

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Kiwibit Inc.
Address:	17880 Skypark Circle, Suite 260, Irvine, CA 92614

Manufacturer or Supplier:	Kiwibit Inc.	
Address:	17880 Skypark Circle, Suite 260, Irvine, CA 92614	
Product:	Beako Smart Bird Feeder	
Brand Name:	Kiwibit	
Model Name:	BW511	
FCC ID:	2BHUL-BW511	
Date of tests:	Feb. 20, 2025 ~ Mar. 21, 2025	

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

MANSI C63.10-2020

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department
Ru Hannen	Simpei bo
Date: Mar. 21, 2025	Date: Mar. 21, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/lems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with un prior written permission. This report sets forth our indings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or CHaracteristics of the lot from whiCH a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such listure to raise such the conformation of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

KEL	EASE C	ON I ROL RECORD		5
1.	SUMM	ARY OF TEST RESU	JLTS	6
1.1	MEAS	SUREMENT UNCER	TAINTY	7
2	GENER	RAL INFORMATION		8
2.1	GENE	ERAL DESCRIPTION	OF EUT	8
2.2	DESC	CRIPTION OF TEST I	MODES	10
	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST	11
	2.2.2	TEST MODE APPL	ICABILITY AND TESTED CHANNEL DETAIL	11
2.3	DUTY	CYCLE OF TEST S	IGNAL	15
2.4	GENE	ERAL DESCRIPTION	OF APPLIED STANDARDS	15
2.5	DESC	CRIPTION OF SUPPO	ORT UNITS	16
3	TEST 1	TYPES AND RESUL	TS	17
3.1	CONDL	ICTED EMISSION M	EASUREMENT	17
	3.1.1	LIMITS OF CONDU	ICTED EMISSION MEASUREMENT	17
	3.1.2	TEST INSTRUMEN	TS	18
	3.1.3	TEST PROCEDURI	ES	19
	3.1.4	DEVIATION FROM	TEST STANDARD	19
	3.1.5	TEST SETUP		20
	3.1.6	EUT OPERATING (CONDITIONS	20
	3.1.7	TEST RESULTS		21
3.2	RADI	ATED EMISSION ME	ASUREMENT	23
	3.2.1	LIMITS OF RADIAT	ED EMISSION MEASUREMENT	23
	3.2.2	TEST INSTRUMEN	TS	24
	3.2.3	TEST PROCEDURI	ES	25
	3.2.4	DEVIATION FROM	TEST STANDARD	25
	3.2.5	TEST SETUP		26
	3.2.6	EUT OPERATING (CONDITIONS	27
	3.2.7	TEST RESULTS		28
3.3	6 DB	BANDWIDTH MEAS	UREMENT	72
	3.3.1	LIMITS OF 6DB BA	NDWIDTH MEASUREMENT	72
	3.3.2	TEST INSTRUMEN	TS	72
	3.3.3	TEST PROCEDURI	E	73
	3.3.4	DEVIATION FROM	TEST STANDARD	74
	3.3.5	TEST SETUP		74
	3.3.6	EUT OPERATING O	CONDITIONS	74
	3.3.7	TEST RESULTS		74
		ers High TeCHnology	OWER	
		· ·		

Test Report No.	: PSU-QSU250	2190110RF01
I COL I COULL INO.		<u> </u>

VEN	3.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	75
	3.4.2	TEST SETUP	75
	3.4.3	TEST INSTRUMENTS	75
	3.4.4	TEST PROCEDURES	75
	3.4.5	DEVIATION FROM TEST STANDARD	75
	3.4.6	EUT OPERATING CONDITIONS	75
	3.4.7	TEST RESULTS	76
	3.4.7.1	MAXIMUM PEAK OUTPUT POWER	76
	3.4.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	77
3.5	POWI	ER SPECTRAL DENSITY MEASUREMENT	78
	3.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	78
	3.5.2	TEST SETUP	78
	3.5.3	TEST INSTRUMENTS	78
	3.5.4	TEST PROCEDURE	78
	3.5.5	DEVIATION FROM TEST STANDARD	78
	3.5.6	EUT OPERATING CONDITION	78
	3.5.7	TEST RESULTS	79
3.6	OUT	OF BAND EMISSION MEASUREMENT	80
	3.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	80
	3.6.2	TEST SETUP	80
	3.6.3	TEST INSTRUMENTS	80
	3.6.4	TEST PROCEDURE	80
	3.6.5	DEVIATION FROM TEST STANDARD	81
	3.6.6	EUT OPERATING CONDITION	81
	3.6.7	TEST RESULTS	81
3.7	ANTE	NNA REQUIREMENTS	82
	3.7.1	STANDARD APPLICABLE	82
	3.7.2	ANTENNA CONNECTED CONSTRUCTION	82
4	PHOTO	OGRAPHS OF THE TEST CONFIGURATION	83
5	MODIF	ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE L	_AB
	84		
6	APPEN	IDIX A:WIFI	85
DTS		WIDTH	
	TEST F	RESULT	85
	TEST (GRAPHS	86
OB'		DWIDTH	
		RESULT	
		GRAPHS	
			,

