

TEST REPORT

Product Name : Rugged feature phone
Brand Name : ioutdoor
Model : L502
Series Model : N/A
FCC ID : 2BKL6-L502
Applicant : **Shenzhen Tianlong Century Technology Development Co.,Ltd**
3F, 5F, Industrial Building, No.1, Quanxinyuan Industrial Zone,
Address : Tongsheng Community, Dalang Street, Longhua District,
Shenzhen
Manufacturer : **Shenzhen Tianlong Century Technology Development Co.,Ltd**
3F, 5F, Industrial Building, No.1, Quanxinyuan Industrial Zone,
Address : Tongsheng Community, Dalang Street, Longhua District,
Shenzhen
Standard(s) : FCC CFR Title 47 Part 15 Subpart C Section 15.225
Date of Receipt : May.09, 2025
Date of Test : May.09, 2025~ Jun.13, 2025
Issued Date : Jun.13, 2025

Issued By: **Guangdong Asia Hongke Test Technology Limited**
B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street,
Bao'an District, Shenzhen, Guangdong, China
Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Reviewed by: Leon.Yi
Leon.yi

Approved by: Sean She
Sean She

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Report Revise Record

Report Version	Issued Date	Notes
M1	Jun.13, 2025	Initial Release

Contents

1 TEST SUMMARY.....	4
1.1 TEST STANDARDS	4
1.2 TEST SUMMARY.....	4
1.3 TEST FACILITY	5
1.4 MEASUREMENT UNCERTAINTY.....	5
2 GENERAL INFORMATION	6
2.1 ENVIRONMENTAL CONDITIONS.....	6
2.2 GENERAL DESCRIPTION OF EUT	6
2.3 SPECIAL ACCESSORIES	7
2.4 EQUIPMENT LIST FOR THE TEST.....	7
3 TEST CONDITIONS AND RESULTS.....	9
3.1 CONDUCTED EMISSIONS TEST.....	9
3.2 RADIATED EMISSIONS	12
3.3 20DB BANDWIDTH	17
3.4 FREQUENCY STABILITY.....	18
4 TEST SETUP PHOTOGRAPHS OF EUT	20
5 PHOTOS OF EUT.....	21

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

[FCC Rules Part 15.225](#): Operation within the band 13.110–14.010 MHz

[ANSI C63.10: 2013](#): American National Standard for Testing Unlicensed Wireless Devices

1.2 Test Summary

FCC PART 15 .225		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 2.1049	20dB Bandwidth	PASS
FCC Part 15.225(a) (b) (c)	In-band Emissions	PASS
FCC Part 15.225(d)/15.209	Out-of-band Emissions	PASS
FCC Part 15.225(e)	Frequency Stability Tolerance	PASS

1.3 Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	9KHz~30MHz ± 1.20 dB	(1)
Radiated Emission	9KHz~30MHz ± 3.10 dB	(1)
Radiated Emission	30MHz~1GHz ± 3.75 dB	(1)
Radiated Emission	1GHz~18GHz ± 3.88 dB	(1)
Radiated Emission	18GHz-40GHz ± 3.88 dB	(1)
RF power, conducted	30MHz~6GHz ± 0.16 dB	(1)
RF power density, conducted	± 0.24 dB	(1)
Spurious emissions, conducted	± 0.21 dB	(1)
Temperature	± 1 °C	(1)
Humidity	± 3 %	(1)
DC and low frequency voltages	± 1.5 %	(1)
Time	± 2 %	(1)
Duty cycle	± 2 %	(1)

The report uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Rugged feature phone
Model/Type reference:	L502
Serial Model:	N/A
Power Supply:	Input: DC 5V--2A DC 3.8V from Rechargeable Li-ion battery
Adapter information:	Model: HJ-050200-US Input: 100-240V~ 50/60Hz 0.3A Output: 5.0V--2.0A 10.0W
Hardware Version:	S935_MB_V1.0
Software Version:	N/A
Sample(s) Status:	AiTSZ-250509017-1(Normal sample) AiTSZ-250509017-2(Engineer sample)

NFC:

Operation frequency:	13.56MHz
Modulation :	ASK
No. of Channel :	1
Antenna type:	Loop Antenna

Remark:

The above DUT's information was declared by manufacturer. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual..

