

FCC PART 15.247

TEST REPORT

For

Shanghai SLAMTEC Co., Ltd.

10F, Building E, Shengyin Tower, 666 Shengxia Rd., Shanghai, China

FCC ID: 2BKFN-SLAMWAREP3PRO

Report Type: Original Report	Product Name: Intelligent Factory Delivery Robot
Report Number: RKSC240726002-00B	
Report Date: 2024-12-13	
Reviewed By: <u>Bard Liu</u>	
Approved By: <u>Oscar Ye</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-512-86175000 Fax: +86-512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, or any agency of the U.S. Government.

TABLE OF CONTENTS

REPORT REVISION HISTORY.....	4
GENERAL INFORMATION.....	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	5
OBJECTIVE	5
TEST METHODOLOGY	5
MEASUREMENT UNCERTAINTY.....	6
TEST FACILITY	6
SYSTEM TEST CONFIGURATION.....	7
DESCRIPTION OF TEST CONFIGURATION	7
EQUIPMENT MODIFICATIONS	7
EUT EXERCISE SOFTWARE	7
SUPPORT EQUIPMENT LIST AND DETAILS	9
EXTERNAL I/O CABLE.....	9
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	11
TEST EQUIPMENT LIST	12
FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE).....	13
FCC §15.203 - ANTENNA REQUIREMENT.....	14
APPLICABLE STANDARD	14
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS.....	15
APPLICABLE STANDARD	15
TEST SYSTEM SETUP	15
EMI TEST RECEIVER SETUP.....	15
TEST PROCEDURE	16
TEST RESULTS SUMMARY	16
TEST DATA: SEE APPENDIX	16
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS.....	17
APPLICABLE STANDARD	17
TEST SYSTEM SETUP	17
EMI TEST RECEIVER SETUP.....	19
TEST PROCEDURE	19
TEST RESULTS SUMMARY	19
TEST DATA: SEE APPENDIX	19
FCC §15.247(A) (2) - 6 DB EMISSION BANDWIDTH.....	20
APPLICABLE STANDARD	20
TEST PROCEDURE	20
TEST DATA: SEE APPENDIX	20
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	21
APPLICABLE STANDARD	21
TEST PROCEDURE	21
TEST DATA: SEE APPENDIX	21
FCC §15.247(D) - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE.....	22
APPLICABLE STANDARD	22
TEST PROCEDURE	22
TEST DATA: SEE APPENDIX	22

FCC §15.247(E) - POWER SPECTRAL DENSITY.....	23
APPLICABLE STANDARD	23
TEST PROCEDURE	23
TEST DATA: SEE APPENDIX	23
APPENDIX - TEST DATA.....	24
ENVIRONMENTAL CONDITIONS & TEST INFORMATION.....	24
AC LINE CONDUCTED EMISSIONS	25
SPURIOUS EMISSIONS.....	27
6 dB EMISSION BANDWIDTH	34
MAXIMUM CONDUCTED OUTPUT POWER.....	35
100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE.....	36
POWER SPECTRAL DENSITY	37
EUT PHOTOGRAPHS	38
TEST SETUP PHOTOGRAPHS	39

REPORT REVISION HISTORY

Number of Revisions	Report No.	Version	Issue Date	Description
0	RKSC240726002-00B	R1V1	2024-12-13	Initial Release

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Shanghai SLAMTEC Co., Ltd.
Product Name:	Intelligent Factory Delivery Robot
Tested Model:	P3 PRO
Power Supply:	DC 22.2V from battery or DC 24V charging by Charging Station
RF Function:	SRD
Operating Band/Frequency:	917.1-923.3 MHz
Maximum Peak Output Power:	-0.02 dBm
Channel Number:	32
Channel Separation:	0.2 MHz
Modulation Type:	LoRa
Antenna Type:	Rod Antenna
★Maximum Antenna Gain:	2.4 dBi

Note: The maximum antenna gain was provided by the applicant.

All measurement and test data in this report was gathered from production sample serial number: RKSC240726002-1 (Assigned by the BACL (Kunshan). The EUT supplied by the applicant was received on 2024-07-26.)

Objective

This report is prepared for *Shanghai SLAMTEC Co., Ltd.* In accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions' rules.

The tests were performed in order to determine Compliant with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and FCC 558074 D01 15.247 Meas Guidance v05r02.

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	3.19dB	
RF conducted test with spectrum	0.9dB	
RF Output Power with Power meter	0.5dB	
Radiated emission	9 kHz~150 kHz	3.8dB
	150 kHz~30 MHz	3.4dB
	30MHz~1GHz	6.11dB
	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth	0.5kHz	
Temperature	1.0°C	
Humidity	6%	

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) is accredited in accordance with ISO/IEC 17025:2017 by NVLAP (Lab code: 600338-0), and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No.: CN5055.

SYSTEM TEST CONFIGURATION

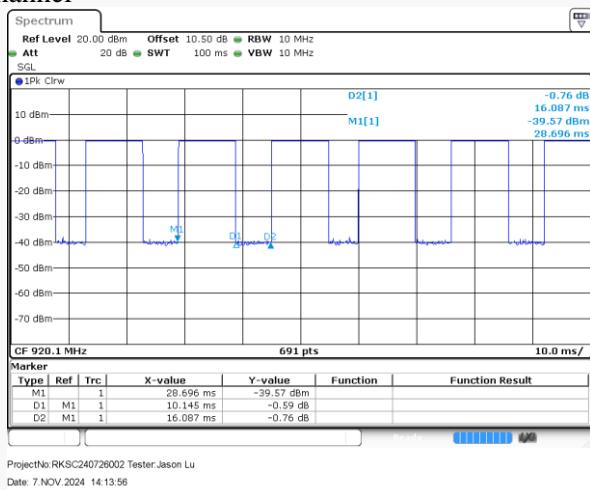
Description of Test Configuration

Test channel list as below:

EUT was tested with Channel 1, 16 and 32.

Channel	Frequency (MHz)						
1	917.1	9	918.7	17	920.3	25	921.9
2	917.3	10	918.9	18	920.5	26	922.1
3	917.5	11	919.1	19	920.7	27	922.3
4	917.7	12	919.3	20	920.9	28	922.5
5	917.9	13	919.5	21	921.1	29	922.7
6	918.1	14	919.7	22	921.3	30	922.9
7	918.3	15	919.7	23	921.5	31	923.1
8	918.5	16	920.1	24	921.7	32	923.3

Equipment Modifications


No modification was made to the EUT tested.

EUT Exercise Software

RF Test Software: SSCOM & LORAPROV5.0 Module Communication Tools

Mode	Channel	★Power Level
SRD	Low	0
	Middle	0
	High	0

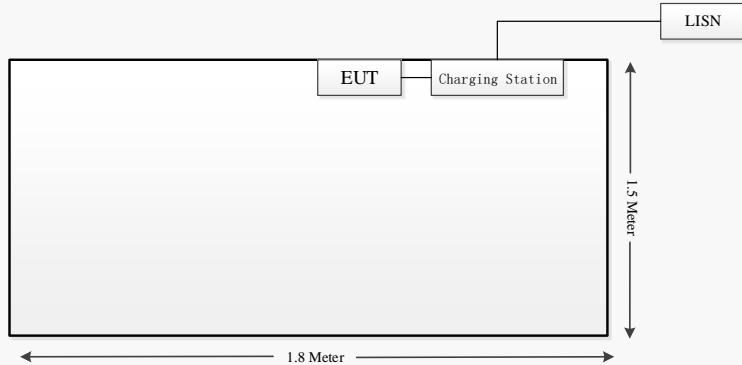
Note: The power level was declared by the applicant.

