

TEST REPORT

Product Name : Walkie-Talkies
Brand Name : N/A
Model : 77-38A
Series Model : 77-39A
FCC ID : 2BKKQ-7738A
Applicant : **Shantou Chenghai District Enda Toy Factory**
Address : Dongxingyuan Industrial Zone, Huaidong Village, Lianxia Town, Chenghai District, Shantou City, China
Manufacturer : **Shantou Chenghai District Enda Toy Factory**
Address : Dongxingyuan Industrial Zone, Huaidong Village, Lianxia Town, Chenghai District, Shantou City, China
Standard(s) : FCC CFR Title 47 Part 95B
Date of Receipt : Aug 28, 2024
Date of Test : Aug 29, 2024~ Sep.03,2024
Issued Date : Sep.04,2024

Issued By: **Guangdong Asia Hongke Test Technology Limited**
B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street,
Bao'an District, Shenzhen, Guangdong, China
Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Reviewed by:

Leon.yi

Approved by:

Sean She

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Report Revise Record

Report Version	Issued Date	Notes
M1	Sep.04,2024	Initial Release

Contents

1 TEST SUMMARY.....	4
1.1 TEST STANDARDS	4
1.2 TEST SUMMARY	4
1.3 TEST FACILITY	5
1.4 MEASUREMENT UNCERTAINTY	5
2 GENGGENERAL INFORMATION.....	6
2.1 ENVIRONMENTAL CONDITIONS	6
2.2 GENERAL DESCRIPTION OF EUT	6
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY.....	6
2.4 SPECIAL ACCESSORIES	6
2.5 EQUIPMENT LIST FOR THE TEST	7
3 TEST CONDITIONS AND RESULTS	8
3.1 MAXIMUM TRANSMITTER POWER.....	8
3.2 OCCUPIED BANDWIDTH AND EMISSION MASK	11
3.3 MODULATION CHARACTERISTIC.....	14
3.4 FREQUENCY STABILITY	17
3.5 TRANSMITTER RADIATED SPURIOUS EMISSION	19
4 TEST SETUP PHOTOGRAPHS OF EUT	22
5 EXTERNAL PHOTOGRAPHS OF EUT	22
6 INTERNAL PHOTOGRAPHS OF EUT	22

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

FCC Rules Part 95: PERSONAL RADIO SERVICES.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.26:2015: American National Standard of procedures for compliance testing of transmitters used in licensed radio services.

1.2 Test Summary

Description of Test Item	Standard clause	Verdict
Maximum Transmitter Power	FCC Part 95.567	PASS
Modulation Characteristic	FCC Part 2.1047 FCC Part 95.575	PASS
Occupied Bandwidth and Emission Mask	FCC Part 2.1049 FCC Part 95.573 FCC Part 95.579	PASS
Radiated Spurious Emission	FCC Part 95.579	PASS
Frequency Stability	FCC Part 2.1055 FCC Part 95.565	PASS

1.3 Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	150KHz~30MHz ± 1.20 dB	(1)
Radiated Emission	9KHz~30Hz ± 3.10 dB	(1)
Radiated Emission	9KHz~1GHz ± 3.75 dB	(1)
Radiated Emission	1GHz~18GHz ± 3.88 dB	(1)
Radiated Emission	18GHz~40GHz ± 3.88 dB	(1)
RF power, conducted	30MHz~6GHz ± 0.16 dB	(1)
RF power density, conducted	± 0.24 dB	(1)
Spurious emissions, conducted	± 0.21 dB	(1)
Temperature	± 1 °C	(1)
Humidity	± 3 %	(1)
DC and low frequency voltages	± 1.5 %	(1)
Time	± 2 %	(1)
Duty cycle	± 2 %	(1)

The report uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Name of EUT	Walkie-Talkies
Model Number	77-38A
Power Supply	DC 4.50V from battery
Frequency Range	462.6375MHz
Rate Power	10mW
Modulation Type	FM
Channel Separation	12.5KHz
Antenna Type	Integral antenna
Antennal Gain	2.0dBi

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. As, test modes selected as below by the technical parameters of the EUT:

Operation Mode No.	Modulation	Channel Separation	Condition	
			TX	RX
1	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	
2	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>

Frequency list

Channel	Frequency(MHz)
1	462.6375

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
/	/	/	/	/	/
/	/	/	/	/	/

2.5 Equipment List for the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07
2	Spectrum Analyzer	Keysight	N9020A	MY51280643	2023.09.08	2024.09.07
3	EMI Measuring Receiver	R&S	ESR	101660	2023.09.08	2024.09.07
4	Low Noise Pre-Amplifier	HP	HP8447E	1937A01855	2023.09.08	2024.09.07
5	Low Noise Pre-Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2023.09.08	2024.09.07
6	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
7	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2024.08.28	2027.08.27
8	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2024.08.28	2027.08.27
9	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2024.08.28	2027.08.27
10	EMI Measuring Receiver	R&S	ESR	101160	2023.09.13	2024.09.12
11	LISN	SCHWARZBECK	NNLK 8129	8130179	2023.10.29	2024.10.28
12	Pulse Limiter	R&S	ESH3-Z2	102789	2023.09.13	2024.09.12
13	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.08	2024.09.07
14	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
15	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07
16	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.08	2024.09.07
17	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
18	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A
23	Radio Communication Tester	HP	8920A	116250	2023.09.08	2024.09.07

3 TEST CONDITIONS AND RESULTS

3.1 Maximum Transmitter Power

LIMITS

According to FCC Part 95.567:

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

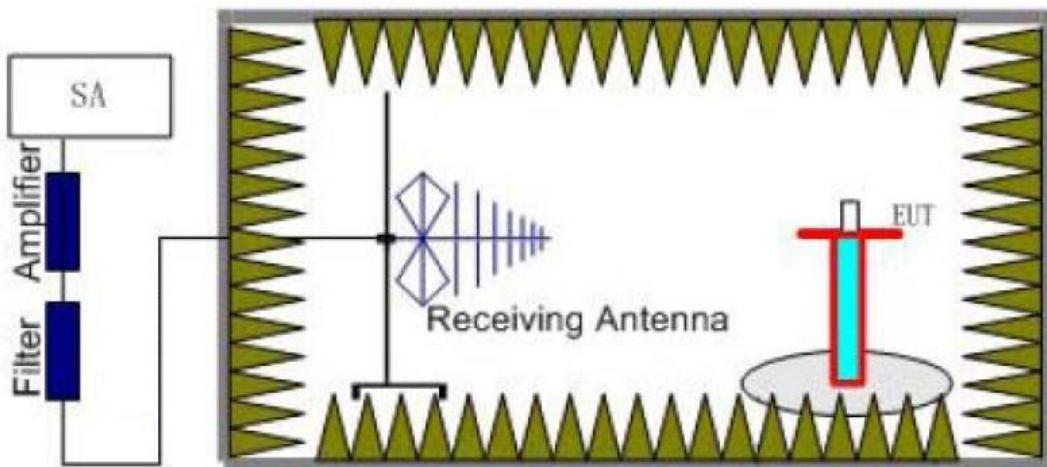
According to FCC Part 95.1767:

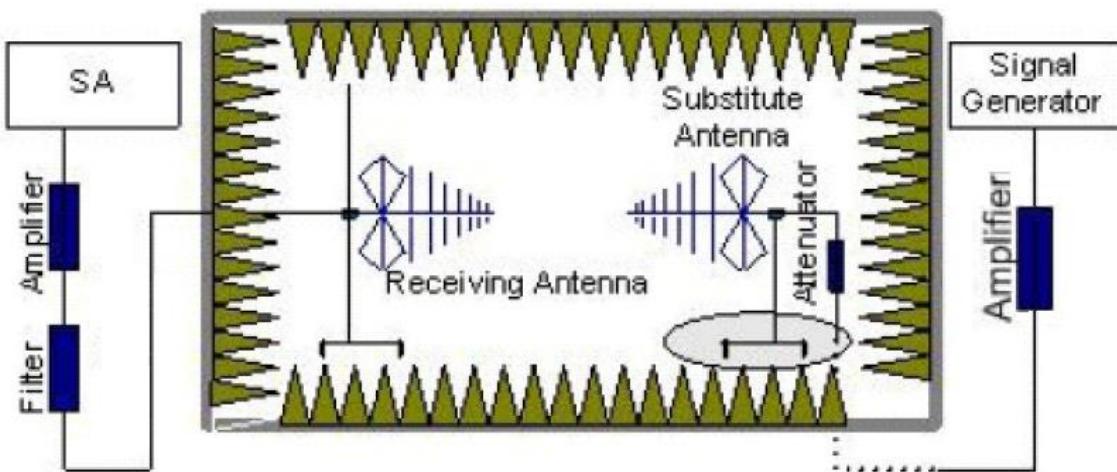
(a) 462/467 MHz main channels. The limits in this paragraph apply to stations transmitting on any of the 462 MHz main channels or any of the 467 MHz main channels. Each GMRS transmitter type must be capable of operating within the allowable power range. GMRS licensees are responsible for ensuring that their GMRS stations operate in compliance with these limits.

