

TEST REPORT

Report No.: **BCTC2508448548E**

Applicant: **Dongguan Miyou Electronic Technology Co., LTD.**

Product Name: **Penis vibrating sleeve**

Test Model: **MY032**

Tested Date: **2025-08-06 to 2025-08-15**

Issued Date: **2025-08-15**

Shenzhen BCTC Testing Co., Ltd.

FCC ID:2BKEK-MY032

Product Name: Penis vibrating sleeve

Trademark: N/A

Model/Type reference: MY032
MY033

Prepared For: Dongguan Miyou Electronic Technology Co., LTD.

Address: Room 301, Building 1, No. 11, Baidi Baifeng 1st Street, Zhangmutou Town, Dongguan City, Guangdong Province, China

Manufacturer: Dongguan Miyou Electronic Technology Co., LTD.

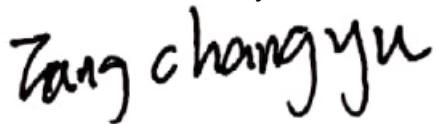
Address: Room 301, Building 1, No. 11, Baidi Baifeng 1st Street, Zhangmutou Town, Dongguan City, Guangdong Province, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2025-08-06

Sample tested Date: 2025-08-06 to 2025-08-15


Issue Date: 2025-08-15

Report No.: BCTC2508448548E

Test Standards: CFR 47 FCC Part 15 Subpart B
ANSI C63.4:2014

Test Results: PASS

Tested by:

Tang Changyu/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

	Page
Test Report Declaration	
1. Version	4
2. Test Summary	5
3. Measurement Uncertainty.....	6
4. Product Information And Test Setup.....	7
4.1 Product Information	7
4.2 Test Setup Configuration	7
4.3 Support Equipment.....	8
4.4 Test Mode.....	8
5. Test Facility And Test Instrument Used	9
5.1 Test Facility	9
5.2 Test Instrument Used	9
6. Conducted Emission At The Mains Terminals Test.....	11
6.1 Block Diagram Of Test Setup	11
6.2 Limit.....	11
6.3 Test Procedure	11
6.4 Test Result	12
7. Radiation Emission Test.....	14
7.1 Block Diagram Of Test Setup	14
7.2 Limit.....	14
7.3 Test Procedure	15
7.4 Test Result	16
8. EUT Photographs	20
9. EUT Test Setup Photographs.....	21

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2508448548E	2025-08-15	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

Standard	Test Item	Test result
CFR 47 FCC Part 15 Subpart B	Conducted Emission	Pass
CFR 47 FCC Part 15 Subpart B	Radiated Emission	Pass

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150kHz-30MHz)	3.10
Radiated Emission(30MHz~200MHz)	4.60
Radiated Emission(200MHz~1GHz)	5.20
Radiated Emission(1GHz~6GHz)	5.20

 GO, LTD

4. Product Information And Test Setup

4.1 Product Information

Ratings:

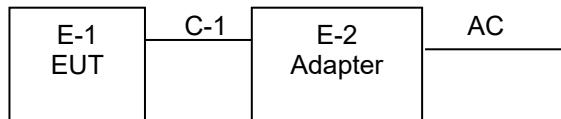
DC 3.7V From Battery, DC 5V From USB

Model differences:

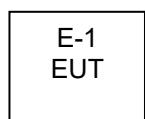
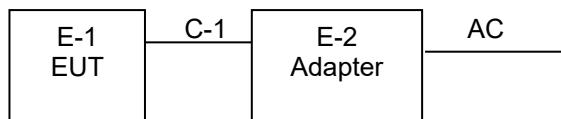
All the model are the same circuit and RF module, except model names and appearance of the color and appearance.

Antenna installation:

Internal antenna


Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1					<input type="checkbox"/> Yes <input type="checkbox"/> No	
2					<input type="checkbox"/> Yes <input type="checkbox"/> No	



4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
1.	Adapter	UGREEN	CD289	---	Auxiliary

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

Test item	Test Mode	Test Voltage
Conducted Emission (150KHz-30MHz) Class B	Charging	AC 120V/60Hz
Radiated emission(30MHz-1GHz) Class B	Charging	AC 120V/60Hz
	RX*	DC 3.7V
Radiated emission(1GHz-6GHz) Class B	RX	DC 3.7V

All test mode were tested and passed, only Radiated Emissions shows (*) is the worst case mode which were recorded in this report.