Duty Cycle:**Middle Channel**

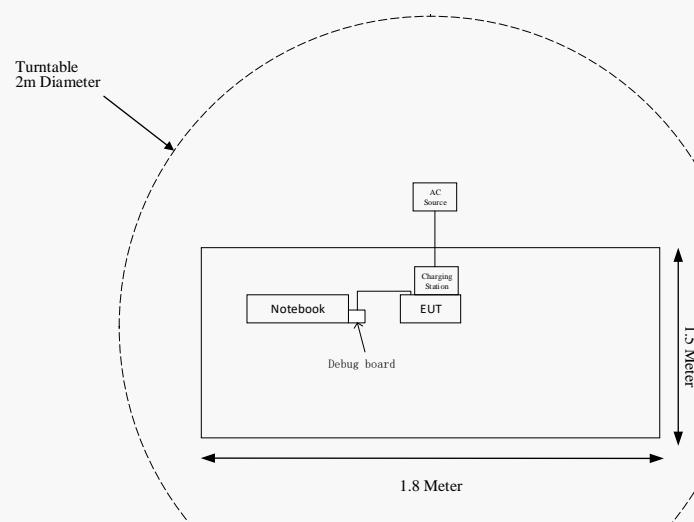
Test Mode	Channel (MHz)	Transmission Duration (ms)	Transmission Period (ms)	Duty Cycle (%)
SRD	920.1	10.15	16.09	63.06

Note: “x” means the Duty Cycle.

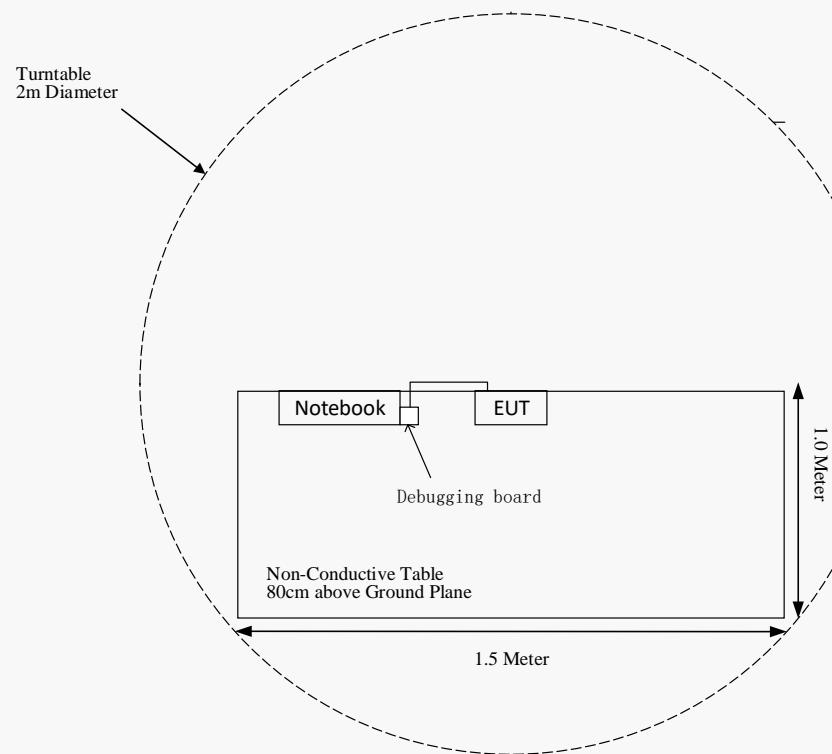
Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
DELL	Notebook	GX620	D65874152
/	Charging Station	/	/

External I/O Cable


Cable Description	Length(m)	From Port	To Port
Power Cable	1.0	EUT	Notebook

Block Diagram of Test Setup


For conducted emissions:

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

Note: The antenna of the EUT located at a height of 1.5 m above the floor.

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (I), §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test (Chamber #1)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2024-04-23	2025-04-22
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2023-11-11	2024-11-10
ETS-LINDGREN	Loop Antenna	6512	108100	2024-11-03	2025-11-02
Sonoma Instrument	Amplifier	310N	171205	2024-04-23	2025-04-22
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-8	008	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-9	009	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-10	010	2024-04-23	2025-04-22
Narda	6dB Attenuator	773-6	10690812-2-1	2023-11-11	2024-11-10
Radiated Emission Test (Chamber #2)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207/040	2024-04-25	2025-04-24
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2023-12-02	2024-12-01
A.H.Systems, inc	Amplifier	PAM-0118P	512	2024-04-25	2025-04-24
Narda	Attenuator	10dB	010	2024-04-23	2025-04-22
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-6	006	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-11	011	2024-04-25	2025-04-24
MICRO-COAX	Coaxial Cable	Cable-12	012	2024-04-25	2025-04-24
MICRO-COAX	Coaxial Cable	Cable-13	013	2024-04-25	2025-04-24
RF Conducted Test					
Rohde & Schwarz	Signal Analyzer	FSV40-N	103298	2024-04-24	2025-04-23
Anritsu	Power Sensor	MA24418A	12621	2024-04-23	2025-04-22
N/A	Attenuator	10 dB	N/A	2024-04-23	2025-04-22
XHFDZ	RG316 Coaxial Cable	SMA-316	XHF-1175	Each time	N/A
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR	101746	2024-04-23	2025-04-22
Rohde & Schwarz	LISN	ENV216	101115	2024-04-23	2025-04-22
Audix	Test Software	e3	V9	N/A	N/A
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	0357.8810.54	2024-04-23	2025-04-22
MICRO-COAX	Coaxial Cable	Cable-15	015	2024-04-23	2025-04-22

Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary

Predication of MPE limit at a given distance

$S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range (MHz)	Antenna Gain		★Tune-up Output Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)			
SRD	917.1-923.3	2.4	1.74	0	1.00	20	0.0003	0.6114

Note: The Tune-up Output Power was declared by the manufacturer.

Result: The device meet FCC MPE at 20 cm distance.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

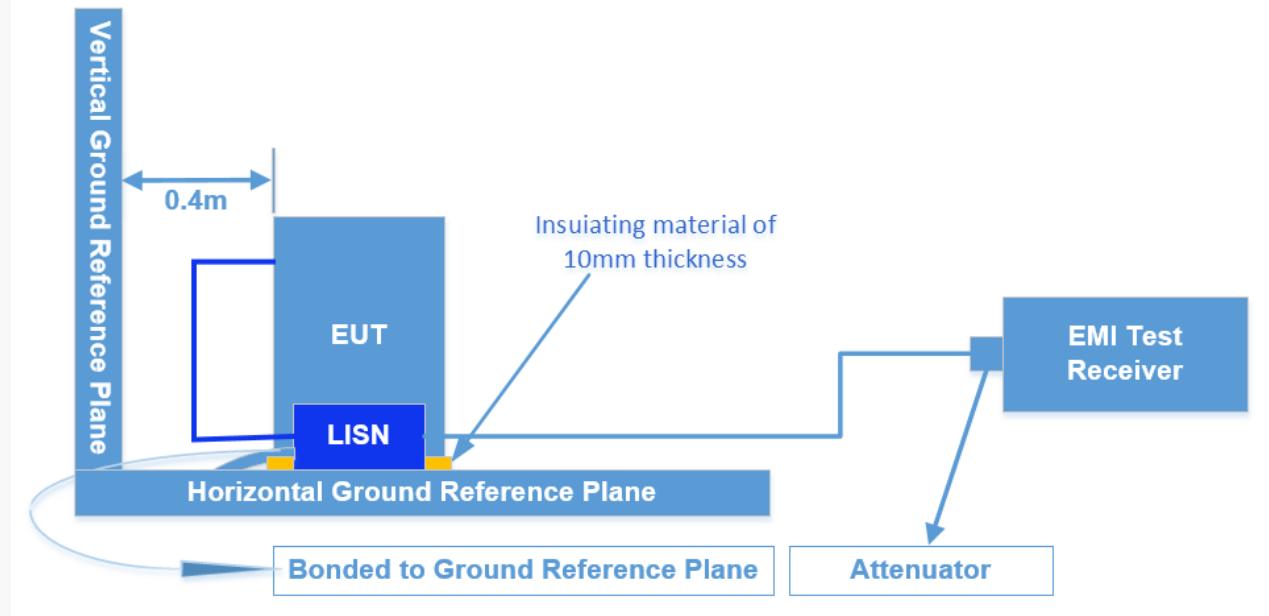
According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliant with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a Rod Antenna for SRD and the antenna gain is 2.4 dBi, the antenna was permanently attached, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

Test System Setup

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	VBW
150 kHz - 30 MHz	9 kHz	30 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the EUT or adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

If the maximum peak value of the emissions is below the average limit, the QP value and average value measurement will not need to be performed and only record the maximum peak measured value to meet the requirements.