- (1) The transmitter output power of mobile, repeater and base stations must not exceed 50 Watts.
- (2) The transmitter output power of fixed stations must not exceed 15 Watts.

(b) 462 MHz interstitial channels. The effective radiated power (ERP) of mobile, hand-held portable and base stations transmitting on the 462 MHz interstitial channels must not exceed 5 Watts.

(c) 467 MHz interstitial channels. The effective radiated power (ERP) of hand-held portable units transmitting on the 467 MHz interstitial channels must not exceed 0.5 Watt. Each GMRS transmitter type capable of transmitting on these channels must be designed such that the ERP does not exceed 0.5 Watt.


According to RSS-210 E.2.4:


For FRS transmitter the maximum permissible transmitter output power under any operating conditions is 0.5 W effective radiated power (e.r.p.). The radio shall be equipped with an integral antenna.

According to RSS-210 E.3.5:

A GMRS transmitter may transmit with a maximum power of 2 W e.r.p.

TEST CONFIGURATION

Measurement Procedure

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
5. An amplifier may be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.
The measurement results are obtained as described below:
$$\text{Power(EIRP)} = P_{Mea} + P_{Ag} - P_{cl} + G_a$$
6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
7. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.

TEST RESULTS

Remark;

The field strength of radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The data show in this report only with the worst case setup.

After exploratory measurement the worst case of Z axis and receiver antenna at vertical polarization was reported.

Test Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	ERP (W)	Limit (W)	Polarization
462.6375	-24.36	2.41	6.90	2.15	31.89	9.87	0.010	2.0	V

Remark:

1. $EIRP = P_{Mea}(dBm) + P_{Ag}(dB) - P_{cl}(dB) + G_a(dBi)$
2. $ERP = EIRP - 2.15dBi$ as $EIRP$ by subtracting the gain of the dipole.

3.2 Occupied Bandwidth and Emission Mask

LIMITS

According to FCC 95.573 & RSS-210 E.2.3:

Each FRS transmitter type must be designed such that the occupied bandwidth does not exceed 12.5 kHz.

According to FCC 95.1773 & RSS-210 E.3.4:

FCC 95.1773

Each GMRS transmitter type must be designed such that the occupied bandwidth does not exceed the authorized bandwidth for the channels used. Operation of GMRS stations must also be in compliance with these requirements.

(a) Main channels. The authorized bandwidth is 20 kHz for GMRS transmitters operating on any of the 462 MHz main channels (see §95.1763(a)) or any of the 467 MHz main channels (see §95.1763(c)).

(b) Interstitial channels. The authorized bandwidth is 20 kHz for GMRS transmitters operating on any of the 462 MHz interstitial channels (see §95.1763(b)) and is 12.5 kHz for GMRS transmitters operating on any of the 467 MHz interstitial channels (see §95.1763(d)).

(c) Digital data transmissions. Digital data transmissions are limited to the 462 MHz main channels and interstitial channels in the 462 MHz and 467 MHz bands.

RSS-210 E.3.4:

The authorized bandwidth is 4 kHz for emission types H1D, J1D, R1D, H3E, J3E and R3E; 8 kHz for emission types A1D and A3E; and 20 kHz for emission types F1D, G1D, F3E, G3E and F2D.