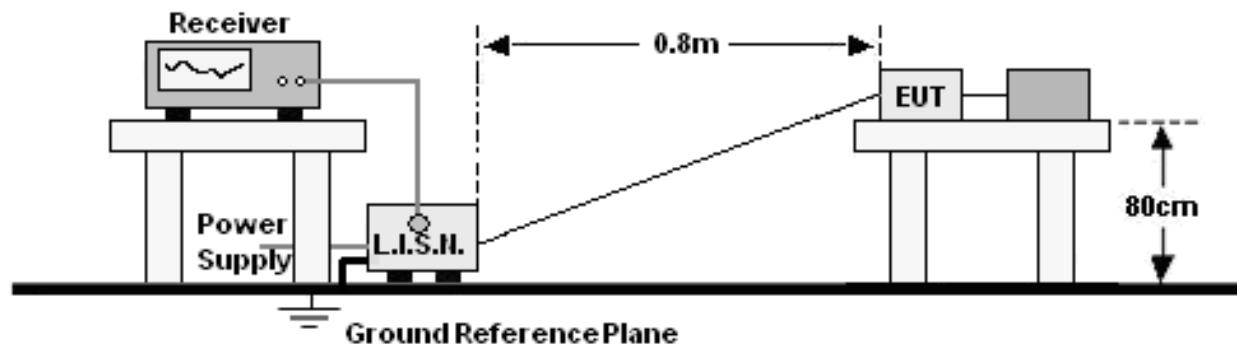
5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Conducted Emissions Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Receiver	R&S	ESR3	102075	May 08 2025	May 07, 2026
LISN	R&S	ENV216	101375	May 14, 2025	May 13, 2026
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\
Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 14, 2025	May 13, 2026


Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R&S	ESR3	102075	May 08, 2025	May 07, 2026
Receiver	R&S	ESR3P	101154	May 14, 2025	May 13, 2026
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 14, 2025	May 13, 2026
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 24, 2025	May 23, 2026
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 24, 2025	May 23, 2026
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 14, 2025	May 13, 2026
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 24, 2025	May 23, 2026
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35-HG	2034381	May 24, 2025	May 23, 2026
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 24, 2025	May 23, 2026
Spectrum Analyzer9kHz-40GHz	R&S	FSP40	100363	May 14, 2025	May 13, 2026
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Radiated Emissions Test (966 Chamber02)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	SKET	966 Room	966	Oct. 31. 2024	Oct. 30. 2027
Receiver	R&S	ESR3	102075	May 08, 2025	May 07, 2026
Receiver	R&S	ESR3I7	100010	Oct. 31. 2024	Oct. 30. 2025
Amplifier	SKET	LNPA-30M01 G-30	SK2021082004	Oct. 31. 2024	Oct. 30. 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9168	1323	May 24, 2025	May 23, 2026
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 24, 2025	May 23, 2026
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 14, 2025	May 13, 2026
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 24, 2025	May 23, 2026
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 14, 2025	May 13, 2026
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 24, 2025	May 23, 2026
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 14, 2025	May 13, 2026
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

6. Conducted Emission At The Mains Terminals Test

6.1 Block Diagram Of Test Setup

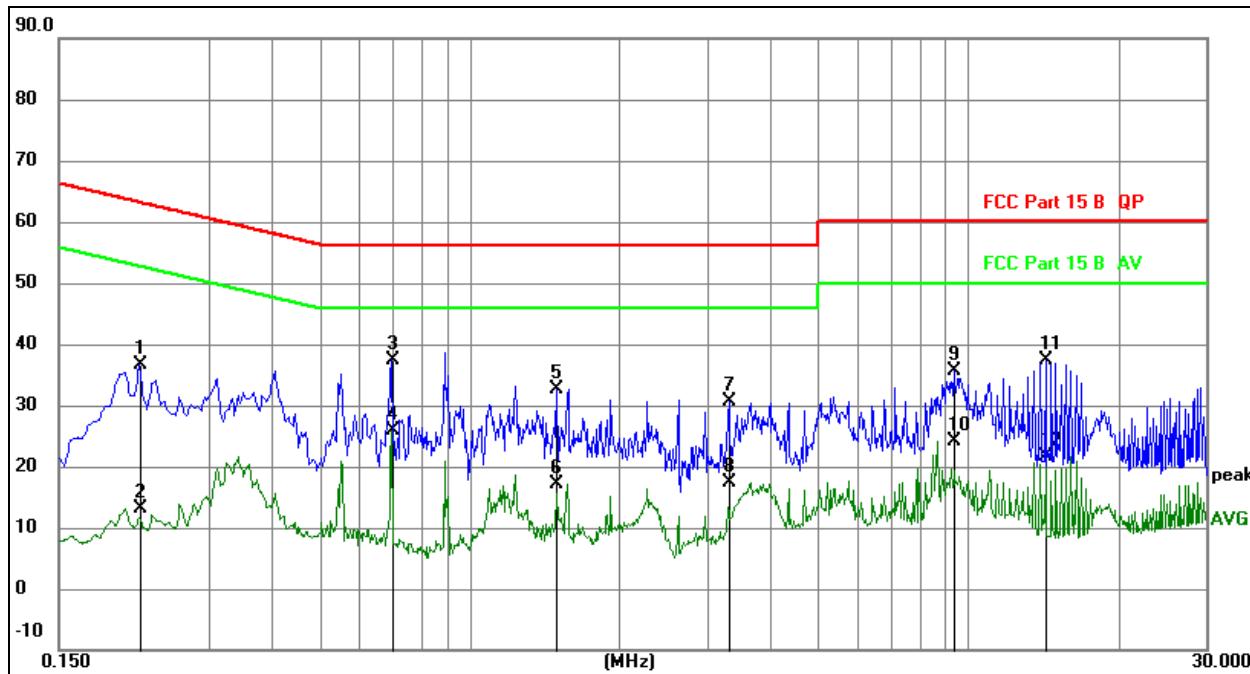
For mains ports:

6.2 Limit

Limits for Class B devices

Frequency range (MHz)	Limits dB(µV)	
	Quasi-peak	Average
0,15 to 0,50	66 to 56*	56 to 46*
0,50 to 5	56	46
5 to 30	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

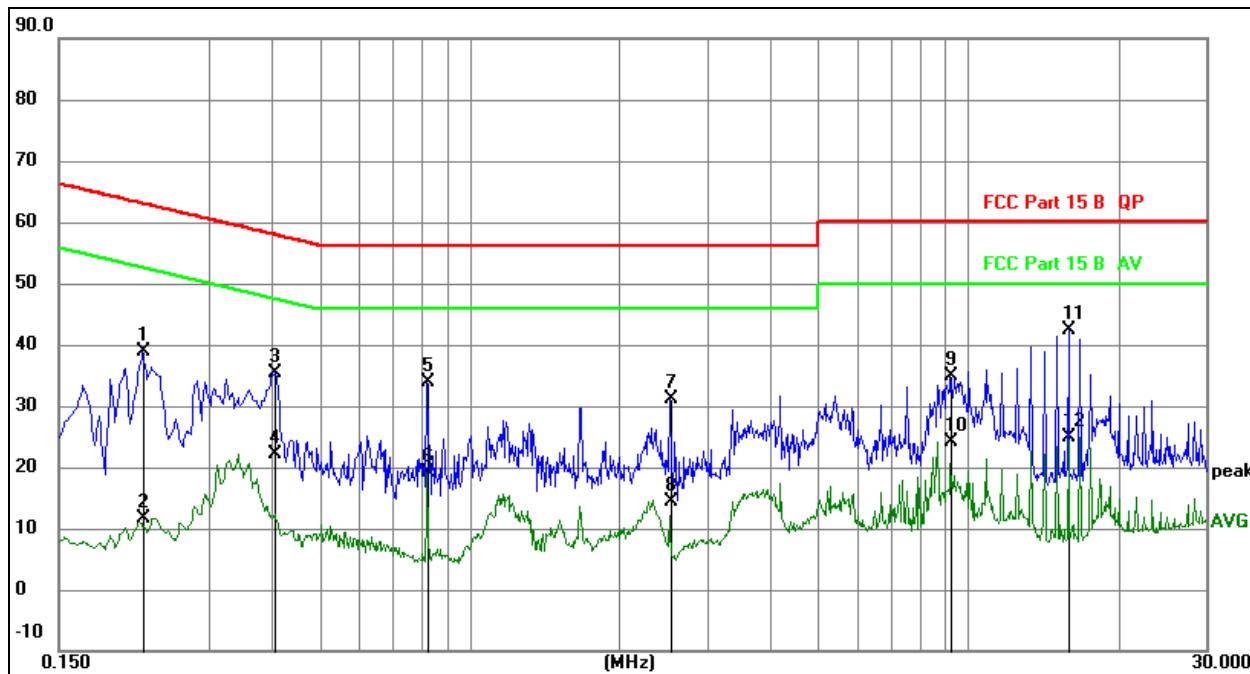

6.3 Test Procedure

For mains ports:

- The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N.).
- The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 Test Result