Level & Over Limit Calculation

The Level is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation from the Meter Reading. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

Level (dB μ V) = Read level (dB μ V) + Factor (dB)

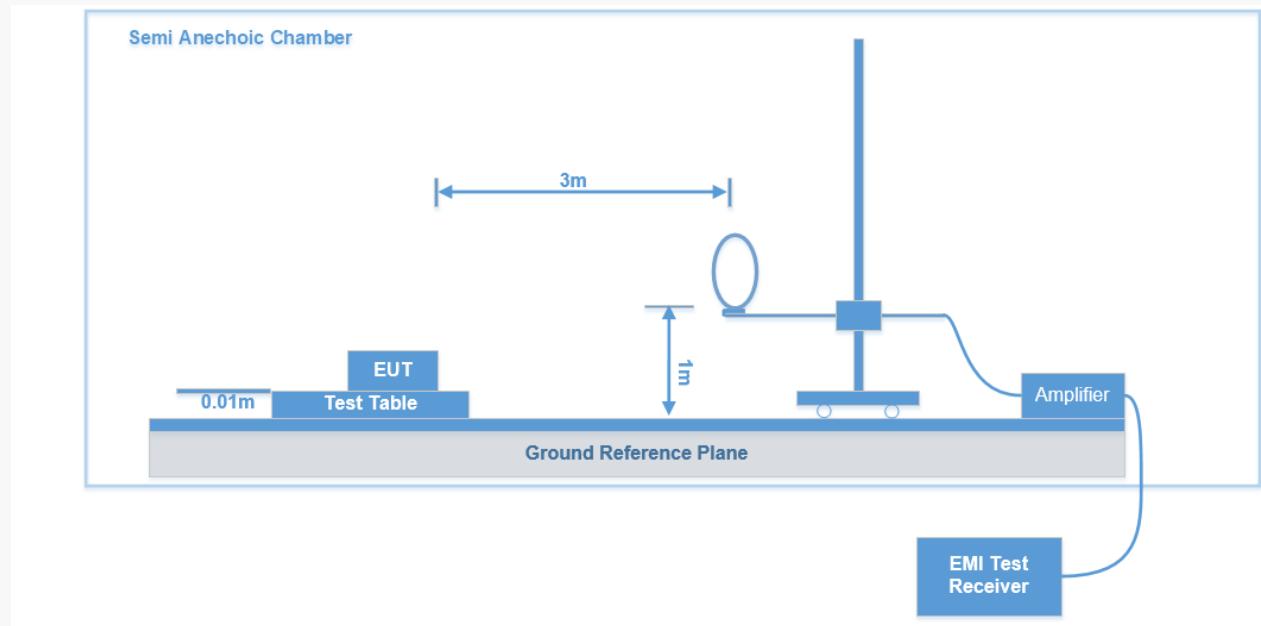
The “**Over Limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

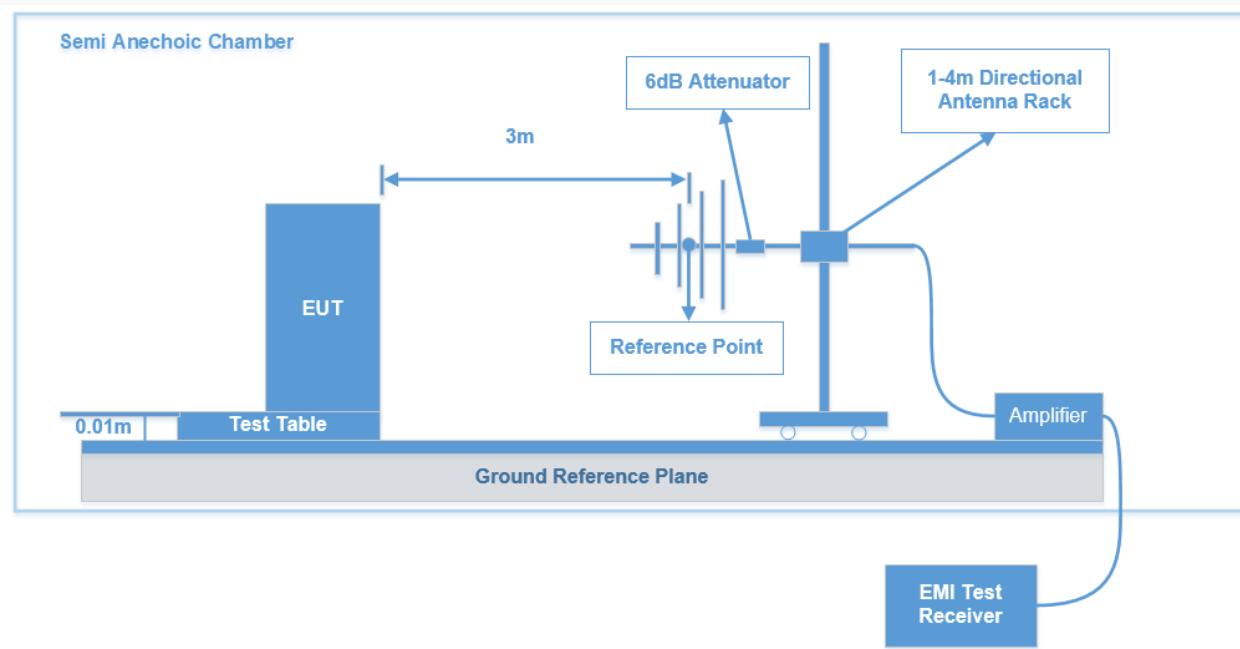
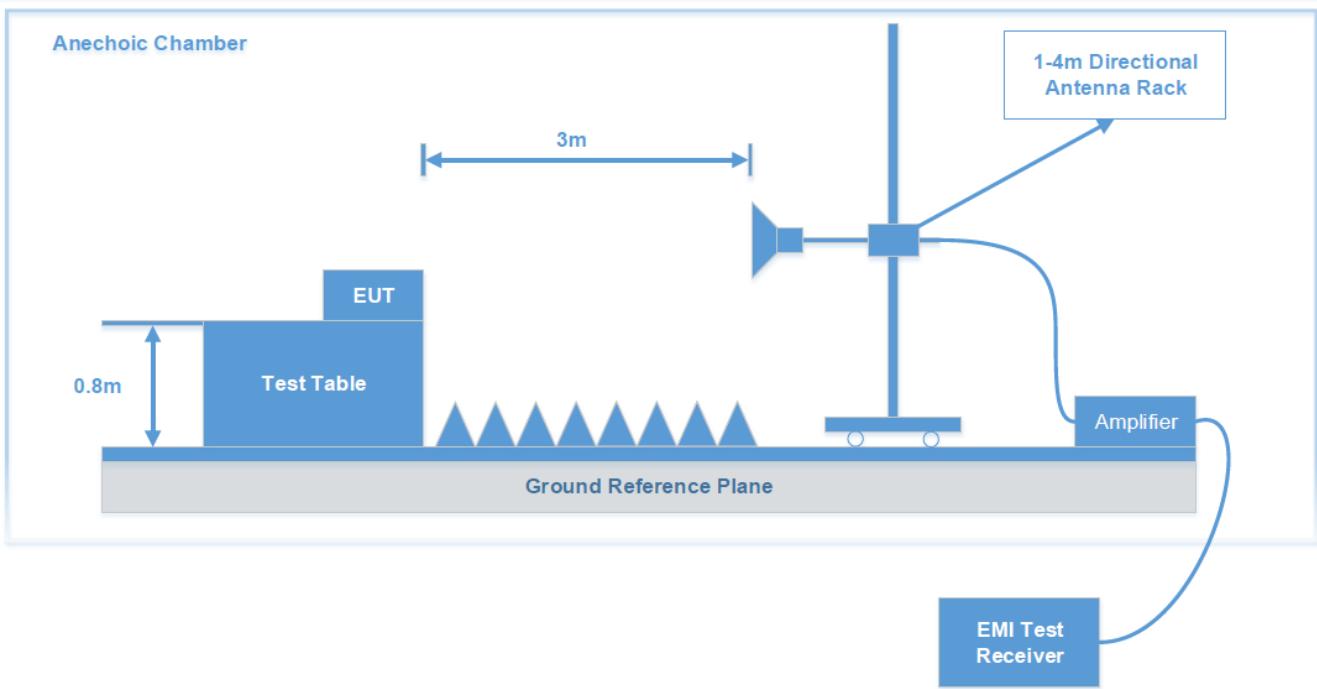
Over Limit (dB) = Level (dB μ V) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data: See Appendix