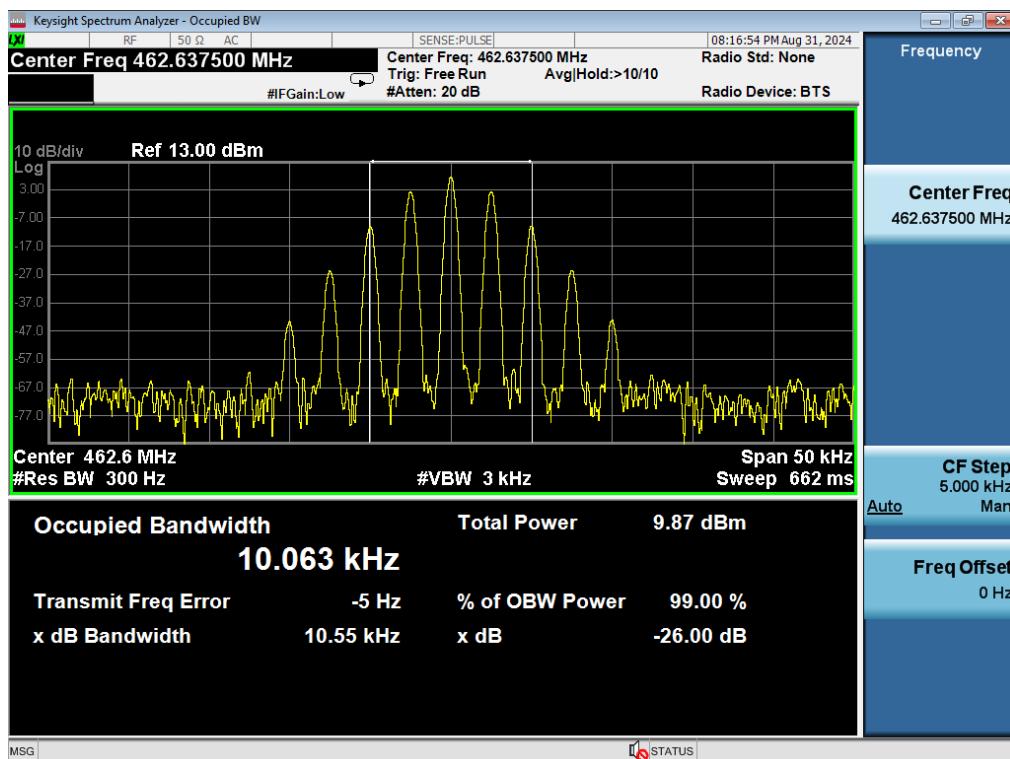

According to FCC 95.579, 1779 & RSS-210 E.2.5, E.3.6:

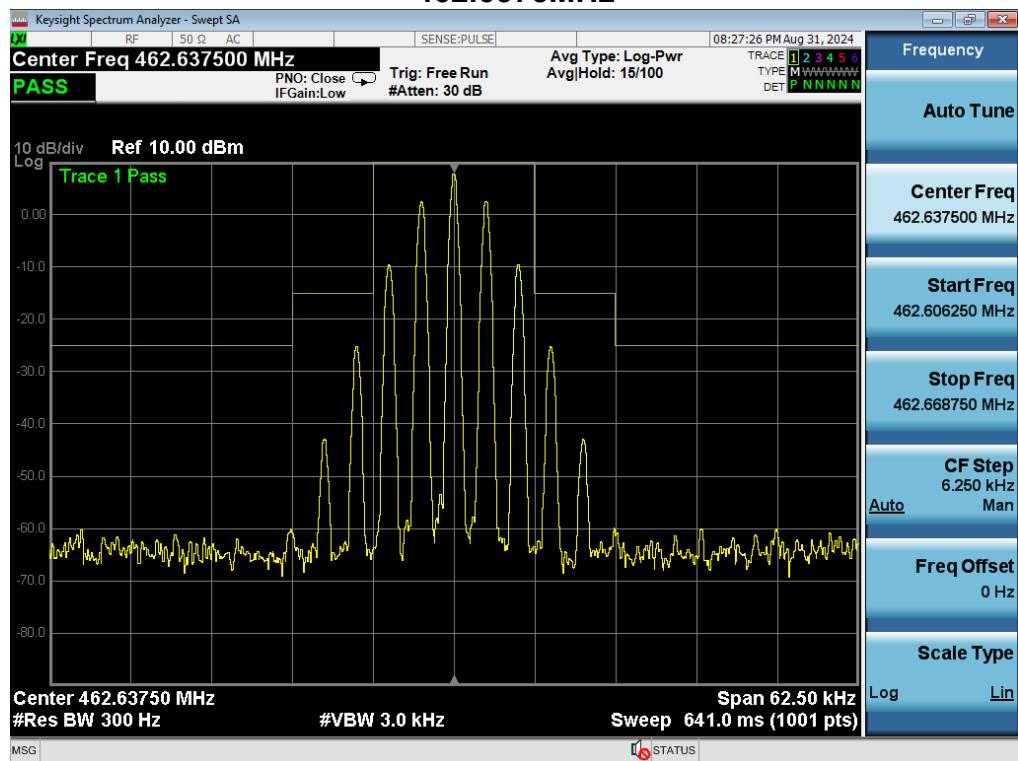
At least 25dB (decibels) on any frequency removed from the centre of the authorized bandwidth by more than 50 % up to and including 100 % of the authorized bandwidth.

At least 35 dB on any frequency removed from the centre of the authorized bandwidth by more than 100 % up to and including 250 % of the authorized bandwidth.

At least $43 + 10 \log_{10} (T)$ dB on any frequency removed from the centre of the authorized bandwidth by more than 250 %.

TEST CONFIGURATION




TEST PROCEDURE

- 1 The EUT was modulated by 2.5 KHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and 5 kHz (25 kHz channel spacing).
- 2 Set SPA Center Frequency = fundamental frequency, RBW=300Hz, VBW= 3 KHz, span =50 KHz.
- 3 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.

TEST RESULTS**Emission Bandwidth:**

Modulation	Frequency (MHz)	99% Occupied bandwidth (kHz)	26dB bandwidth (kHz)	Limit (KHz)	Result
FM	462.6375	10.063	10.55	12.5	Pass

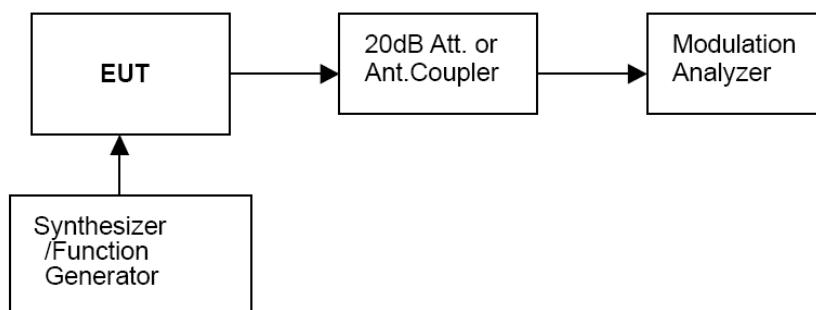
Emission Mask:**462.6375MHz**

3.3 Modulation Characteristic

TEST APPLICABLE

According to CFR47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

TEST PROCEDURE


Modulation Limit

- 1 Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2 Repeat step 1 with input frequency changing to 300, 1004, 1500 and 2500Hz in sequence.

Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0dB).
- 3 Vary the Audio frequency from 100 Hz to 3 KHz and record the frequency deviation.
- 4 Audio Frequency Response = $20\log_{10}(\text{Deviation of test frequency}/\text{Deviation of 1 KHz reference})$.