Temperature:	24.3 °C	Relative Humidity:	55 %
Pressure:	101kPa	Phase :	Line
Test Voltage:	AC 120V/60Hz	Test Mode:	Charging

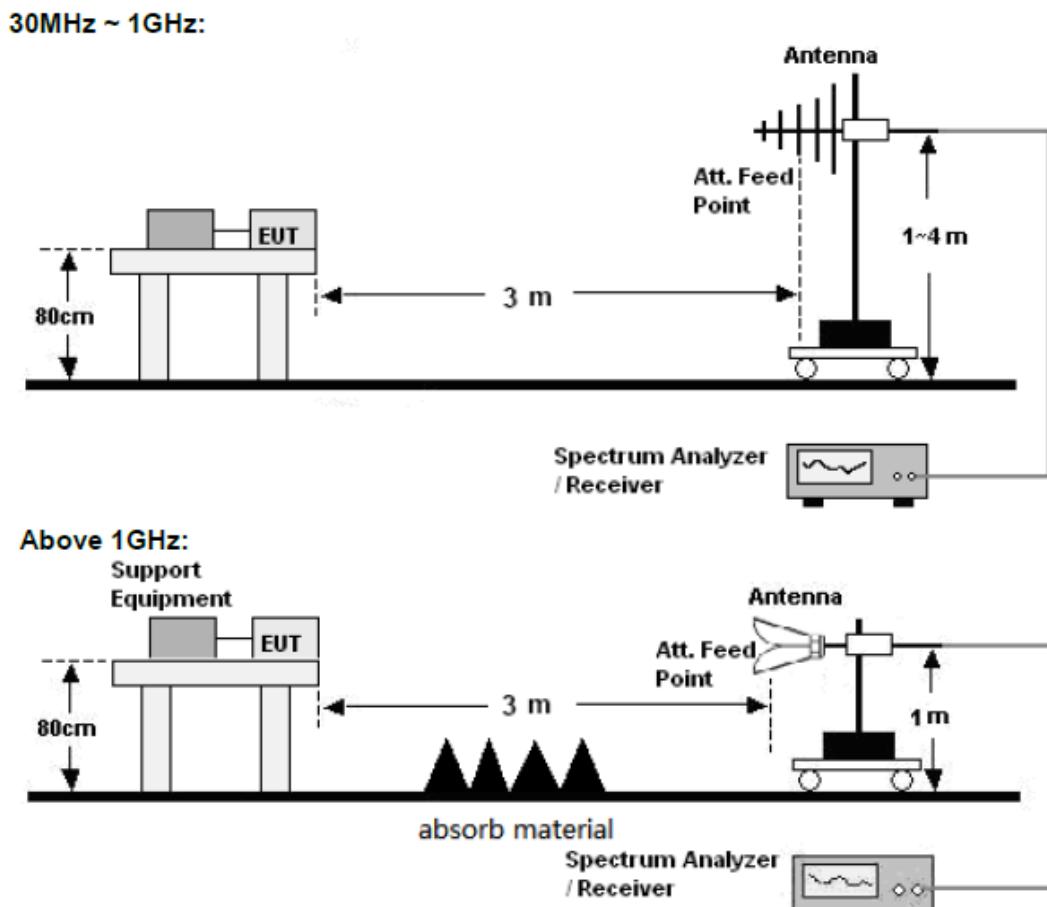


Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. Measurement=Reading Level+ Correct Factor
4. Over= Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2174	16.49	20.04	36.53	62.92	-26.39	QP
2		0.2174	-6.98	20.04	13.06	52.92	-39.86	AVG
3	*	0.6973	17.14	20.26	37.40	56.00	-18.60	QP
4		0.6973	5.63	20.26	25.89	46.00	-20.11	AVG
5		1.4953	12.42	20.23	32.65	56.00	-23.35	QP
6		1.4953	-3.16	20.23	17.07	46.00	-28.93	AVG
7		3.3105	10.11	20.46	30.57	56.00	-25.43	QP
8		3.3105	-3.17	20.46	17.29	46.00	-28.71	AVG
9		9.3518	14.26	21.26	35.52	60.00	-24.48	QP
10		9.3518	2.86	21.26	24.12	50.00	-25.88	AVG
11		14.2882	15.16	22.32	37.48	60.00	-22.52	QP
12		14.2882	-0.62	22.32	21.70	50.00	-28.30	AVG

Temperature:	24.3 °C	Relative Humidity:	55 %
Pressure:	101kPa	Phase :	Neutral
Test Voltage:	AC 120V/60Hz	Test Mode:	Charging



Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. Measurement=Reading Level+ Correct Factor
4. Over= Measurement-Limit

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz		dB	dBuV	dBuV	dB
1		0.2220	18.76	20.04	38.80	62.74	-23.94 QP
2		0.2220	-8.38	20.04	11.66	52.74	-41.08 AVG
3		0.4065	15.22	20.05	35.27	57.72	-22.45 QP
4		0.4065	2.06	20.05	22.11	47.72	-25.61 AVG
5		0.8250	13.70	20.26	33.96	56.00	-22.04 QP
6		0.8250	-1.12	20.26	19.14	46.00	-26.86 AVG
7		2.5305	10.91	20.29	31.20	56.00	-24.80 QP
8		2.5305	-5.79	20.29	14.50	46.00	-31.50 AVG
9		9.2220	13.74	21.24	34.98	60.00	-25.02 QP
10		9.2220	2.99	21.24	24.23	50.00	-25.77 AVG
11 *		15.9270	19.58	22.69	42.27	60.00	-17.73 QP
12		15.9270	2.16	22.69	24.85	50.00	-25.15 AVG

7. Radiation Emission Test

7.1 Block Diagram Of Test Setup

7.2 Limit

Limits for Class B devices

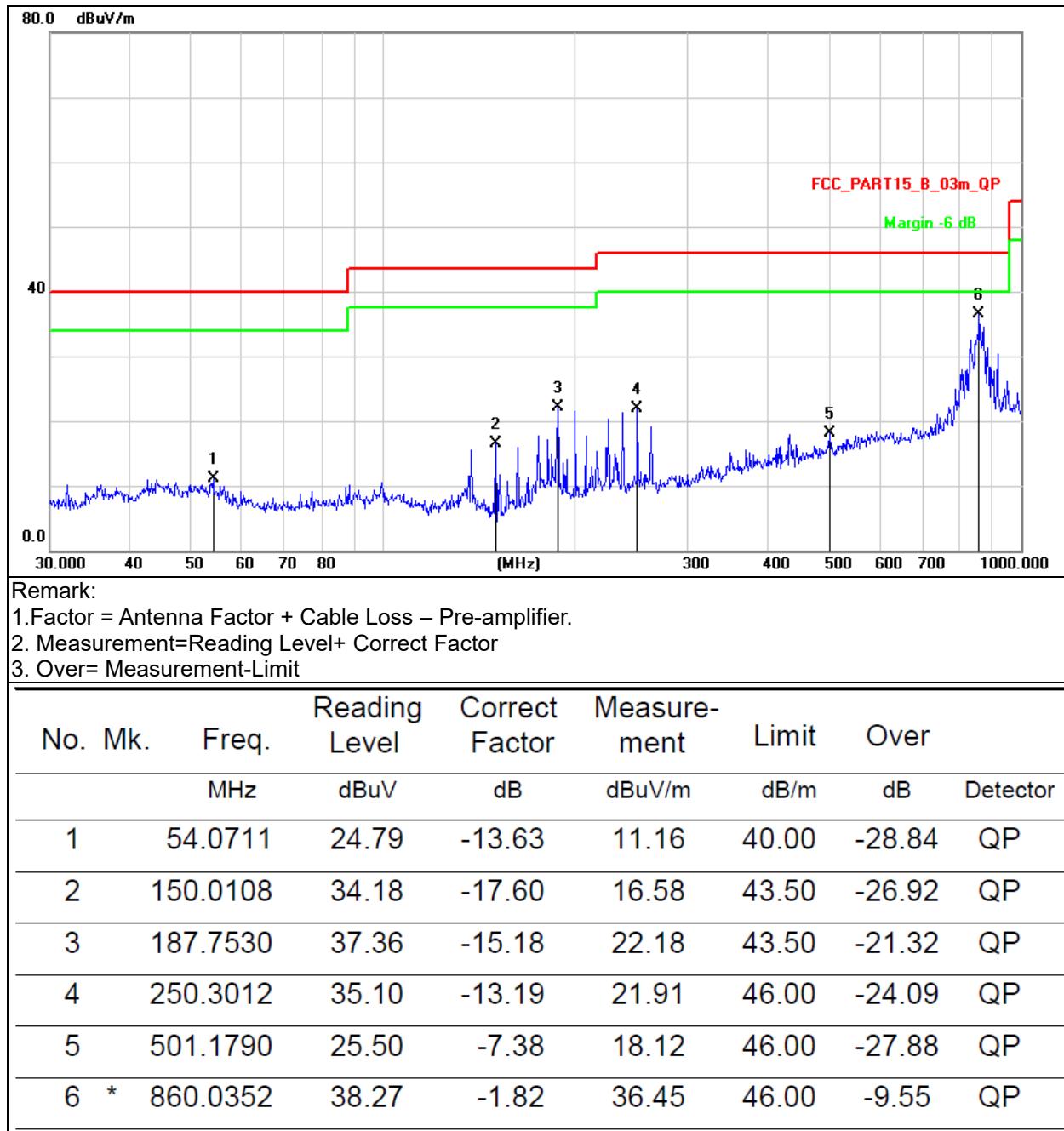
Frequency (MHz)	limits at 3m dB(μ V/m)		
	QP Detector	PK Detector	AV Detector
30-88	40.0	--	--
88-216	43.5	--	--
216-960	46.0	--	--
960 to 1000	54.0	--	--
Above 1000	--	74.0	54.0