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS



Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Test System Setup

9 kHz - 30 MHz:

30 MHz - 1 GHz:**1 GHz - 10 GHz:**

Note: The antenna of the EUT located at a height of 1.5 m above the floor.

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver Setup

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Frequency Range	RBW	VBW	IF B/W	Measurement
9 kHz - 150 kHz	200 Hz	1 kHz	200 Hz	QP/Average
150 kHz - 30 MHz	9 kHz	30 kHz	9 kHz	QP/ Average
30 MHz - 1000 MHz	100 kHz	300 kHz	/	Peak
	/	/	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	Peak
	1MHz	3 MHz	/	Average

For 9 kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

Test Procedure

According to ANSI C63.10-2013 clause 6.5, 6.6 and 6.7.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz - 1GHz, peak and Average detection mode for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude (dB μ V/m) = Meter Reading (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The “Margin” column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V/m)

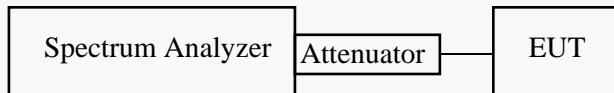
Note: The QuasiPeak (dB μ V/m), MaxPeak (dB μ V/m), Average (dB μ V/m) which shown in the data table are all Corrected Amplitude.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Test Data: See Appendix

FCC §15.247(A) (2) - 6 DB EMISSION BANDWIDTH


Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

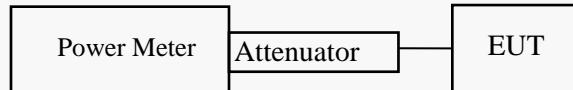
According to ANSI C63.10-2013 sub-clause 11.8.1

1. Set RBW = 100 kHz.
2. Set the video bandwidth (VBW) $\geq 3 * \text{RBW}$.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data: See Appendix

FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, Compliant with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

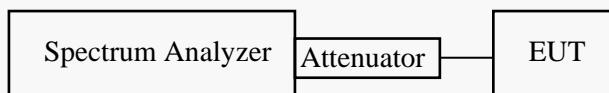
According to ANSI C63.10-2013 sub-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
3. Add a correction factor to the display.

Test Data: See Appendix

FCC §15.247(D) - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliant with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

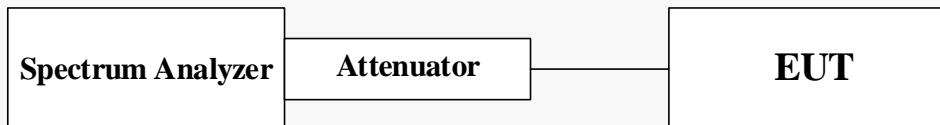
According to ANSI C63.10-2013 sub-clause 6.10.

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Test Data: See Appendix

FCC §15.247(E) - POWER SPECTRAL DENSITY

Applicable Standard


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

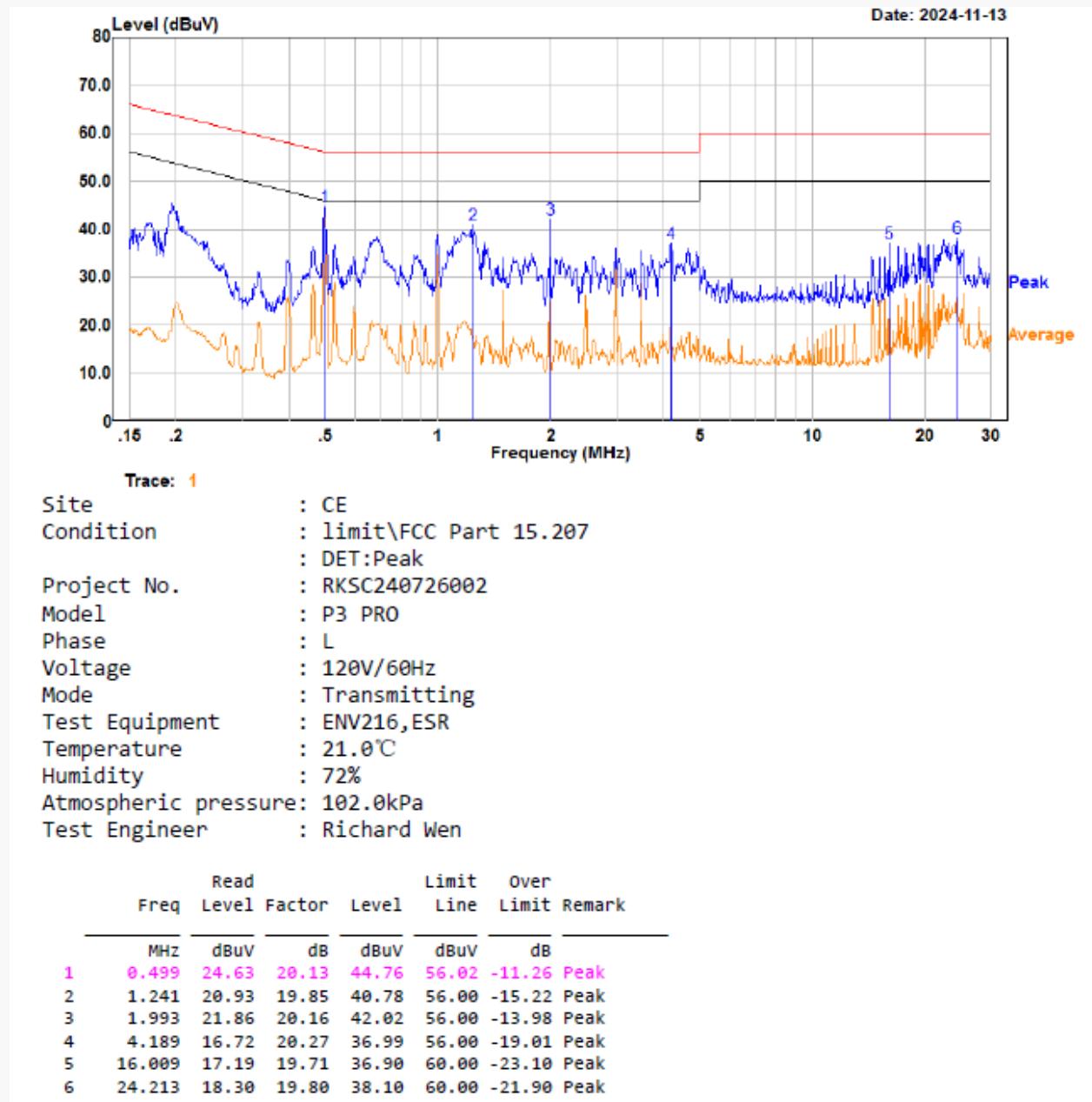
According to ANSI C63.10-2013 sub-clause 11.10.2

