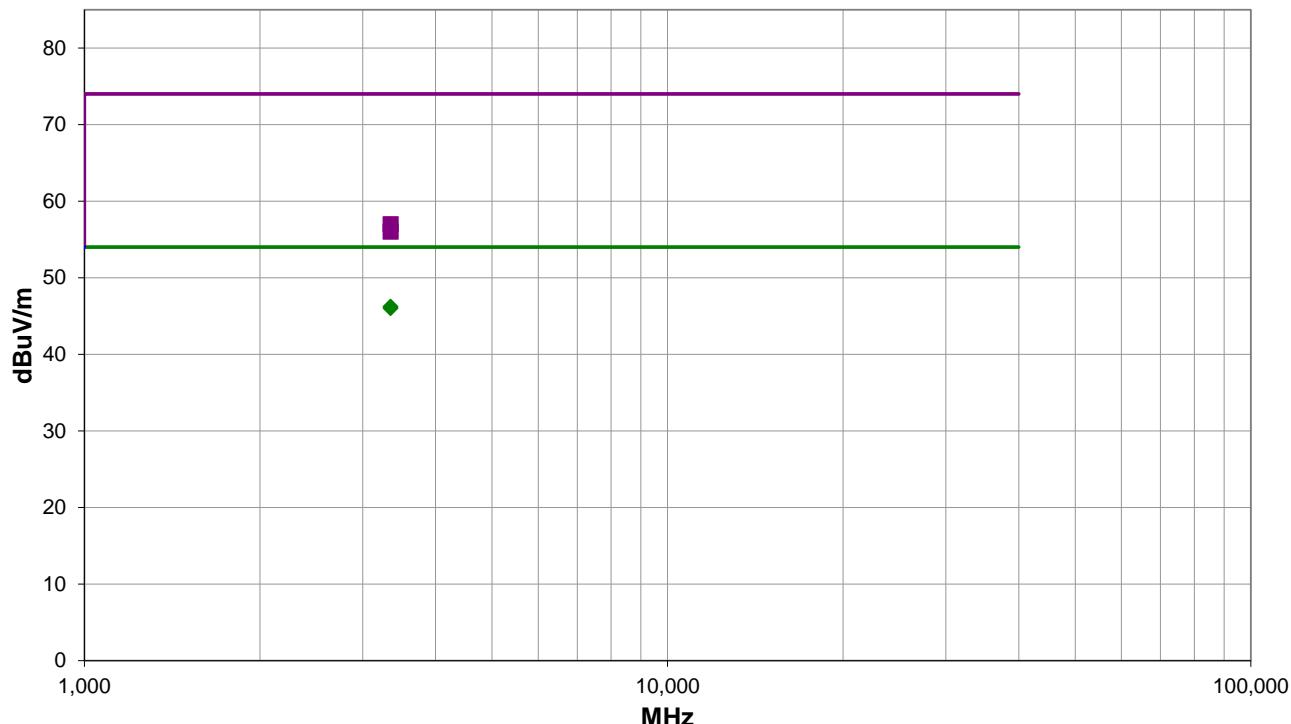
SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	G88V3M86W7	Date:	2025-06-18
Customer:	Agility Robotics, Inc.	Temperature:	22.7°C
Attendees:	Kohl Kennedy	Relative Humidity:	43.4%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jeff Alcocke	Job Site:	EV01
Power:	Battery	Configuration:	AGRO0019-3

TEST PARAMETERS

Run #:	79	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


None

EUT OPERATING MODES

Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain A, Mid Ch. = 2437 MHz, 6 Mbps, Power = 20 dBm