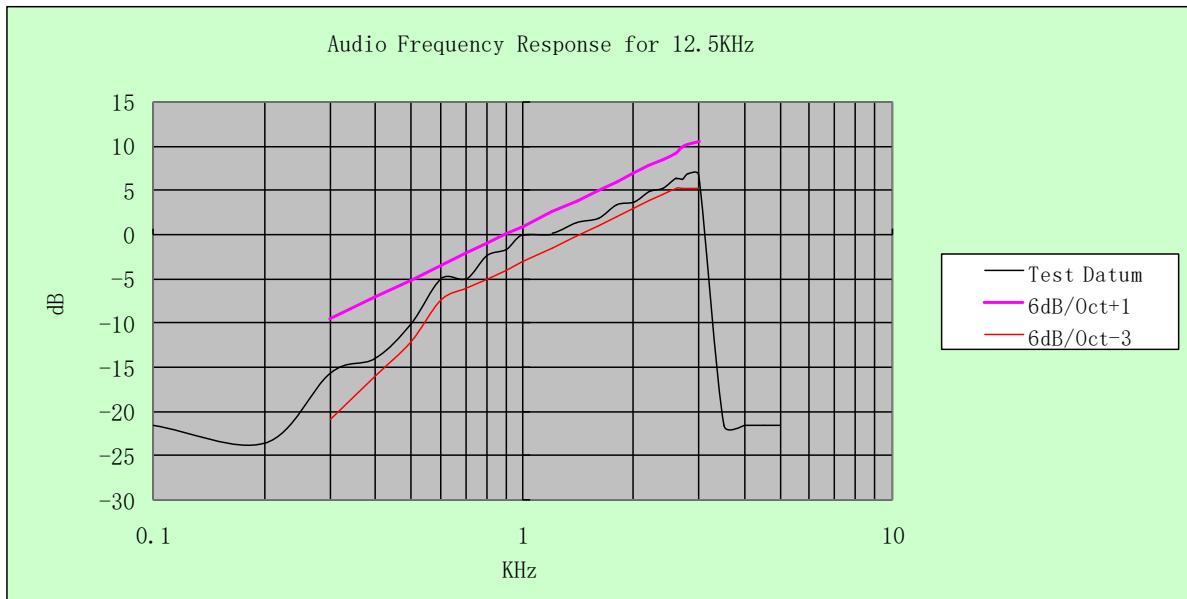
TEST CONFIGURATION



TEST RESULTS

Modulation Limit:

462.6375MHz


Modulation Level(dB)	Peak Freq. Deviation At 300 Hz(KHz)	Peak Freq. Deviation At 1004 Hz(KHz)	Peak Freq. Deviation At 1500 Hz(KHz)	Peak Freq. Deviation At 2500 Hz(KHz)
-20	0.10	0.11	0.09	0.09
-15	0.22	0.25	0.28	0.31
-10	0.35	0.40	0.41	0.52
-5	0.55	0.61	0.69	0.74
0	0.86	0.93	1.02	1.12
+5	1.22	1.48	1.66	1.78
+10	1.35	1.57	1.75	1.98
+15	1.47	1.69	1.88	2.01
+20	1.58	1.79	1.97	2.11

a) Audio Frequency Response:

462.6375MHz

Frequency (KHz)	Frequency Deviation (KHz)	1KHz Reference Deviation (KHz)	Audio Frequency Response (dB)
0.1	0.05	0.60	-21.58
0.2	0.04	0.60	-23.52
0.3	0.10	0.60	-15.56
0.4	0.12	0.60	-13.98
0.5	0.19	0.60	-9.99
0.6	0.34	0.60	-4.93
0.7	0.34	0.60	-4.93
0.8	0.46	0.60	-2.31
0.9	0.50	0.60	-1.58
1.0	0.60	0.60	0.00
1.2	0.61	0.60	0.14
1.4	0.71	0.60	1.46
1.6	0.75	0.60	1.94
1.8	0.89	0.60	3.42
2.0	0.92	0.60	3.71
2.2	1.05	0.60	4.86
2.4	1.11	0.60	5.34
2.6	1.25	0.60	6.38
2.7	1.24	0.60	6.31
2.8	1.33	0.60	6.91
3.0	1.31	0.60	6.78
3.5	0.05	0.60	-21.58
4.0	0.05	0.60	-21.58
4.5	0.05	0.60	-21.58
5.0	0.05	0.60	-21.58