2.3 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
/	/	/	/	/	/
/	/	/	/	/	/

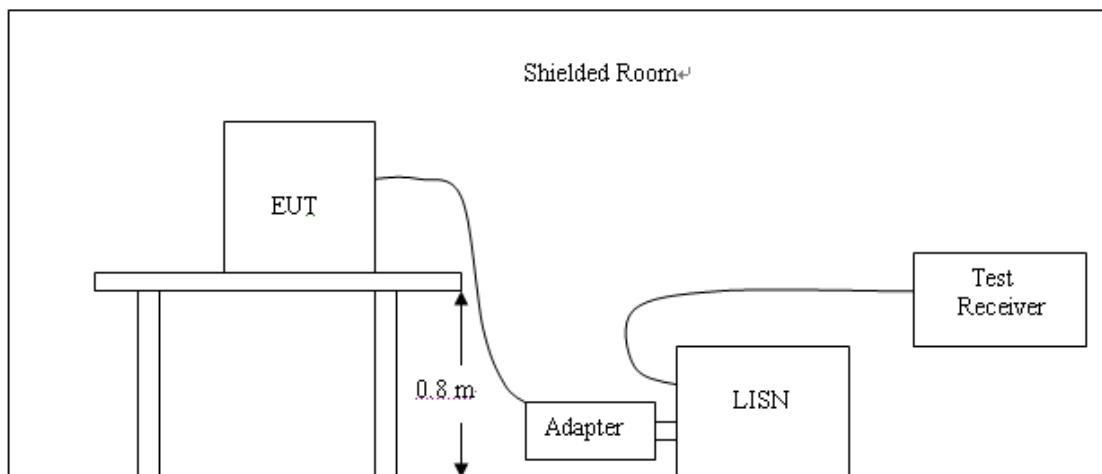
2.4 Equipment List for the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	EMI Measuring Receiver	R&S	ESR	101160	2024.09.25	2025.09.24
2	Spectrum Analyzer	R&S	FSV40	101470	2024.09.23	2025.09.22
3	Low Noise Pre Amplifier	SCHWARZBECK	BBV 9745	00282	2024.09.25	2025.09.24
4	Low Noise Pre Amplifier	CESHENG	CSKJLNA23101 6A	CSKJLNA231016 A	2024.09.25	2025.09.24
5	Passive Loop	ETS	6512	00165355	2024.08.29	2027.08.28
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9168	01434	2024.08.29	2027.08.28
7	Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	452	2024.08.29	2027.08.28
8	Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367	2024.08.28	2027.08.27
9	6dB Attenuator	JFW	50FPE-006	4360846-949-1	2024.09.24	2025.09.23
10	EMI Test Receiver	R&S	ESPI	100771	2024.09.25	2025.09.24
11	LISN	R&S	NNLK 8129	8130179	2024.09.24	2025.09.23
12	LISN	R&S	ESH3-Z5	892785/016	2024.09.23	2025.09.22
13	Pulse Limiter	R&S	ESH3-Z2	102789	2024.09.24	2025.09.23
14	RF Automatic Test system	TST	TSTPASS	21033016	2024.09.25	2025.09.24
15	Vector Signal Generator	Agilent	N5182A	MY50143009	2024.09.25	2025.09.24
16	Analog signal generator	Agilent	E8257	MY51554256	2024.09.25	2025.09.24
17	Spectrum Analyzer	Agilent	N9020A	MY51289843	2024.09.25	2025.09.24
18	Spectrum Analyzer	Agilent	N9020A	MY53421570	2024.09.25	2025.09.24
19	Power Sensor	Agilent	8481A	MY41097697	2024.09.25	2025.09.24
20	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2024.09.24	2025.09.23
21	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	2024.09.24	2025.09.23
22	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
23	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A