DEVIATIONS FROM TEST STANDARD

None

Run #: 79

PK AV QP

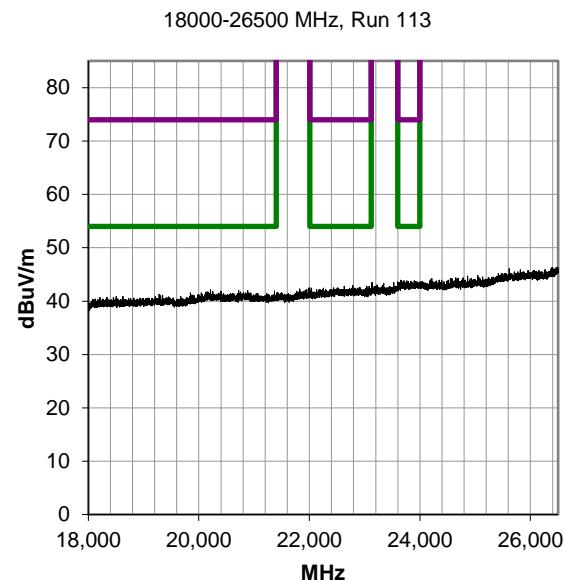
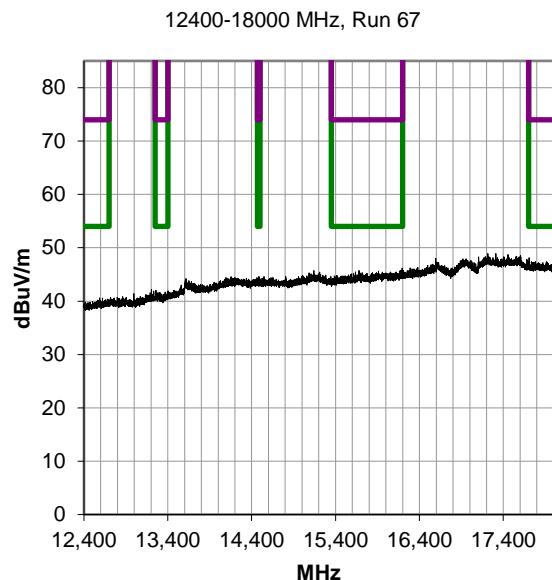
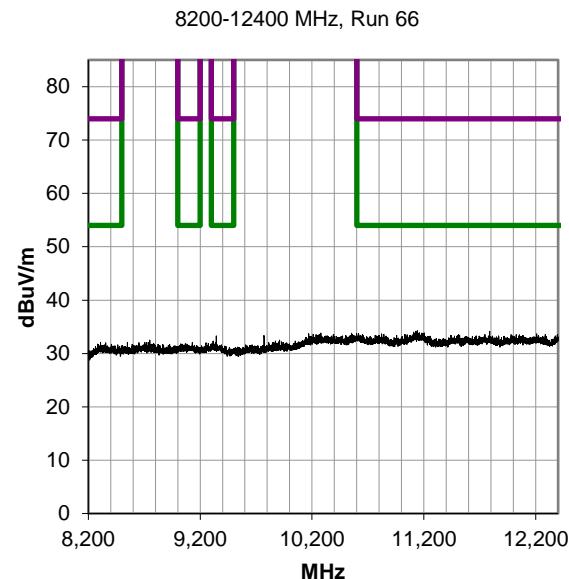
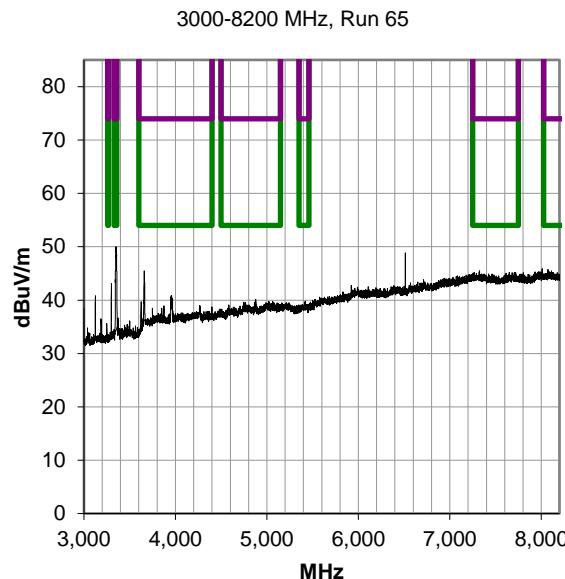
SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

