

FCC RF Exposure Test Report

Report No.	:	PSU-QSU2502190110SA02
------------	---	-----------------------

Applicant Kiwibit Inc.

Address 17880 Skypark Circle, Suite 260, Irvine, CA 92614

Product Beako Smart Bird Feeder

FCC ID 2BHUL-BW511

Brand Kiwibit

Model No. BW511

Standards FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

Sample Received Date : Mar. 21, 2025

Date of Testing : Feb. 20, 2025 ~ Mar. 21, 2025

Test Lab : The FCC Site Registration No. is 434559; The Designation No. is CN1325.

: Huarui 7layers High Technology (Suzhou) Co., Ltd. Issued By

Address : Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City,

Anhui Province China

CERTIFICATION: The above equipment have been tested by **Huarui 7Layers High Technology (Suzhou)** Co., Ltd., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :	Chang Gao	Approved By :	Simple: bo	
	(Chang Gao / Engineer)		(Peibo Sun /Manager)	

business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report Format Version 5.0.0 Issued Date Mar. 21, 2025 Report No.: PSU-QSU2502190110SA01

Page 1 of 9

TABLE OF CONTENTS

RE	LEASE	E CONTROL RECORD	3
1.	DESC	RIPTION OF EQUIPMENT UNDER TEST	4
		MAXIMUM PERMISSIBLE EXPOSURE) ASSESSMENT	
		INTRODUCTION	
	2.2	RF RADIATION EXPOSURE LIMITS	5
	2.3	MPE ASSESSMENT METHOD	6
	2.4	MPE CALCULATION FOR STANDALONE OPERATIONS	6
	2.5	CONCLUSION OF SIMULTANEOUS TRANSMITTER	8
3.	INFO	RMATION ON THE TESTING LABORATORIES	9

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025 Report No. : PSU-QSU2502190110SA01 Page 2 of 9

Release Control Record

Report No.	Reason for Change	Date Issued
PSU-QSU2502190110SA01	Original release	Mar, 21. 2025

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025 Report No. : PSU-QSU2502190110SA01 Page 3 of 9

1. Description of Equipment Under Test

EUT Type*	Beako Smart Bird Feeder
FCC ID*	2BHUL-BW511
Brand Name*	Kiwibit
Model Name*	BW511
Tx Frequency Bands	BLE: 2402MHz ~ 2480MHz
(Unit: MHz)	WLAN: 2412 ~ 2462MHz for 11b/g/n(HT20)
Uplink Modulations*	WLAN: DSSS, OFDM
Opinik Wodulations	BLE: GFSK
Antenna Type*	WLAN: PIFA Antenna
Antenna Type	BLE: PCB Antenna
HW VERSION* KF126_C01_V4	
SW VERSION*	1.11.0
EUT Stage*	Identical Prototype

Note:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025 Report No. : PSU-QSU2502190110SA01 Page 4 of 9

2. MPE(Maximum Permissible Exposure) Assessment

2.1 Introduction

According to 47 CFR §2.1091, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 cm is normally maintained between the transmitting antenna and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 cm separation requirement. The limits to be used for MPE evaluation are specified in §1.1310. All unlicensed personal communications service (PCS) devices and unlicensed NII devices shall be subject to the limits for general population/uncontrolled exposure.

2.2RF Radiation Exposure Limits

According to 47 CFR §1.1310, the criteria listed in below table shall be used to evaluate the environmental impact of human exposure to RF radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (min)				
	(A) Limits for Occupational / Controlled Exposures							
0.3 – 3.0	614	1.63	100	6				
3.0 – 30	1842/f	4.89/f	900/ f ²	6				
30 – 300	61.4	0.163	1.0	6				
300 – 1500	-	-	f/300	6				
1500 – 100000	-	-	5	6				
	(B) Limits for General Population / Uncontrolled Exposures							
0.3 – 1.34	614	1.63	100	30				
1.34 – 30	824/f	2.19/f	180/ f ²	30				
30 – 300	27.5	0.073	0.2	30				
300 – 1500	-	-	f/1500	30				
1500 – 100000	-	-	1.0	30				

Limits for maximum permissible exposure (MPE)

Notes:

- 1. f = frequency in MHz
- 2. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided they are made aware of the potential for exposure.
- 3. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

2.3 MPE Assessment Method

Calculations can be made to predict RF field strength and power density levels around typical RF sources. For example, in the case of a single radiating antenna, a prediction for power density in the far-field of the antenna can be made by use of the general Equations below. This equation is generally accurate in the far-field of an antenna but will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction.

Power Density (S) =
$$\frac{PG}{4\pi R^2} = \frac{EIRP}{4\pi R^2}$$

Where

S = Power Density, unit in mW/cm²

P = Power input to the antenna, unit in mW

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna, unit in cm

EIRP = Effective isotropically radiated power

2.4 MPE Calculation for Standalone Operations

The manufacturer expects that the radiated component of this device will not close to the human body during normal usage and the warning statement was also stated in the user instruction. Since the transmitting antenna will be kept at least 20 cm away from the human body, the MPE level is calculated based on this condition and the result is listed in below table.

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025
Report No.: PSU-QSU2502190110SA01 Page 6 of 9

CALCULATION FOR MAXIMUM E.I.R.P

Band	Frequency (MHz)	Antenna Gain (dBi)	Maximum output power (dBm)	Maximum EIRP (dBm)	Maximum EIRP (mW)	Power Density at 20cm (mW/cm^2)	Limit (mW/cm^2)	Power Density / Limit Ratio	Result
BLE 1M	2402	0.2	4	4.20	2.630	0.001	1.000	0.001	Pass
2.4G WLAN	2412	1.3	17	18.30	67.608	0.013	1.000	0.013	Pass

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025

Report No.: PSU-QSU2502190110SA01 Page 7 of 9

2.5 CONCLUSION OF SIMULTANEOUS TRANSMITTER

Both of the WLAN and BLE can transmit simultaneously, the formula of calculated the MPE is:

CPD1/LPD1+CPD2/LPD2+.....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Band	Antenna Gain (dBi)	Maximum Tune up Power (dBm)	Average EIRP (mW)	Power Density (mW/cm^2)	Power Density / Limit	Σ(Power Density / Limit)	Limit	Result
BLE	0.2	4	2.630	0.001	0.001	0.044	4 000	DACC
WLAN	1.3	17	67.608	0.013	0.013	0.014	1.000	PASS

Summary:

Since the ERP (effective radiated power) operated at < 1.5 GHz is less than 1.5 watts and > 1.5 GHz is less than 3 watts, the routine environmental evaluation is not required, and the MPE result calculated for this device complies with the MPE limit as specified in 47 CFR §1.1310.

Report Format Version 5.0.0 Issued Date : Mar. 21, 2025
Report No.: PSU-QSU2502190110SA01 Page 8 of 9

3. Information on the Testing Laboratories

We, Huarui 7layers High Technology (Suzhou) Co., Ltd., were founded in 2020 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Huarui 7Layers High Technology (Suzhou) Co., Ltd. Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

If you have any comments, please feel free to contact us at the following:

Suzhou EMC/RF Lab:

Tel: +86 (0557) 368 1008

---END---