24	RF Software	TST	TSTPASS	Version 2.0	N/A	N/A
25	RF Software	cesheng	WCS-WCN	Version 2024.6.20	N/A	N/A
26	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3 TEST CONDITIONS AND RESULTS

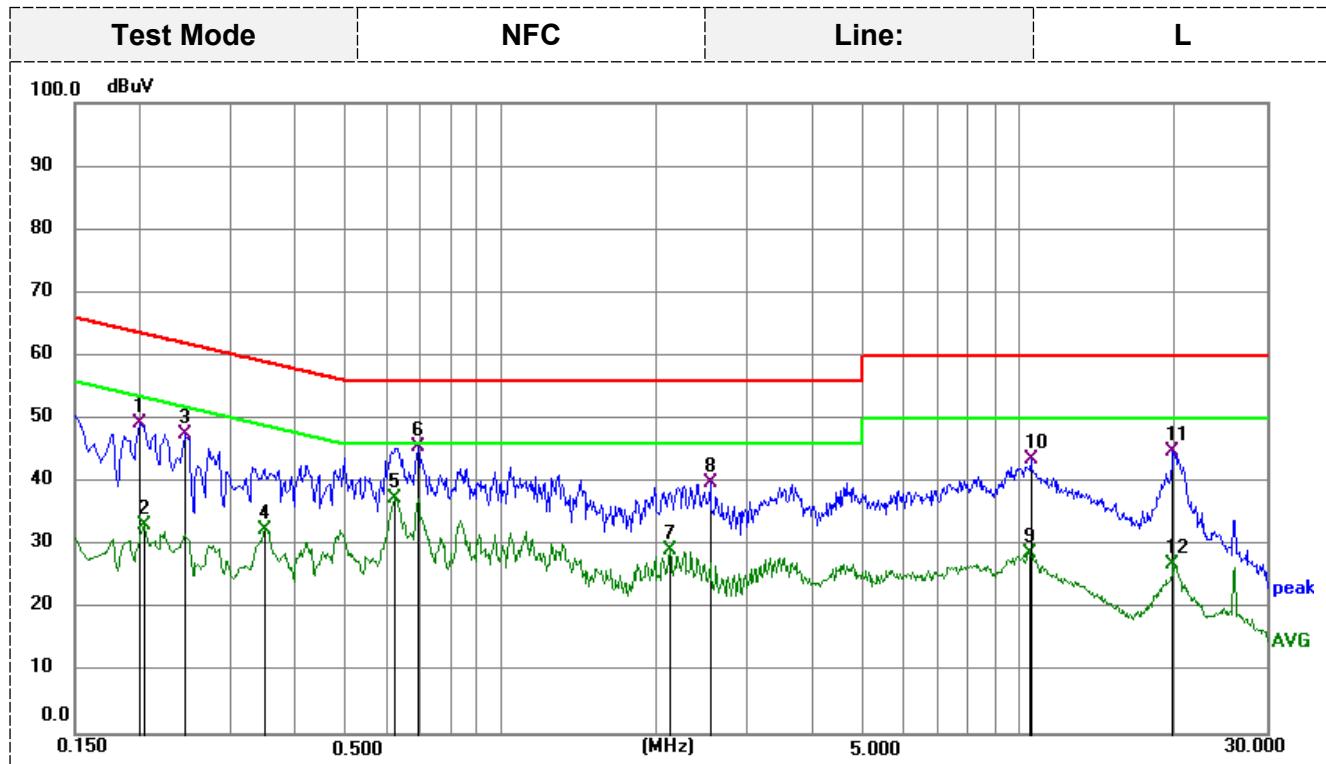

3.1 Conducted Emissions Test

LIMIT