3.4 Frequency Stability

LIMITS

According to FCC 95.565

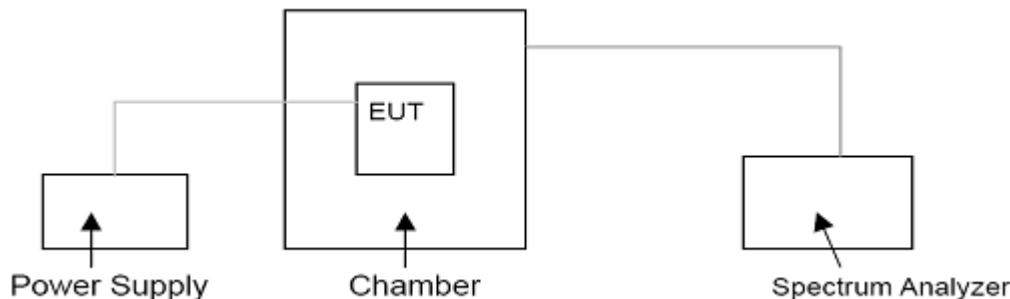
Each FRS transmitter type must be designed such that the carrier frequencies remain within ± 2.5 parts-per-million of the channel center frequencies specified in §95.563 during normal operating conditions.

According to FCC 95.1765

Each GMRS transmitter type must be designed to comply with the frequency accuracy requirements in this section under normal operating conditions. Operators of GMRS stations must also ensure compliance with these requirements.

(a) The carrier frequency of each GMRS transmitter transmitting an emission with an occupied bandwidth greater than 12.5 kHz must remain within 5 parts-per-million (ppm) of the channel center frequencies listed in §95.1763 under normal operating conditions.

(b) The carrier frequency of each GMRS transmitter transmitting an emission with an occupied bandwidth of 12.5 kHz or less must remain within 2.5 ppm of the channel center frequencies listed in §95.1763 under normal operating conditions.


According to RSS-210 E.2.6

FRS Devices: Carrier frequency tolerance shall be better than ± 5 ppm

According to RSS-210 E.3.7

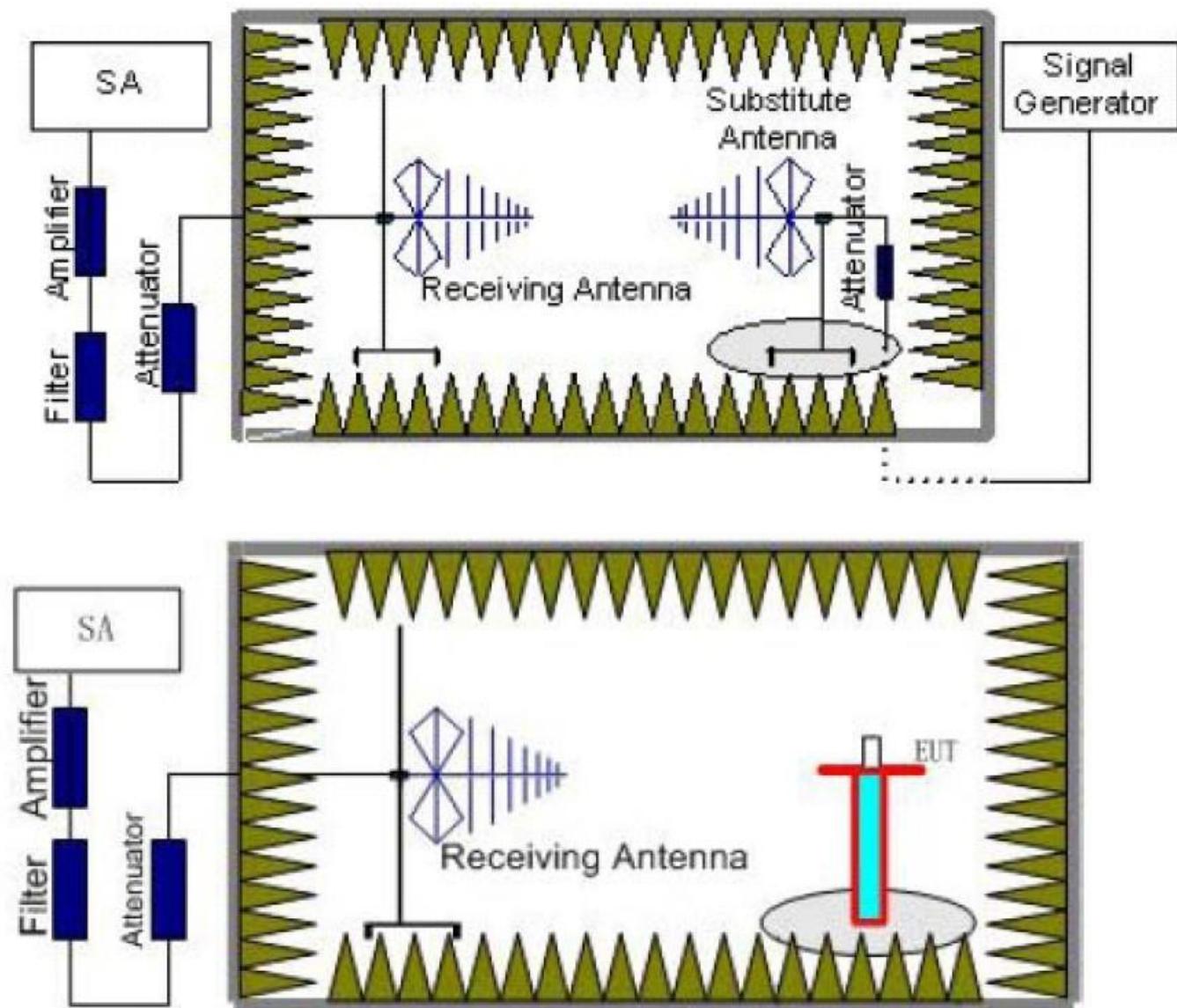
GMRS Devices: Carrier frequency tolerance shall be better than ± 5 ppm