RESULTS - Run #79

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3351.300	45.3	0.9	1.5	190.0	3.0	0.0	Horz	AV	0.0	46.2	54.0	-7.8
3350.500	45.1	0.9	1.5	256.0	3.0	0.0	Vert	AV	0.0	46.0	54.0	-8.0
3350.875	56.1	0.9	1.5	256.0	3.0	0.0	Vert	PK	0.0	57.0	74.0	-17.0
3351.700	55.1	0.9	1.5	190.0	3.0	0.0	Horz	PK	0.0	56.0	74.0	-18.0

CONCLUSION

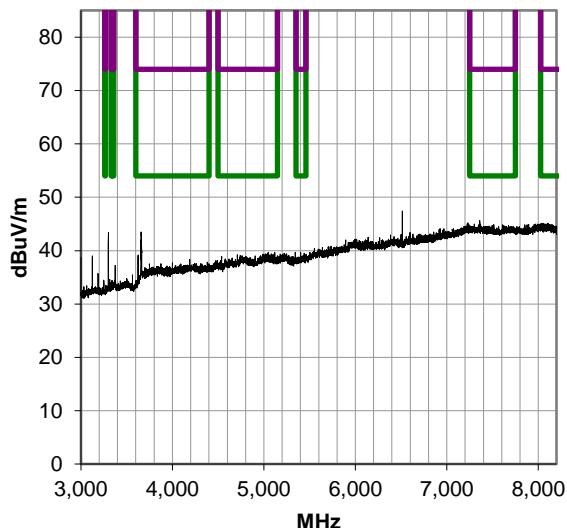
Pass

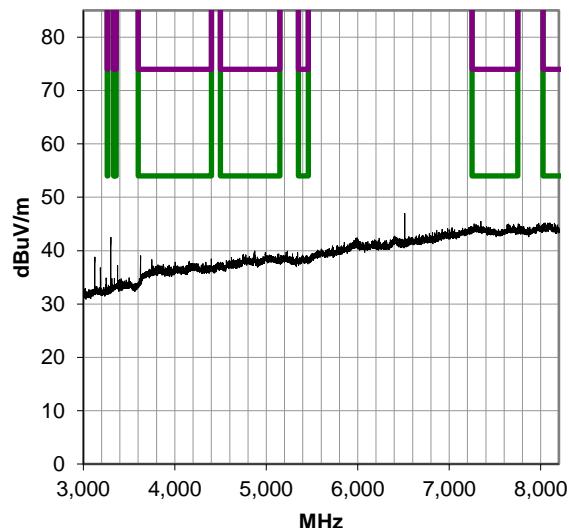




Tested By

SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

PRESCAN DATA:

Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11g, Chain A, Mid Ch. = 2437 MHz, 6 Mbps, Power = 20 dBm

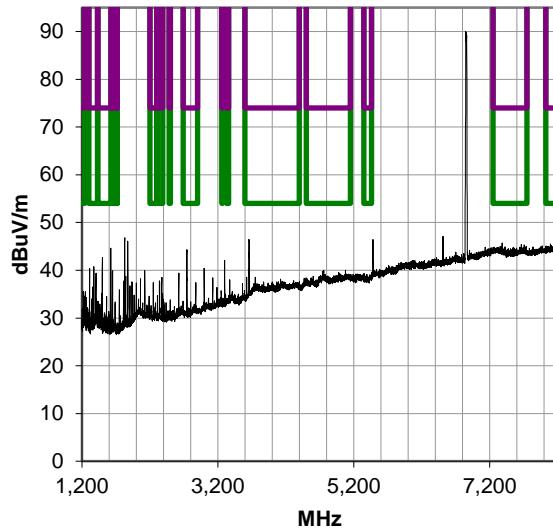

Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.


SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

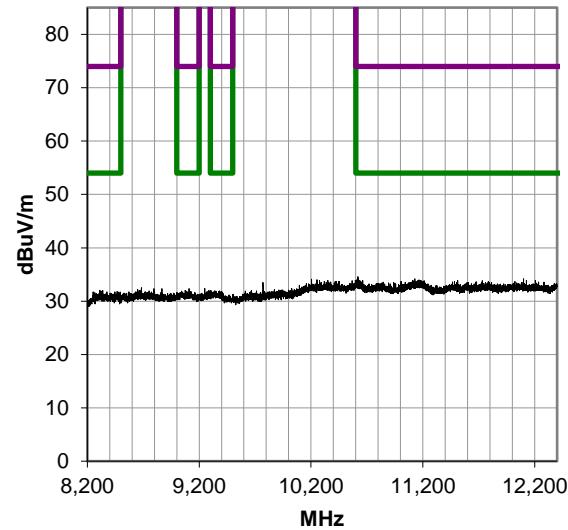
3000-8200 MHz, Run 80: 900 MHz SRD only

3000-8200 MHz, Run 81: WiFi only

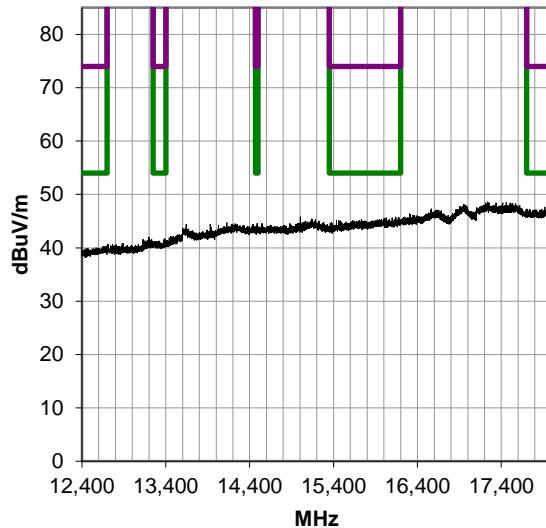
SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

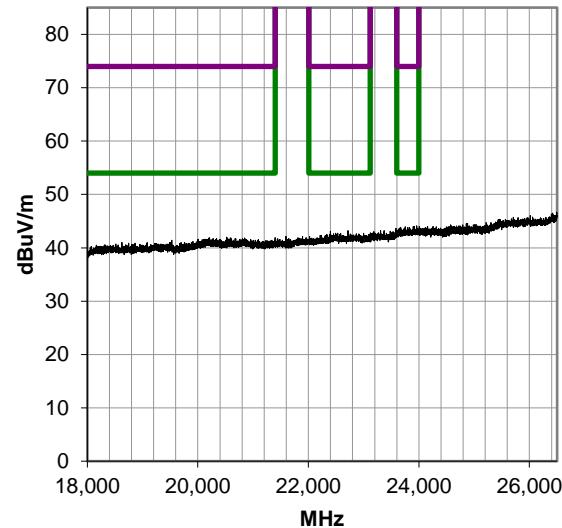


PRESCAN DATA:

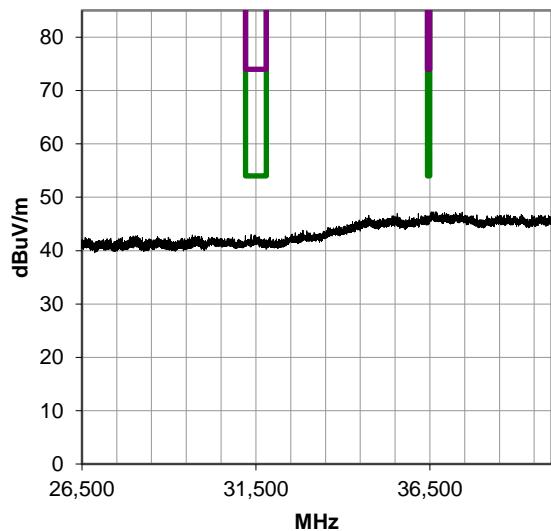

Tx, Mid Ch. = 915 MHz, 5 MHz BW, Power = 20dBm and 802.11ax, Chain A, Ch. 181 = 6855 MHz, 6 Mbps, PWR = 3.75 dBm

Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.