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

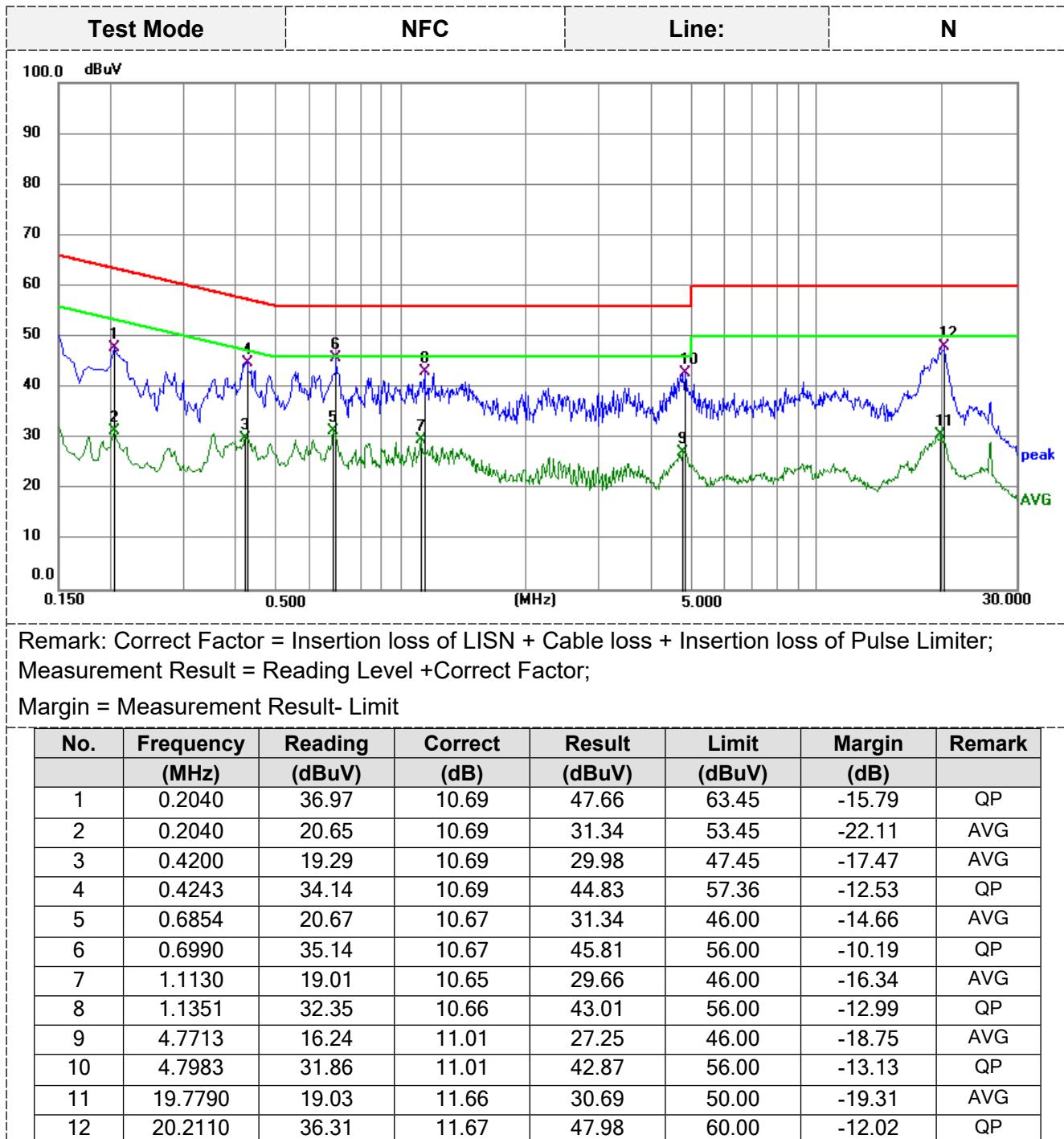
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION



TEST PROCEDURE

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
8. During the above scans, the emissions were maximized by cable manipulation.