Note: The lower limit shall apply at the transition frequencies.

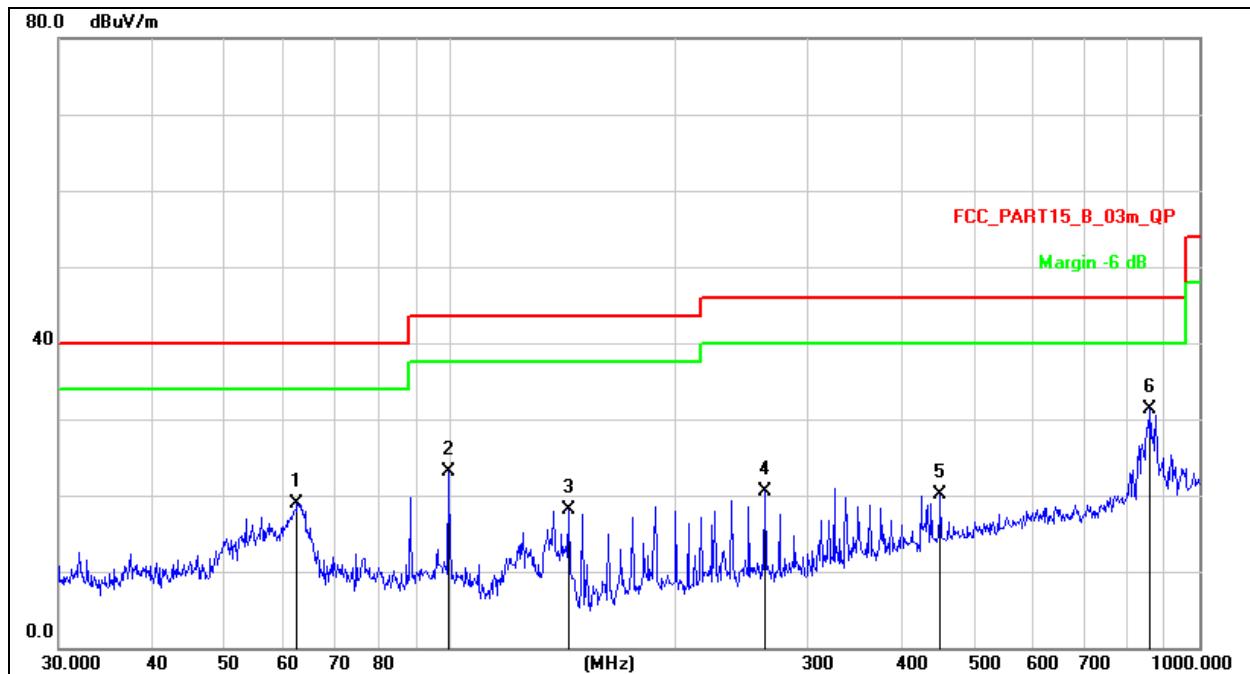
7.3 Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 0.8 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.