1200-8200 MHz, Run 89


8200-12400 MHz, Run 90

12400-18000 MHz, Run 91


18000-26500 MHz, Run 106

SPURIOUS RADIATED EMISSIONS – SIMULTANIOUS TRANSMISSIONS

26500-40000 MHz, Run 124

OUTPUT POWER

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Per ANSI C63.10:2020, Clause 11.9.2.3.2 Method AVGPM-G: The measurement was made using a direct connection between the RF output of the EUT and a RF Power Sensor capable of 1 million samples per second, which only measures across the high time of the burst of the carrier. The measured level was offset by the cable loss, attenuator, and DC block that was used between the power sensor and EUT. This offset was determined prior to testing using a signal generator and spectrum analyzer.

The duty cycle was also measured and reported.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2024-11-25	2025-11-25
Generator - Signal	Agilent	N5181A	TIG	2023-04-18	2026-04-18
Attenuator	S.M. Electronics	SA26B-20	AUY	2025-03-21	2026-03-21
Block - DC	Fairview Microwave	SD3379	AMU	2025-05-09	2026-05-09
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2025-03-21	2026-03-21
Meter - Power	ETS Lindgren	7002-006	SRF	2024-12-19	2025-12-19

OUTPUT POWER

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	00301A3AF371	Date:	2025-06-17
Customer:	Agility Robotics, Inc.	Temperature:	22.9°C
Attendees:	Kohl Kennedy	Relative Humidity:	37.4%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Jeff Alcocke	Job Site:	EV06
Power:	Battery	Configuration:	AGRO0019-2

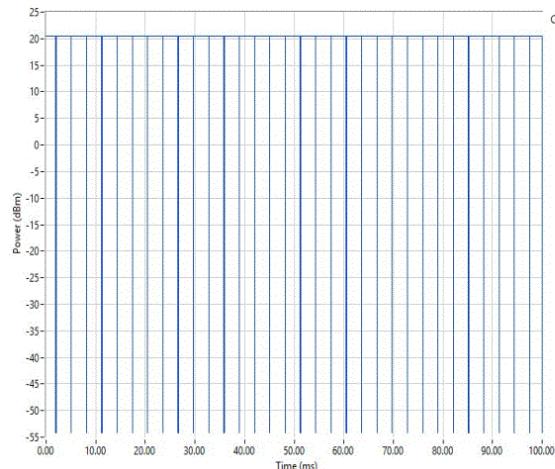
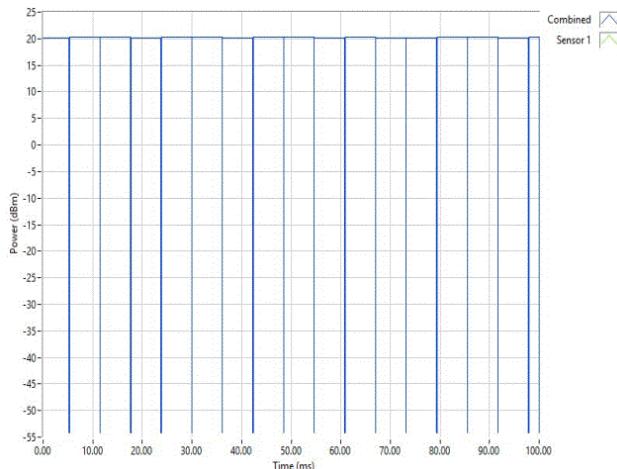
COMMENTS

For ease of access to the antenna port, the radio module was removed from the host product and tested on the bench.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION



Pass

Tested By

TEST RESULTS

				Avg Cond Pwr (dBm)	Duty Cycle (%)	Cond. Limit (dBm)	Result
5 MHz BW							
	Low Channel, 907 MHz			20.26	98.702	30	Pass
	Mid Channel, 915 MHz			19.21	98.702	30	Pass
	High Channel, 923 MHz			19.017	98.701	30	Pass
10 MHz BW							
	Low Channel, 909 MHz			20.55	98.859	30	Pass
	Mid Channel, 915 MHz			19.07	98.858	30	Pass
	High Channel, 921 MHz			18.105	98.854	30	Pass