TEST RESULTS

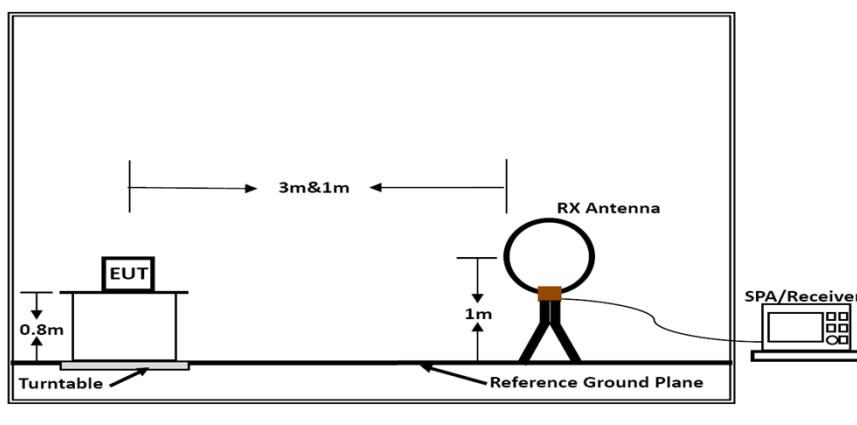
Remark: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter;
Measurement Result = Reading Level +Correct Factor;
Margin = Measurement Result- Limit

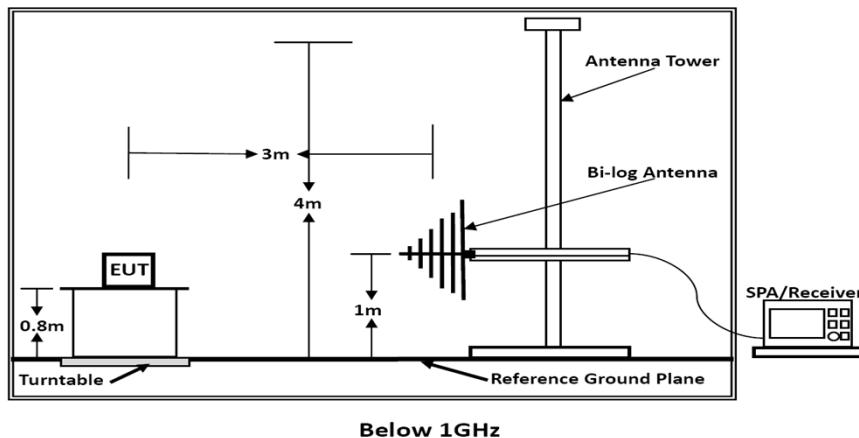
No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1995	38.52	10.70	49.22	63.63	-14.41	QP
2	0.2040	22.52	10.70	33.22	53.45	-20.23	AVG
3	0.2444	36.79	10.70	47.49	61.95	-14.46	QP
4	0.3480	21.80	10.69	32.49	49.01	-16.52	AVG
5	0.6238	26.76	10.68	37.44	46.00	-8.56	AVG
6	0.6900	34.78	10.68	45.46	56.00	-10.54	QP
7	2.1210	18.48	10.78	29.26	46.00	-16.74	AVG
8	2.5304	28.99	10.79	39.78	56.00	-16.22	QP
9	10.5000	17.58	11.10	28.68	50.00	-21.32	AVG
10	10.5495	32.49	11.10	43.59	60.00	-16.41	QP
11	19.7561	33.15	11.71	44.86	60.00	-15.14	QP
12	19.7561	15.16	11.71	26.87	50.00	-23.13	AVG

3.2 Radiated Emissions

Limit


- a The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- b Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d The field strength of any emissions appearing outside of the 13.110– 14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (μ V/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-13.110	3	69.54	30
13.110-13.410	3	80.50	106
13.410-13.553	3	90.47	334
13.553-13.567	3	124.00	15848
13.567-13.710	3	90.47	334
13.710-14.010	3	80.50	106
14.010-30.0	3	69.54	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Test Procedure