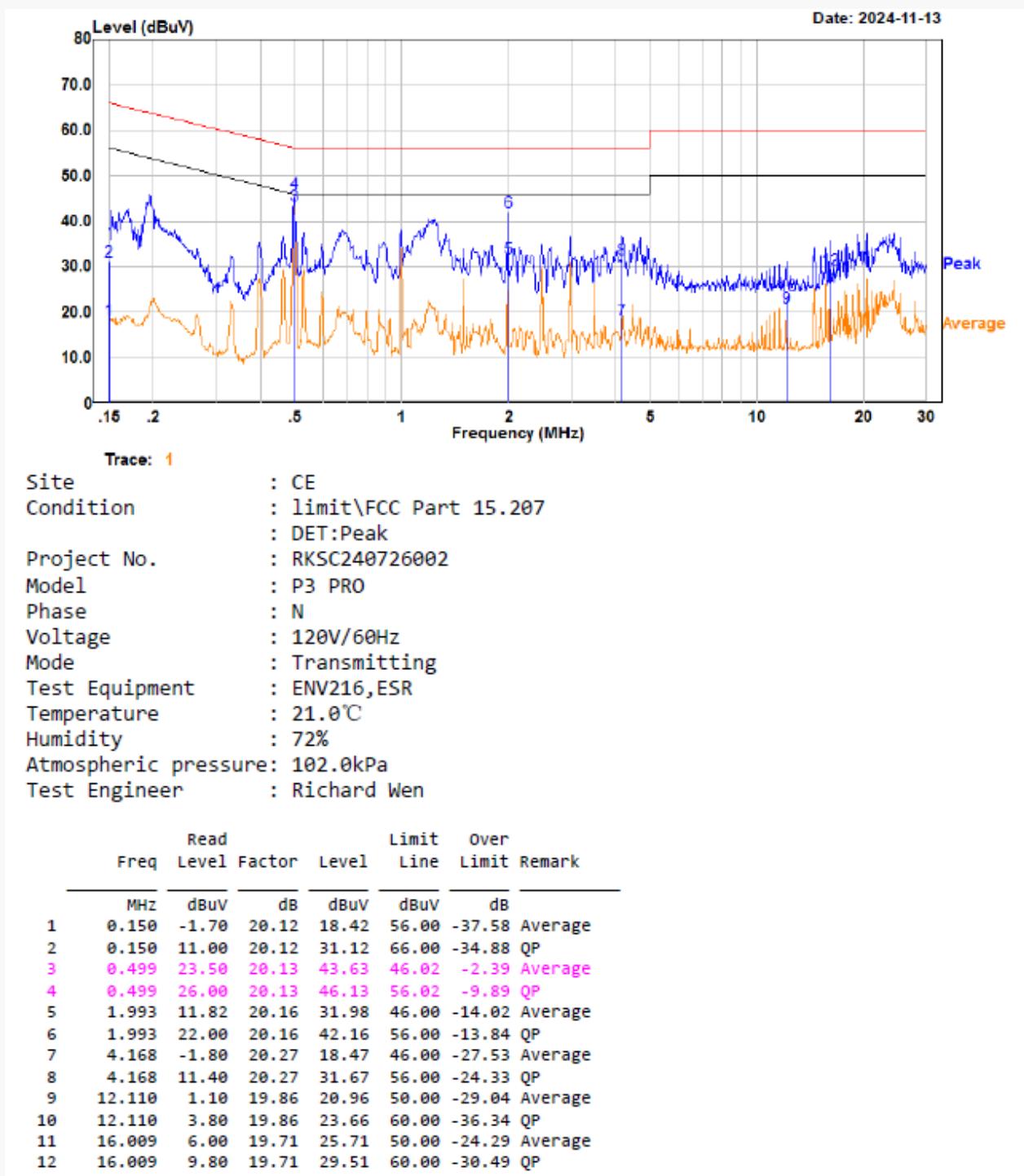
The following procedure shall be used if maximum peak conducted output power was used to determine Compliant, and it is optional if the maximum conducted (average) output power was used to determine Compliant:

1. Set the RBW to: $3\text{kHz} \leq \text{RBW} \leq 100\text{ kHz}$.
2. Set the VBW $\geq 3 * \text{RBW}$.
3. Set the span to 1.5 times the DTS bandwidth.
4. Detector = peak.
5. Sweep time = auto couple.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum amplitude level within the RBW.
9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data: See Appendix

APPENDIX - TEST DATA

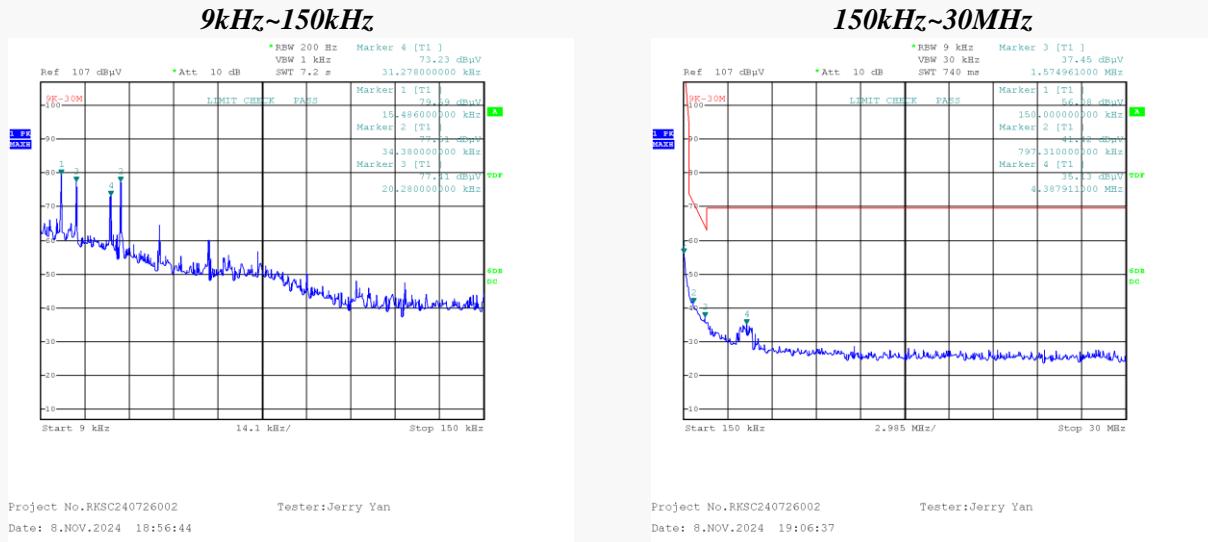

Environmental Conditions & Test Information


Test Item:	SPURIOUS EMISSIONS		DUTY CYCLE	AC LINE CONDUCTED EMISSIONS
	9 kHz - 1GHz	1 GHz - 10 GHz		
Test Date:	2024-11-08	2024-11-08	2024-11-07	2024-11-13
Temperature:	18.9 °C	18.9 °C	23.8 °C	21 °C
Relative Humidity:	57 %	57 %	52 %	72 %
ATM Pressure:	102.7kPa	102.7kPa	100.4kPa	102.0kPa
Test Result:	Pass	Pass	/	Pass
Test Engineer:	Jerry Yan	Destine Hu	Jason Lu	Richard Wen