MAXIMUM CONDUCTED OUTPUT POWER	97
TEST RESULT	97
MAXIMUM POWER SPECTRAL DENSITY	98
TEST RESULT	98
TEST GRAPHS	98
BAND EDGE MEASUREMENTS	103
TEST RESULT	103
TEST GRAPHS	104
CONDUCTED SPURIOUS EMISSION	107
TEST RESULT	107
TEST GRAPHS	108
DUTY CYCLE	113
TEST RESULT	113
TEST GRAPHS	114
7 APPENDIX B:BLE	116
DTS BANDWIDTH	116
TEST RESULT	116
TEST GRAPHS	116
OCCUPIED CHANNEL BANDWIDTH	118
TEST RESULT	118
TEST GRAPHS	119
MAXIMUM CONDUCTED OUTPUT POWER	121
TEST RESULT	121
MAXIMUM POWER SPECTRAL DENSITY	121
TEST RESULT	121
TEST GRAPHS	122
BAND EDGE MEASUREMENTS	123
TEST RESULT	123
TEST GRAPHS	124
CONDUCTED SPURIOUS EMISSION	125
TEST RESULT	125
TEST GRAPHS	126
DUTY CYCLE	128
TEST RESULT	128
TEST GRAPHS	128

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSUQSU2502190110RF01	Original release	Mar. 21, 2025

1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	TEST LAB*	
15.207	AC Power Conducted Emission	Compliance	Α	
15.205 15.209	Radiated Emissions Compliance		А	
15.247(d)	Out of band Emission Measurement	Compliance	Α	
15.247(a)(2)	6dB bandwidth	Compliance	А	
15.247(b)	Conducted Output power	Compliance	А	
15.247(e)	Power Spectral Density	Compliance	А	
15.203	Antenna Requirement Compliance A		A	

Note: Except RSE and AC Power Conducted Emission, other data please refer to Appendix B.

*Test Lab Information Reference

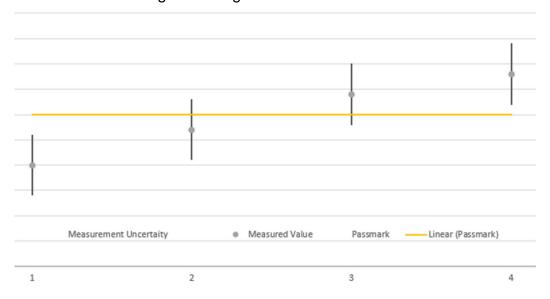
Lab A:

Huarui 7Layers High TeCHnology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-teCH District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Beako Smart Bird Feeder		
BRAND NAME*	Kiwibit		
MODEL NAME*	BW511		
NOMINAL VOLTAGE*	5Vdc(Adapte	r)	
MODULATION *	BLE	GFSK	
WODULATION	2.4G WIFI	DSSS,OFDM	
	BT_LE: 1 Mb	ps	
TDANEMICCION DATE:	802.11b: 11/5	5.5/2.0/1.0 Mbps	
TRANSMISSION RATE*	802.11g: 54/4	18/36/24/18/9/6 Mbps	
	802.11n(HT2	0): up to 144.4 Mbps	
OPERATING	2402-2480MI	Hz for BT-LE	
FREQUENCY	2412-2462MHz for 11b/g/n(HT20)		
MAX. OUTPUT POWER	BT-LE: 3.07mW (Maximum)		
MAX. OUTFOI FOWER	WLAN: 459.20mW (Maximum)		
ANTENNA GAIN*	BLE	0.2dBi	
ANTENNA GAIN	2.4G WIFI	1.3dBi	
ANTENNA TYPE*	BLE	PCB Antenna	
ANTENNA ITPE	2.4G WIFI	PIFA Antenna	
HW VERSION*	KF126_C01_V4		
SW VERSION*	1.11.0		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED* N/A			