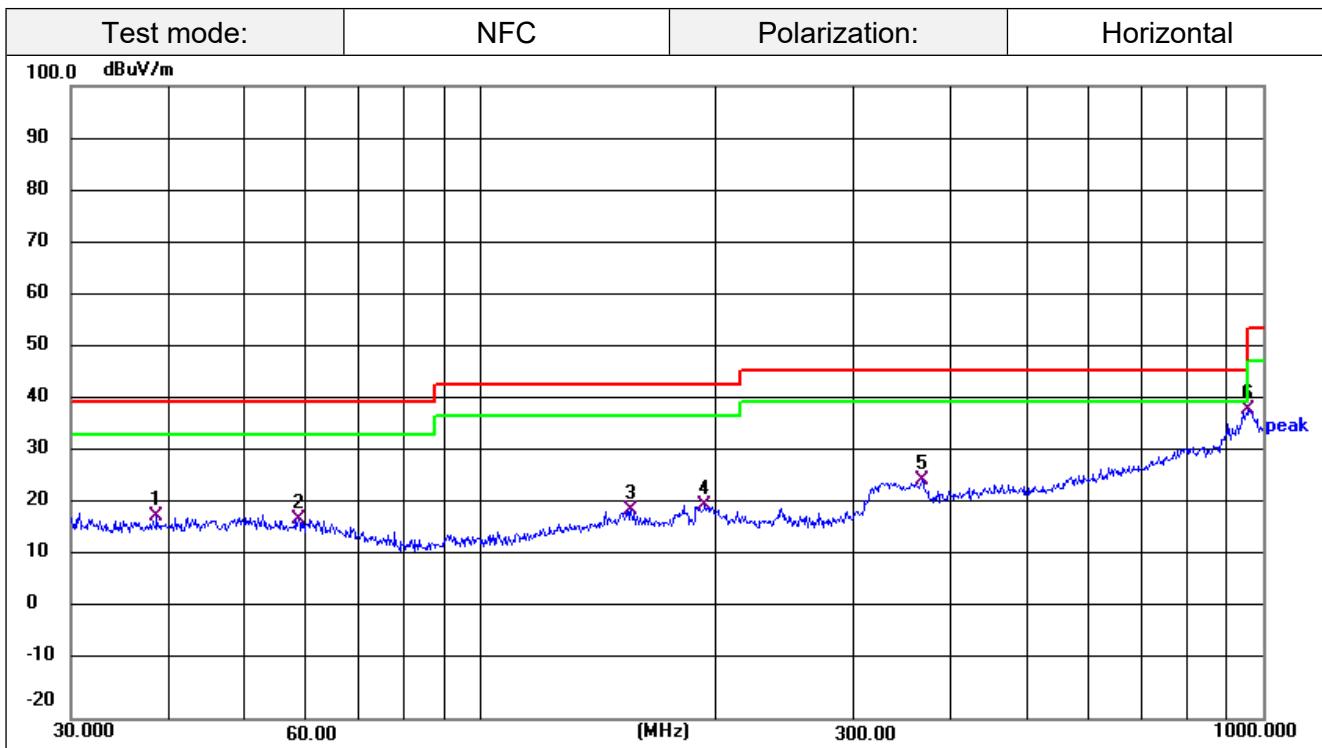
1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. Radiated emission test frequency band from 9KHz to 1GHz.
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