Test Item:	6 DB EMISSION BANDWIDTH	MAXIMUM CONDUCTED OUTPUT POWER	100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	POWER SPECTRAL DENSITY
Test Date:	2024-11-07	2024-11-07	2024-11-07	2024-11-07
Temperature:	23.8 °C	23.8 °C	23.8 °C	23.8 °C
Relative Humidity:	52 %	52 %	52 %	52 %
ATM Pressure:	100.4kPa	100.4kPa	100.4kPa	100.4kPa
Test Result:	Pass	Pass	Pass	Pass
Test Engineer:	Jason Lu	Jason Lu	Jason Lu	Jason Lu

AC LINE CONDUCTED EMISSIONS

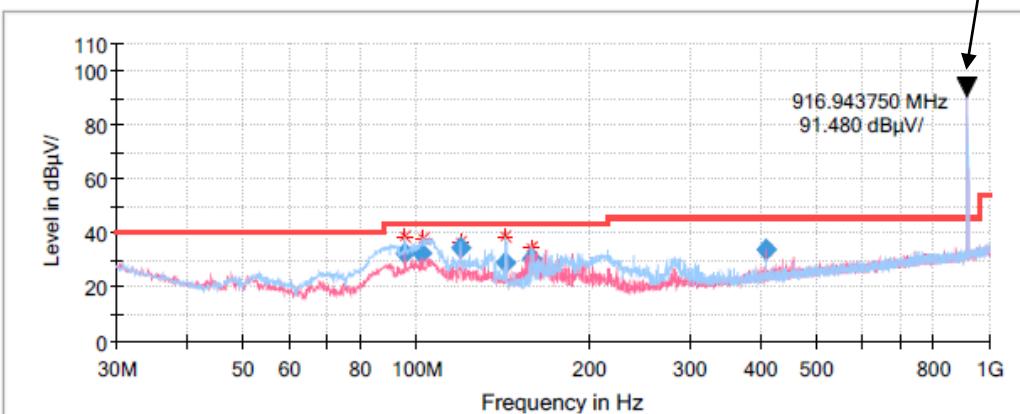
EUT operation mode: Transmitting in maximum output power channel (low channel)



SPURIOUS EMISSIONS

EUT operation mode: Transmitting

9kHz~30MHz: Transmitting in maximum output power channel (low channel)

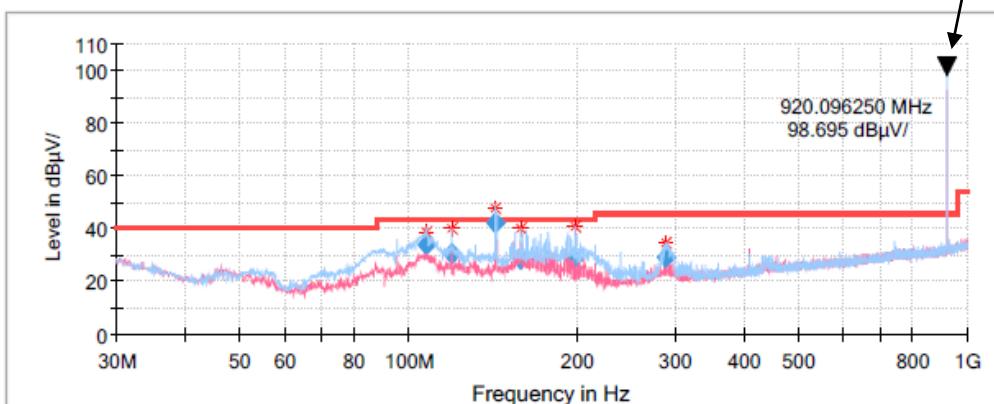

Frequency (MHz)	Corrected Amplitude (dB μ V/m) @3m	Detector PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dB μ V/m) @3m	Margin (dB)
0.015486	79.59	PK	52.87	123.81	44.22
0.03438	77.51	PK	46.06	116.88	39.37
0.02028	77.41	PK	49.92	121.46	44.05
0.031278	73.23	PK	46.87	117.70	44.47

150 kHz~30 MHz

Frequency (MHz)	Corrected Amplitude (dB μ V/m) @3m	Detector PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dB μ V/m) @3m	Margin (dB)
0.15000	56.08	PK	50.90	104.08	48.00
0.79731	41.42	PK	19.59	69.57	28.15
1.57496	37.45	PK	8.87	63.66	26.21
4.38791	35.13	PK	14.85	69.54	34.41

30MHz - 1GHz**Low Channel: 917.1 MHz****Common Information**

Project No: RKSC240726002
EUT Model: P3 Pro
Test Mode: Transmitting in Lora mode low channel
Standard: FCC Part 15.205 & FCC Part 15.209&FCC Part 15.247
Test Equipment: ESCI, JB3, 310N
Temperature: 18.9°C
Humidity: 57%
Barometric Pressure: 102.7kPa
Test Engineer: Jerry Yan
Test Date: 2024/11/08

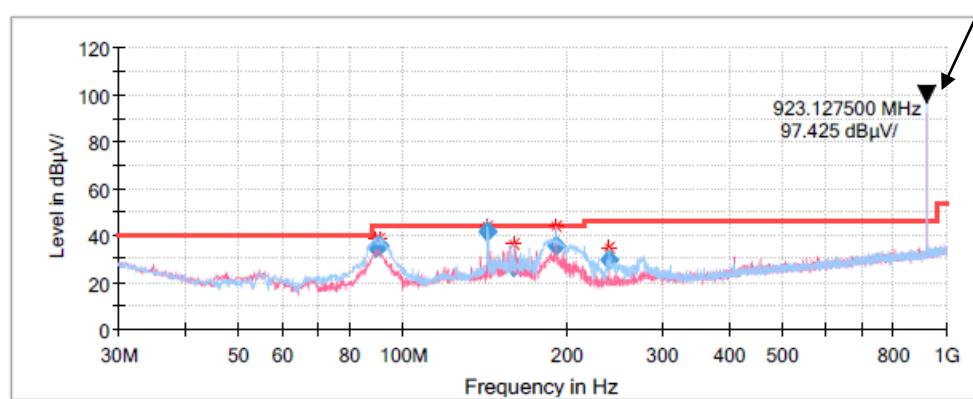

Fundamental**Final Result**

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
95.506250	32.40	43.50	11.10	H	-15.5
102.620095	32.78	43.50	10.72	H	-13.7
119.690750	34.68	43.50	8.82	H	-10.9
143.385900	29.20	43.50	14.30	H	-11.4
159.490000	30.73	43.50	12.77	H	-12.1
407.993600	33.91	46.00	12.09	V	-7.8

Middle Channel: 920.1 MHz**Common Information**

Project No: RKSC240726002
EUT Model: P3 Pro
Test Mode: Transmitting in Lora mode middle channel
Standard: FCC Part 15.205 & FCC Part 15.209 & FCC Part 15.247
Test Equipment: ESCI, JB3, 310N
Temperature: 18.9°C
Humidity: 57%
Barometric Pressure: 102.7kPa
Test Engineer: Jerry Yan
Test Date: 2024/11/08

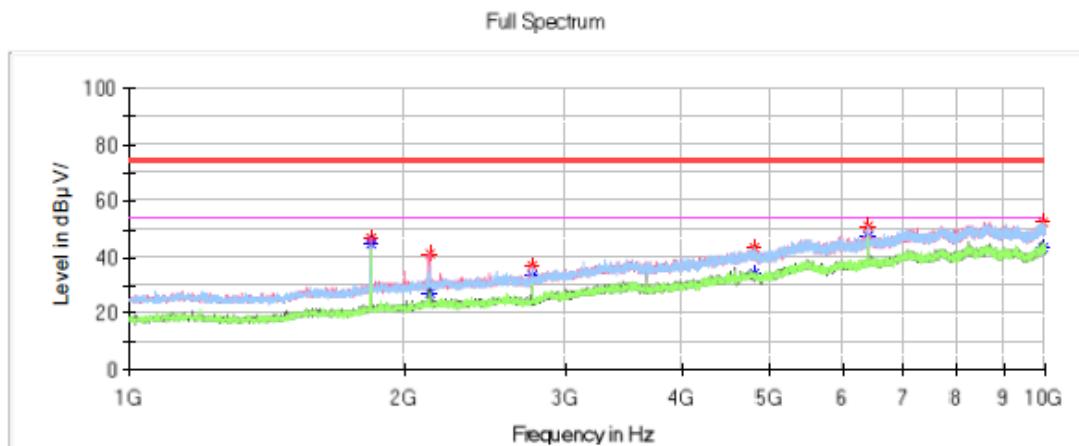
Fundamental


Final Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
108.045000	33.89	43.50	9.61	H	-13.1
119.352650	30.42	43.50	13.08	H	-11.0
143.620250	42.31	43.50	1.19	H	-11.4
159.311250	28.38	43.50	15.12	H	-12.0
198.034100	28.38	43.50	15.12	H	-12.1
288.744740	29.12	46.00	16.88	H	-10.3