OUTPUT POWER

BAND EDGE COMPLIANCE

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge. The analyzer screen captures for this test show an example of the emission mask for the test mode also used during the radiated spurious emissions at the restricted band edges test.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2024-11-25	2025-11-25
Attenuator	S.M. Electronics	SA26B-20	AUY	2025-03-21	2026-03-21
Block - DC	Fairview Microwave	SD3379	AMU	2025-05-09	2026-05-09
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2025-03-21	2026-03-21
Generator - Signal	Agilent	N5181A	TIG	2023-04-18	2026-04-18

BAND EDGE COMPLIANCE

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	00301A3AF371	Date:	2025-06-17
Customer:	Agility Robotics, Inc.	Temperature:	23°C
Attendees:	Kohl Kennedy	Relative Humidity:	37.7%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Jeff Alcocke	Job Site:	EV06
Power:	Battery	Configuration:	AGRO0019-2

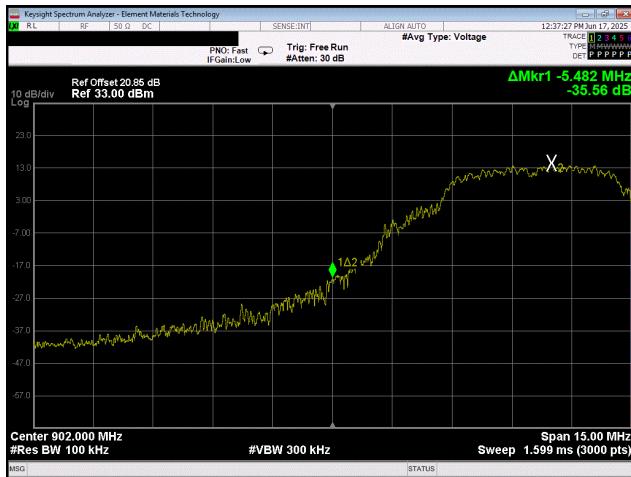
COMMENTS

For ease of access to the antenna port, the radio module was removed from the host product and tested on the bench.