TEST RESULTS

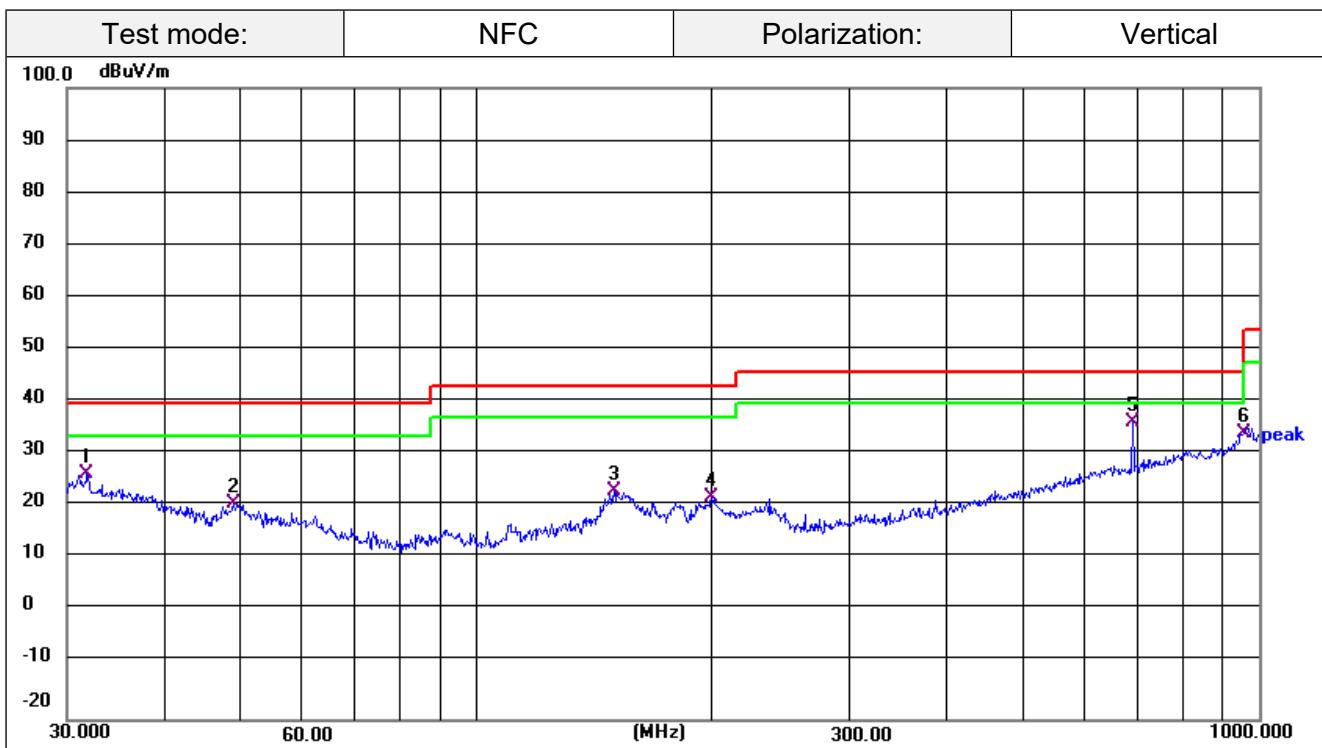

Below 30MHz

Frequency(MHz):		13.56MHz		Polarity:	Antenna Position 0	
Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB/m)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
3.745	14.14	22.03	36.17	69.54	-33.37	PEAK
13.376	20.76	22.58	43.34	80.50	-37.16	PEAK
13.441	33.68	22.59	56.27	90.47	-34.20	PEAK
13.567	43.03	22.62	65.65	124.00	-58.35	PEAK
13.647	33.96	22.63	56.59	90.47	-33.88	PEAK
13.975	20.28	22.7	42.98	80.50	-37.52	PEAK
19.163	12.95	22.74	35.69	69.54	-33.85	PEAK

Frequency(MHz):		13.56MHz		Polarity:	Antenna Position 90	
Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB/m)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
8.653	12.71	22.07	34.78	69.54	-34.76	PEAK
13.289	22.11	22.56	44.67	80.50	-35.83	PEAK
13.526	34	22.61	56.61	90.47	-33.86	PEAK
13.567	42.77	22.62	65.39	124.00	-58.61	PEAK
13.59	32.56	22.62	55.18	90.47	-35.29	PEAK
13.95	20.85	22.69	43.54	80.50	-36.96	PEAK

REMARKS:

1. Emission level (dB μ V/m) = Reading (dB μ V)+ Factor (dB/m)
2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Emission level- Limit value.
4. Other emission levels are attenuated 20dB below the limit and not recorded in report.