TEST CONFIGURATION

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST RESULTS


Reference Frequency: 462.6375MHz					
Voltage (V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (ppm)	Limit (ppm)	Result
4.50	-30	0.00489	1.06	±2.5	Pass
	-20	0.00338	0.73		
	-10	0.00029	0.06		
	0	-0.00216	0.47		
	10	-0.00495	1.07		
	20	0.00300	0.65		
	30	-0.00145	0.31		
	40	0.00116	0.25		
	50	-0.00080	0.17		
	3.83	0.00346	0.75		
5.18	25	0.00489	1.06		

3.5 Transmitter Radiated Spurious Emission

Limit

The unwanted emission should be attenuated below TP by at least $43 + 10 \log(\text{Transmit Power})$ dB and unwanted emissions falling within the restricted bands of RSS-Gen shall be attenuated to the limits provided in this section or to the general field strength limits shown in RSS-Gen, whichever are less stringent.

TEST CONFIGURATION

TEST PROCEDURE

- a. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- b. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- c. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum 100 kHz below 1GHz and 1MHz above 1GHz, Sweep from 30MHz to the 10th harmonic of the fundamental frequency; and recorded the level of the concerned spurious emission point as (P_r).
- d. The EUT then replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

The measurement results are obtained as described below:

$$\text{Power}_{(\text{EIRP})} = P_{Mea} - P_{cl} + G_a$$

Where;

P_{Mea} is the recorded signal generator level
 P_{cl} is the cable loss connect between instruments
 G_a Substitution Antenna Gain

- e. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- f. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.
- g. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency; and worst spurious emissions recorded as below:

Test Frequency (MHz)	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Pol.
462.6375	925.95	-41.96	2.41	4.95	-39.42	-13.00	-26.42	V
	1388.00	-41.20	2.69	7.45	-36.44	-13.00	-23.44	V
	1851.00	-45.98	3.22	9.94	-39.26	-13.00	-26.26	V
	2313.95	-45.02	3.81	10.19	-38.64	-13.00	-25.64	V
	--	--	--	--	--	--	--	--

Remark:

1. $EIRP = P_{Mea}(dBm) - P_{cl}(dB) + G_a(dBi)$
2. -- Means other points for values lower than limits and not recorded.
3. Margin = Limit - EIRP

4 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

5 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

6 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

***** End of Report *****