Above 1GHz:

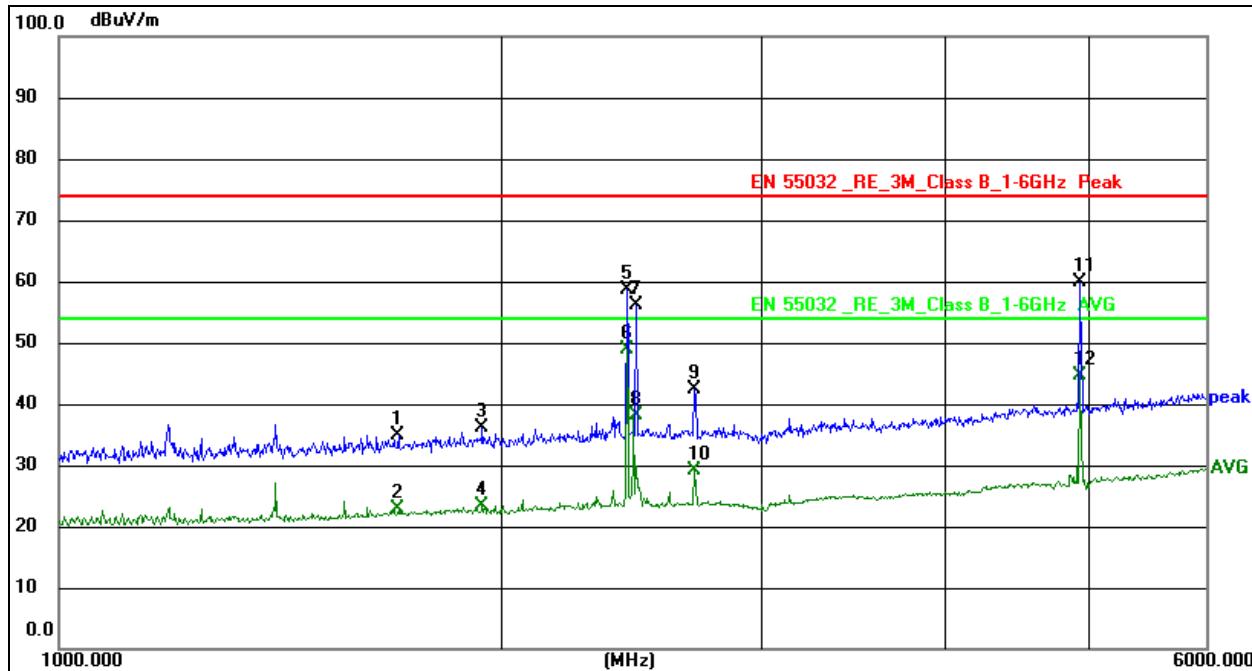
- a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.


7.4 Test Result

30MHz ~ 1GHz

Temperature:	24.2 °C	Relative Humidity:	56 %
Pressure:	101KPa	Phase :	Horizontal
Test Voltage:	DC 3.7V	Test Mode:	The worst data(RX)

Temperature:	24.2 °C	Relative Humidity:	56 %
Pressure:	101KPa	Phase :	Vertical
Test Voltage:	DC 3.7V	Test Mode:	The worst data(RX)



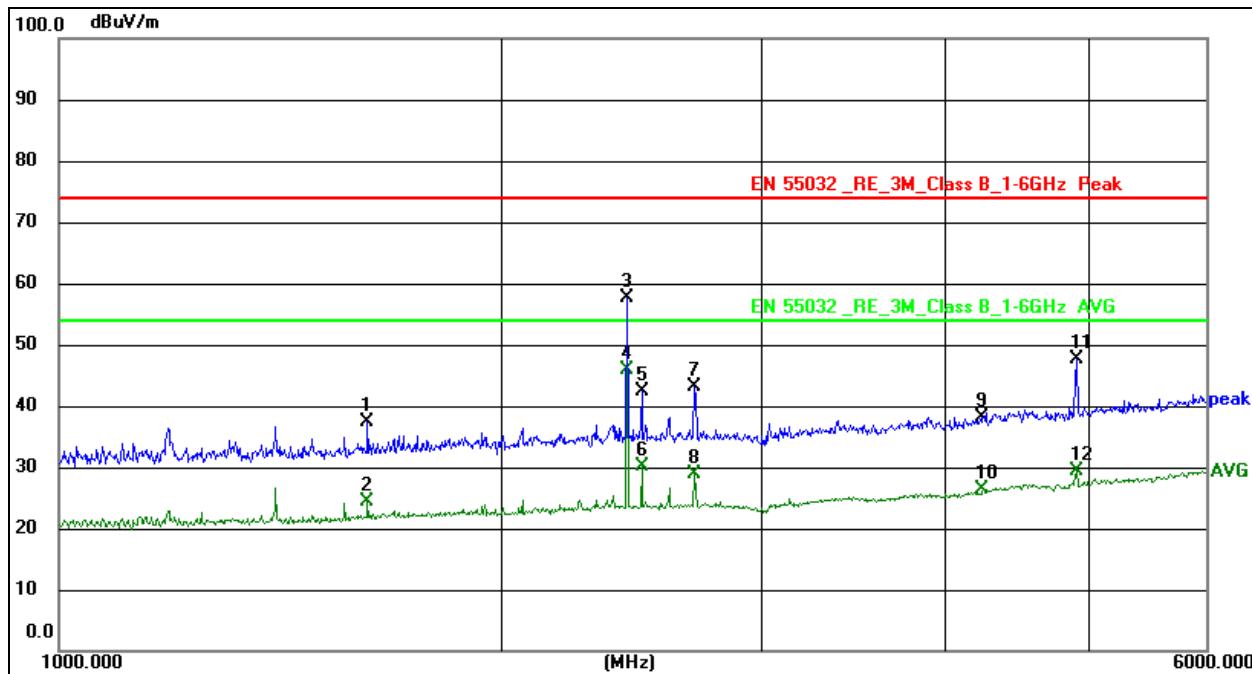
Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over= Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		62.4314	34.08	-15.14	18.94	40.00	-21.06	QP
2		99.5281	37.91	-14.73	23.18	43.50	-20.32	QP
3		143.8295	35.28	-17.25	18.03	43.50	-25.47	QP
4		262.8955	33.33	-12.89	20.44	46.00	-25.56	QP
5		451.1350	28.40	-8.38	20.02	46.00	-25.98	QP
6	*	860.0352	33.15	-1.82	31.33	46.00	-14.67	QP