For 30MHz-1GHz

Remark:

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	38.6160	35.05	-16.66	18.39	40.00	-21.61	QP
2	58.6126	35.15	-17.19	17.96	40.00	-22.04	QP
3	155.9101	36.11	-16.53	19.58	43.50	-23.92	QP
4	193.7728	40.10	-19.69	20.41	43.50	-23.09	QP
5	366.8231	40.48	-15.31	25.17	46.00	-20.83	QP
6	958.7943	42.02	-3.48	38.54	46.00	-7.46	QP

Remark:

Emission Level = Reading + Factor;

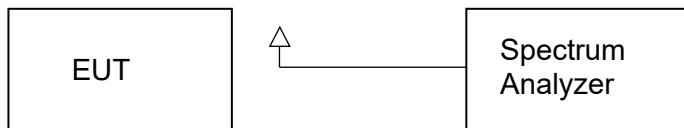
Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	31.8427	44.17	-17.44	26.73	40.00	-13.27	QP
2	49.0145	37.72	-16.61	21.11	40.00	-18.89	QP
3	150.0108	40.07	-16.50	23.57	43.50	-19.93	QP
4	199.9856	42.29	-20.05	22.24	43.50	-21.26	QP
5	689.5644	45.02	-8.39	36.63	46.00	-9.37	QP
6	958.7943	38.02	-3.48	34.54	46.00	-11.46	QP

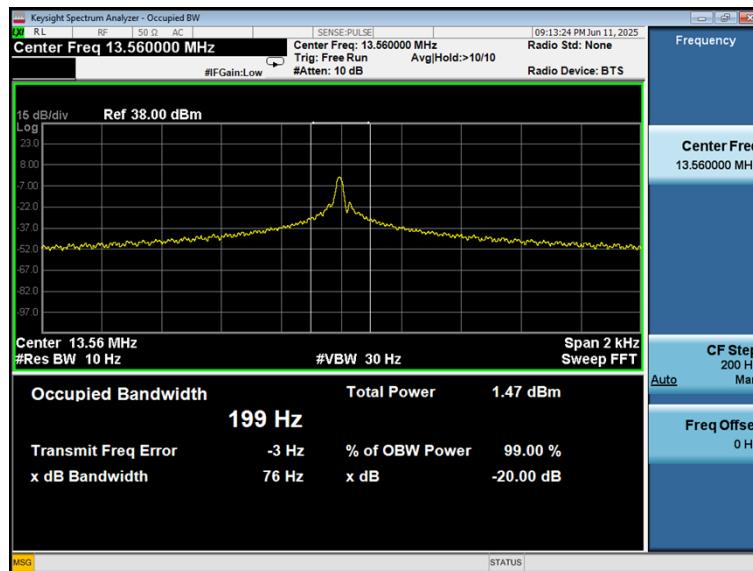
3.3 20dB Bandwidth

Limit


No limit for 20dB bandwidth.

Test Procedure

The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Modulation	Frequency(MHz)	20dB bandwidth (KHz)	99%dB bandwidth (KHz)	Result
ASK	13.56	0.076	0.199	Pass



3.4 Frequency Stability

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

1. The equipment under test was connected to an external DC power supply and input rated voltage.
2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
3. The EUT was placed inside the temperature chamber.
4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the maximum frequency change.

TEST RESULTS

Reference Frequency: 13.56MHz					
Voltage (V)	Temperature (°C)	Frequency (MHz)	Frequency Deviation(Hz)	Deviation (%)	Result
3.80	+20(Ref)	13.56018	178	0.001313%	Pass
	-20	13.56005	54	0.000398%	Pass
	-10	13.56008	83	0.000612%	Pass
	0	13.56012	124	0.000914%	Pass
	+10	13.56019	187	0.001379%	Pass
	+20	13.56005	52	0.000383%	Pass
	+25	13.56011	110	0.000811%	Pass
	+30	13.56012	117	0.000863%	Pass
	+40	13.56014	144	0.001062%	Pass
	+50	13.56014	140	0.001032%	Pass
4.37	+20	13.56007	65	0.000479%	Pass
3.23	+20	13.56018	182	0.001342%	Pass

4 Test Setup Photographs of EUT

5 Photos of EUT

Please refer to test Report No.: AiTSZ-250509017FW1.

***** **End of Report** *****