High Channel: 923.3 MHz**Common Information**

Project No: RKSC240726002
EUT Model: P3 Pro
Test Mode: Transmitting in Lora mode high channel
Standard: FCC Part 15.205 & FCC Part 15.209 & FCC Part 15.247
Test Equipment: ESCI, JB3, 310N
Temperature: 18.9°C
Humidity: 57%
Barometric Pressure: 102.7kPa
Test Engineer: Jerry Yan
Test Date: 2024/11/08

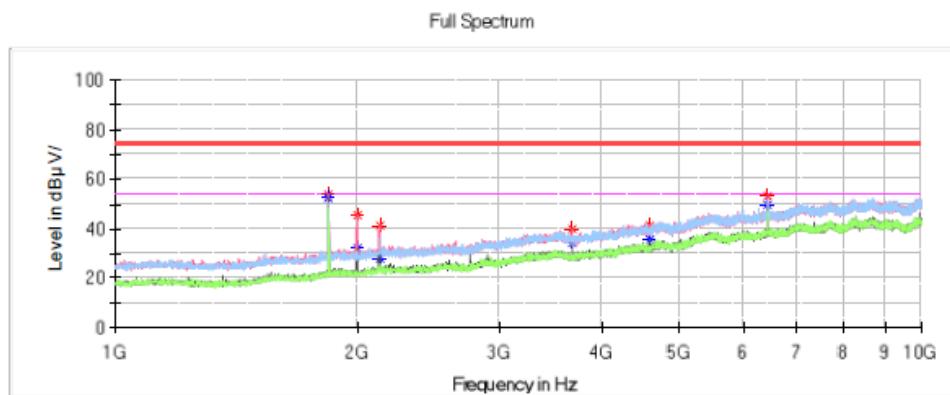

Fundamental

Final Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
89.290000	34.62	43.50	8.88	H	-16.9
90.985000	35.50	43.50	8.00	H	-16.7
143.599800	41.43	43.50	2.07	H	-11.4
159.888150	26.69	43.50	16.81	H	-12.1
191.744700	35.39	43.50	8.11	H	-12.4
239.003900	29.40	46.00	16.60	H	-12.3

1GHz - 10GHz:**Low Channel: 917.1 MHz****Common Information**

Project No.: RKSC240726002
 Test Mode: Transmitting
 Standard: FCC Part 15.247& FCC Part 15.205& FCC Part 15.209
 Test Engineer: Destine Hu


Critical_Freqs

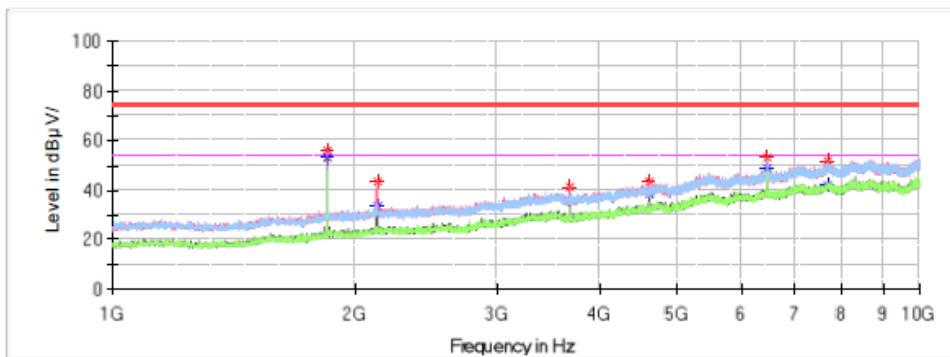
Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
1834.300000	---	44.77	54.00	9.23	V	-12.7
1834.300000	47.02	---	74.00	26.98	V	-12.7
2125.000000	41.47	---	74.00	32.53	V	-11.3
2125.000000	---	27.13	54.00	26.87	V	-11.3
2750.500000	---	33.33	54.00	20.67	V	-9.3
2750.500000	36.88	---	74.00	37.12	V	-9.3
4823.200000	---	34.24	54.00	19.76	H	-3.1
4823.200000	43.42	---	74.00	30.58	H	-3.1
6419.800000	50.76	---	74.00	23.24	H	0.4
6419.800000	---	47.26	54.00	6.74	H	0.4
9946.900000	52.36	---	74.00	21.64	V	7.0
9946.900000	---	43.09	54.00	10.91	V	7.0

Middle Channel: 920.1 MHz

Common Information

Project No.: RKSC240726002
 Test Mode: Transmitting
 Standard: FCC Part 15.247& FCC Part 15.205& FCC Part 15.209
 Test Engineer: Destine Hu

Critical Freqs


Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Pol	Corr. (dB/m)
1839.700000	---	52.57	54.00	1.43	V	-12.7
1839.700000	53.87	---	74.00	20.13	V	-12.7
1997.200000	45.15	---	74.00	28.85	V	-11.8
1997.200000	---	31.95	54.00	22.05	V	-11.8
2127.700000	---	27.96	54.00	26.04	V	-11.3
2127.700000	41.06	---	74.00	32.94	V	-11.3
3681.100000	39.68	---	74.00	34.32	V	-6.2
3681.100000	---	34.42	54.00	19.58	V	-6.2
4600.000000	41.59	---	74.00	32.41	H	-3.9
4600.000000	---	35.71	54.00	18.29	H	-3.9
6441.400000	53.35	---	74.00	20.65	H	0.5
6441.400000	---	49.48	54.00	4.52	H	0.5

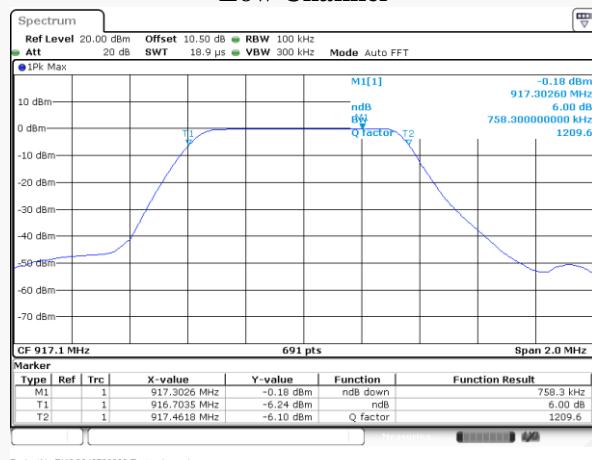
High Channel: 923.3 MHz

Common Information

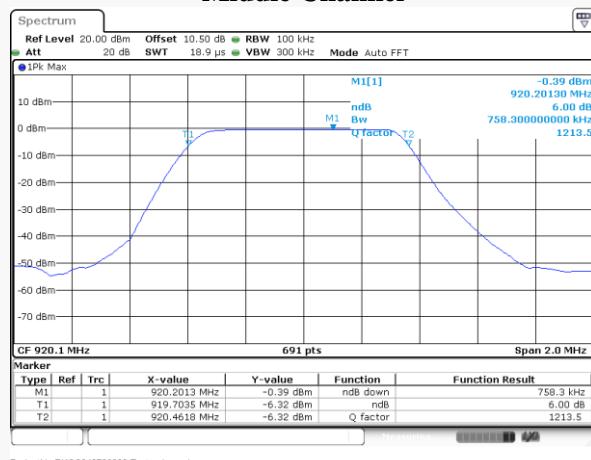
Project No.: RKSC240726002
 Test Mode: Transmitting
 Standard: FCC Part 15.247 & FCC Part 15.205 & FCC Part 15.209
 Test Engineer: Destine Hu