Above 1GHz

Temperature:	23.2 °C	Relative Humidity:	65 %
Pressure:	101KPa	Phase :	Horizontal
Test Voltage:	DC 3.7V	Test Mode:	RX



Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over= Measurement-Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1699.545	61.94	-27.02	34.92	74.00	-39.08	peak
2	1699.545	49.89	-27.02	22.87	54.00	-31.13	AVG
3	1937.037	62.78	-26.69	36.09	74.00	-37.91	peak
4	1937.037	50.13	-26.69	23.44	54.00	-30.56	AVG
5	2427.643	84.45	-25.74	58.71	74.00	-15.29	peak
6 *	2427.643	74.73	-25.74	48.99	54.00	-5.01	AVG
7	2462.692	81.70	-25.67	56.03	74.00	-17.97	peak
8	2462.692	63.87	-25.67	38.20	54.00	-15.80	AVG
9	2698.335	67.70	-25.32	42.38	74.00	-31.62	peak
10	2698.335	54.43	-25.32	29.11	54.00	-24.89	AVG
11	4926.683	79.88	-20.09	59.79	74.00	-14.21	peak
12	4926.683	64.68	-20.09	44.59	54.00	-9.41	AVG

Temperature:	23.2 °C	Relative Humidity:	65 %
Pressure:	101KPa	Phase :	Vertical
Test Voltage:	DC 3.7V	Test Mode:	RX

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over= Measurement-Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1619.283	64.39	-27.13	37.26	74.00	-36.74	peak
2	1619.283	51.39	-27.13	24.26	54.00	-29.74	AVG
3	2427.643	83.35	-25.74	57.61	74.00	-16.39	peak
4 *	2427.643	71.66	-25.74	45.92	54.00	-8.08	AVG
5	2484.854	68.03	-25.63	42.40	74.00	-31.60	peak
6	2484.854	55.80	-25.63	30.17	54.00	-23.83	AVG
7	2698.335	68.54	-25.32	43.22	74.00	-30.78	peak
8	2698.335	54.20	-25.32	28.88	54.00	-25.12	AVG
9	4230.695	60.28	-22.06	38.22	74.00	-35.78	peak
10	4230.695	48.49	-22.06	26.43	54.00	-27.57	AVG
11	4900.272	67.89	-20.16	47.73	74.00	-26.27	peak
12	4900.272	49.64	-20.16	29.48	54.00	-24.52	AVG

8. EUT Photographs

EUT Photo 1


EUT Photo 2

NOTE: Appendix-Photographs Of EUT Constructional Details.

9. EUT Test Setup Photographs

Conducted emissions

Radiated emissions(30MHz~1GHz)
Charging

Radiated emissions(Above 1GHz)

STATEMENT

1. The equipment lists are traceable to the national reference standards.
2. The test report can not be partially copied unless prior written approval is issued from our lab.
3. The test report is invalid without the "special seal for inspection and testing".
4. The test report is invalid without the signature of the approver.
5. The test process and test result is only related to the Unit Under Test.
6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
7. The quality system of our laboratory is in accordance with ISO/IEC17025.
8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: <http://www.chnbctc.com>

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****