DEVIATIONS FROM TEST STANDARD

None

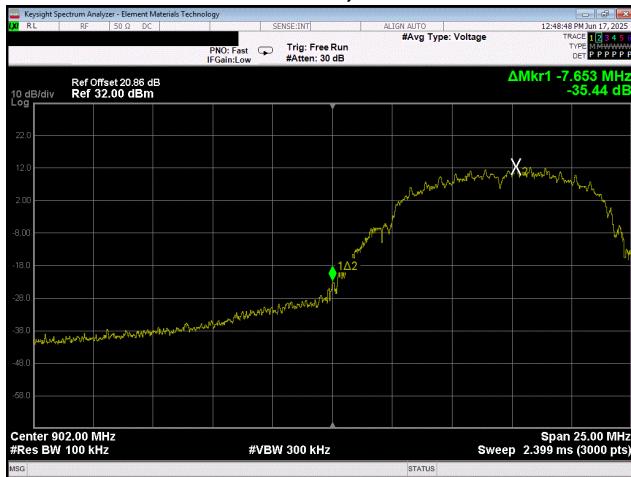
CONCLUSION

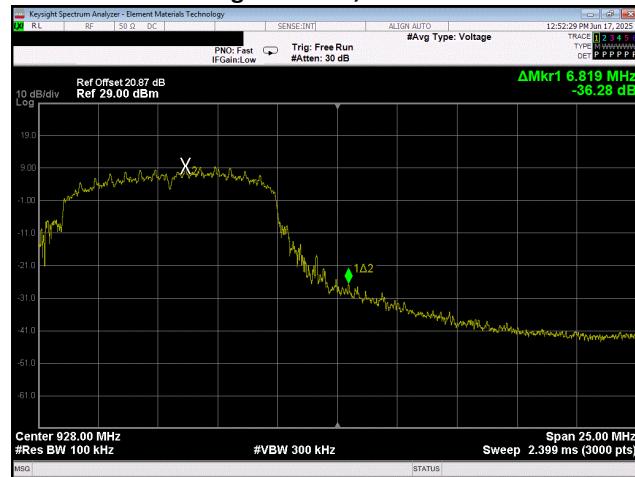

Pass

Tested By


TEST RESULTS

		Value (dBc)	Limit ≤ (dBc)	Result
5 MHz BW	Low Channel, 907 MHz	-35.56	-30	Pass
	High Channel, 923 MHz	-33.4	-30	Pass
10 MHz BW	Low Channel, 909 MHz	-35.44	-30	Pass
	High Channel, 921 MHz	-36.28	-30	Pass


BAND EDGE COMPLIANCE


5 MHz BW
Low Channel, 907 MHz

5 MHz BW
High Channel, 923 MHz

10 MHz BW
Low Channel, 909 MHz

10 MHz BW
High Channel, 921 MHz

OCCUPIED BANDWIDTH

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2020, 6.9.3, the spectrum analyzer was configured as follows:

Sweep time: Auto

Resolution Bandwidth: 1% to 5% of the OBW

Video Bandwidth: $\geq 3 * \text{RBW}$

Trace: Max Hold

Span: Large enough to capture all products of the modulation process, including the emission skirts.

A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2024-11-25	2025-11-25
Generator - Signal	Agilent	N5181A	TIG	2023-04-18	2026-04-18
Attenuator	S.M. Electronics	SA26B-20	AUY	2025-03-21	2026-03-21
Block - DC	Fairview Microwave	SD3379	AMU	2025-05-09	2026-05-09
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2025-03-21	2026-03-21

OCCUPIED BANDWIDTH

EUT:	RM-1700-21N3	Work Order:	AGRO0019
Serial Number:	00301A3AF371	Date:	2025-06-17
Customer:	Agility Robotics, Inc.	Temperature:	23°C
Attendees:	Kohl Kennedy	Relative Humidity:	37.6%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Jeff Alcocke	Job Site:	EV06
Power:	Battery	Configuration:	AGRO0019-2

COMMENTS

For ease of access to the antenna port, the radio module was removed from the host product and tested on the bench.

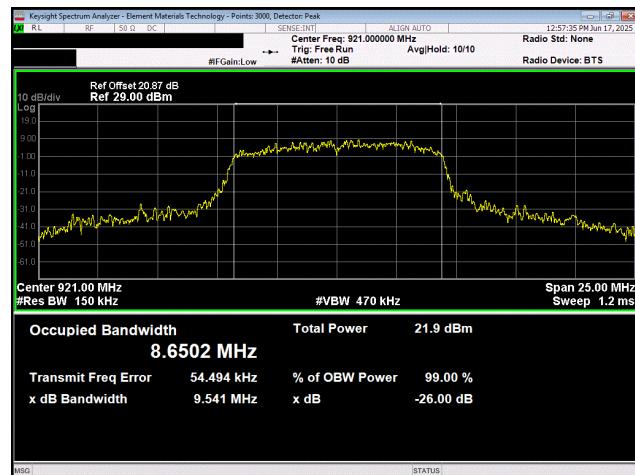
DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

N/A

Tested By


TEST RESULTS

	Value	Limit	Result
5 MHz BW			
Low Channel, 907 MHz	5.811 MHz	N/A	N/A
Mid Channel, 915 MHz	5.868 MHz	N/A	N/A
High Channel, 923 MHz	5.876 MHz	N/A	N/A
10 MHz BW			
Low Channel, 909 MHz	8.582 MHz	N/A	N/A
Mid Channel, 915 MHz	8.619 MHz	N/A	N/A
High Channel, 921 MHz	8.65 MHz	N/A	N/A

OCCUPIED BANDWIDTH

5 MHz BW
High Channel, 923 MHz

10 MHz BW
High Channel, 921 MHz

End of Test Report