Full Spectrum

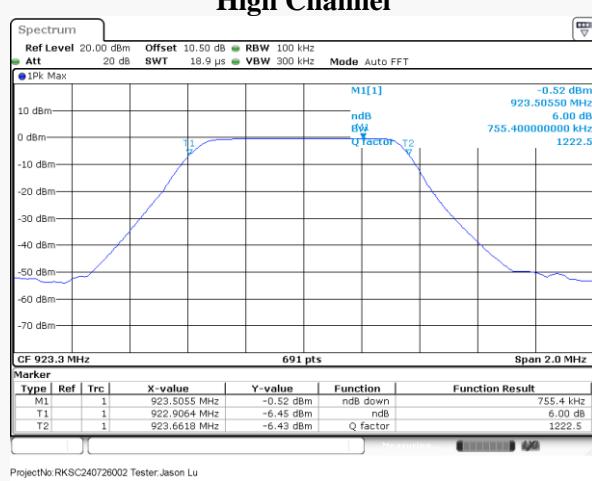
Critical Freqs


Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Pol	Corr. (dB/m)
1846.000000	---	52.89	54.00	1.11	V	-12.7
1846.000000	56.10	---	74.00	17.90	V	-12.7
2131.300000	43.66	---	74.00	30.34	V	-11.3
2131.300000	---	33.62	54.00	20.38	V	-11.3
3691.900000	41.22	---	74.00	32.78	V	-6.2
3691.900000	---	35.79	54.00	18.21	V	-6.2
4615.300000	43.47	---	74.00	30.53	H	-3.8
4615.300000	---	38.48	54.00	15.52	H	-3.8
6462.100000	53.31	---	74.00	20.69	V	0.5
6462.100000	---	48.82	54.00	5.18	V	0.5
7688.800000	---	41.84	54.00	12.16	H	3.9
7688.800000	52.00	---	74.00	22.00	H	3.9

6 dB EMISSION BANDWIDTH

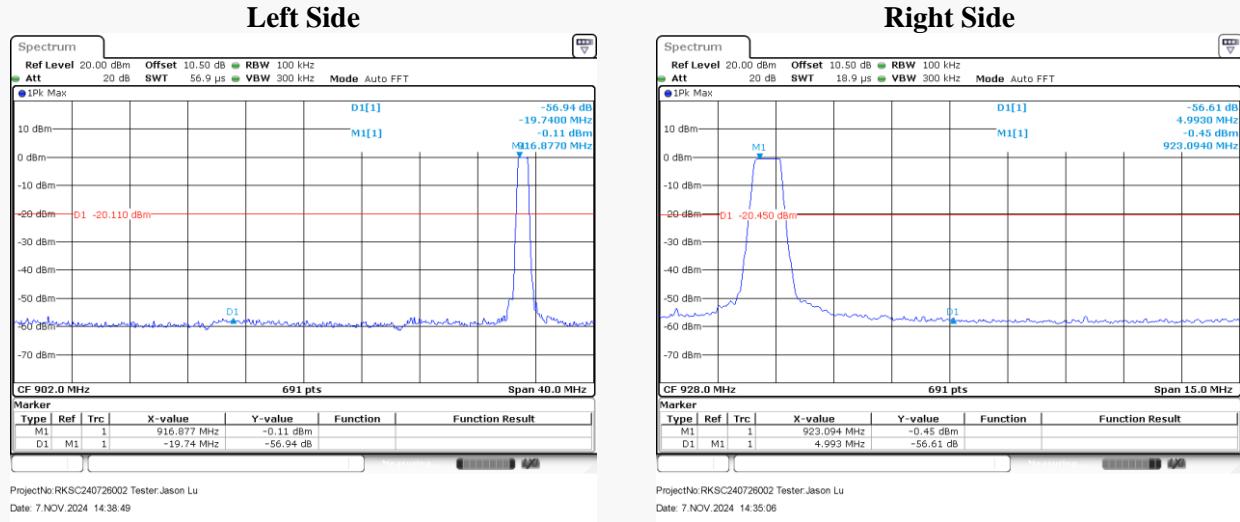

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
Low	917.1	0.76	≥ 0.5
Middle	920.1	0.76	≥ 0.5
High	923.3	0.76	≥ 0.5


Low Channel

Middle Channel

High Channel

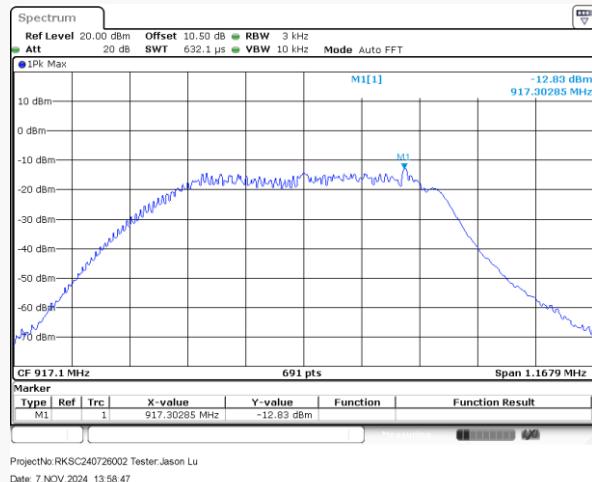


MAXIMUM CONDUCTED OUTPUT POWER*EUT operation mode: Transmitting*

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low	917.1	-0.02	30	Pass
Middle	920.1	-0.16	30	Pass
High	923.3	-0.37	30	Pass

100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

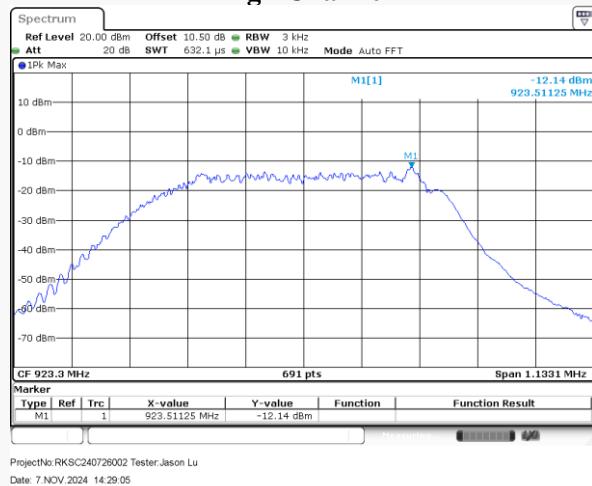
EUT operation mode: Transmitting



Power Spectral Density


EUT operation mode: Transmitting

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	917.1	-12.83	≤ 8
Middle	920.1	-12.70	≤ 8
High	923.3	-12.14	≤ 8


Low Channel

Middle Channel

High Channel

EUT PHOTOGRAPHS

Please refer to the attachment EXHIBIT A - EUT EXTERNAL PHOTOGRAPHS and EXHIBIT B - EUT INTERNAL PHOTOGRAPHS.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment EXHIBIT C - TEST SETUP PHOTOGRAPHS.

Declarations

1. The laboratory is not responsible for the authenticity of any information provided by the applicant. Information from the applicant that may affect test results is marked with “★”.
2. The test data was only valid for the test sample(s).
3. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.
4. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
5. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor k=2 with the 95.45% confidence interval.

******* END OF REPORT *******