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX/1RX
802.11g	1TX/1RX
802.11n(HT20)	1TX/1RX
BT_LE(1MHz)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

2.2 DESCRIPTION OF TEST MODES

11 CHannels are provided for 802.11b, 802.11g and 802.11n20 (HT20):

802.11b/802.11g/802.11n20 (HT20)					
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY		
1	2412 MHz	7	2442 MHz		
2	2417 MHz	8	2447 MHz		
3	2422 MHz	9	2452 MHz		
4	2427 MHz	10	2457 MHz		
5	2432 MHz	11	2462 MHz		
6	2437 MHz				

			BT-L	E			
CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE	
MODE	RE<1G	RE≥1G	PLC	APCM	MODE	
-	$\sqrt{}$	V	V	$\sqrt{}$	-	

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following Channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	6	DSSS	1.0
BT-LE	0 to 39	19	GFSK	0.5

RADIATED EMISSION TEST (ABOVE 1GHz):

☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity arCHitecture).

☐ The following CHannel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

POWER LINE CONDUCTED EMISSION TEST

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n20	1 to 11	6	OFDM	MCS0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

	TEST COM	NDITION	
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY
RE<1G	23deg. C, 70%RH	DC 5.0V By Adapter	Hanwen Xu
RE≥1G	23deg. C, 70%RH	DC 5.0V By Adapter	Hanwen Xu
PLC	25deg. C, 52%RH	DC 5.0V By Adapter	Hanwen Xu
АРСМ	25deg. C, 60%RH	DC 5.0V By Adapter	Hanwen Xu

2.3 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix B Of this test report..

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note:

- 1. All test items have been performed and recorded as per the above standards.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBμV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

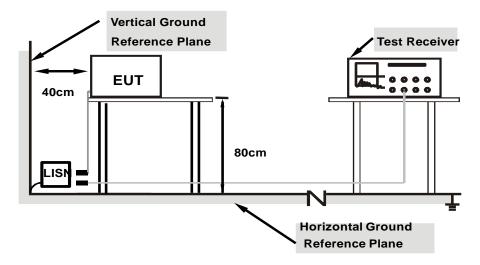
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
EMI Test Receiver	Rohde&SCHwarz	ESR3	102749	Feb.24,24	Feb.23,26	
ELEKTRA test	Rohde&SCHwarz	ELEKTRA	NA	N/A	N/A	
software	Ronde&SCHwarz	ELENIKA	INA	IN/A	IN/A	
LISN network	Rohde&SCHwarz	ENV216	102640	Feb.16,24	Feb.15,26	
CABLE	Rohde&SCHwarz	W61.01	N/A	Apr.27,24	Apr.26,26	
CABLE	Rohde&SCHwarz	W601	N/A	Apr.27,24	Apr.26,26	

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were CHecked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searCHed. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

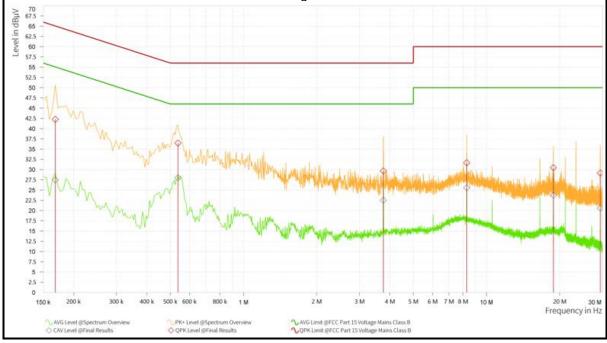
CONDUCTED WORST-CASE DATA										
Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz							
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH							
Tested By	Hanwen Xu									

Rg	Frequency [MHz]	QPK Level [dBμV]	QPK Limit [dBμV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.164	45.19	65.28	20.09	30.08	55.28	25.20	12.41	L1	9.000
1	1.505	30.82	56.00	25.18	19.75	46.00	26.25	11.75	L1	9.000
1	8.219	24.83	60.00	35.17	16.23	50.00	33.77	11.81	L1	9.000
1	12.728	22.30	60.00	37.70	13.77	50.00	36.23	11.84	L1	9.000
1	23.253	26.06	60.00	33.94	14.40	50.00	35.60	11.89	L1	9.000
1	27.744	22.90	60.00	37.10	14.23	50.00	35.77	11.90	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss

6. Emission Level = Correction Factor + Reading Value.



Fre	equency Ran	ge	150KHZ ~ 30MHZ Resolu					etector Function & Quasi-Peak (QP) / esolution Bandwidth Quasi-Peak (QP) / Average (AV), 9 kHz					
Inp	out Power		120V	/ac, 60Hz			ronment ditions	al	26deg. C	26deg. C, 51%RH			
Tes	sted By		Hanv	ven Xu									
R	Frequency [MHz]	L	QPK evel ΒμV]	QPK Limit [dBμV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]		
1	0.168	1	2 27	65.06	22.79	27.47	55.06	27 59	12 19	N	9 000		

Rg	Frequency [MHz]	QPK Level [dBμV]	QPK Limit [dBμV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.168	42.27	65.06	22.79	27.47	55.06	27.59	12.19	N	9.000
1	0.537	36.47	56.00	19.53	27.98	46.00	18.02	12.77	N	9.000
1	3.764	29.67	56.00	26.33	22.52	46.00	23.48	12.75	N	9.000
1	8.291	31.66	60.00	28.34	25.56	50.00	24.44	12.78	N	9.000
1	18.848	30.45	60.00	29.55	23.73	50.00	26.27	12.85	N	9.000
1	29.414	29.15	60.00	30.85	20.60	50.00	29.40	12.88	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions whiCH fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Sep.15,24	Sep.14,26
Signal Generator	R&S	SMB100A	182185	Feb.15,24	Feb.14,26
3m Fully-aneCHoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-aneCHoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.24,24	Feb.23,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Feb.27,24	Feb.26,26
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.22,24	Feb.21,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.26,24	Jun.25,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open SwitCH and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend TeCHnology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	D. C.	HF290-NMNM-	N1/A	NI/A	N1/A
AMI18843A(CABLE)	R&S	7.00M	N/A	N/A	N/A
TMC-	R&S	HF290-NMNM-	N/A	N/A	N/A
AMI18843A(CABLE)	Nas	4.00M	IN/A	IN/A	IN/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,26
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,26

NOTE:

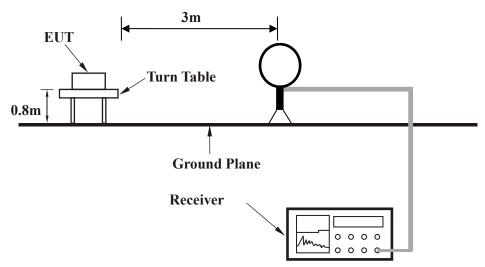
- 1. The calibration interval of the above test instruments is 12/24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.2.3 TEST PROCEDURES

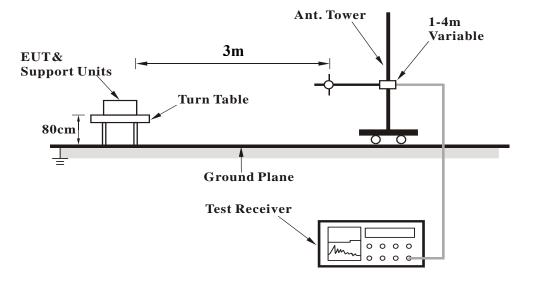
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter CHamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whiCH was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For eaCH suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, eaCH emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

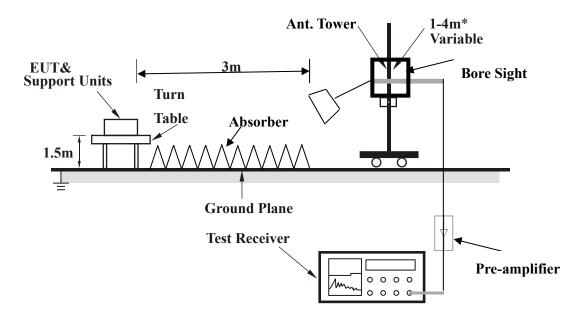

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

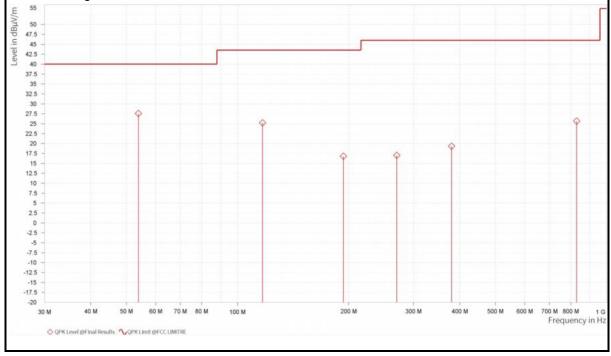
For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific CHannel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

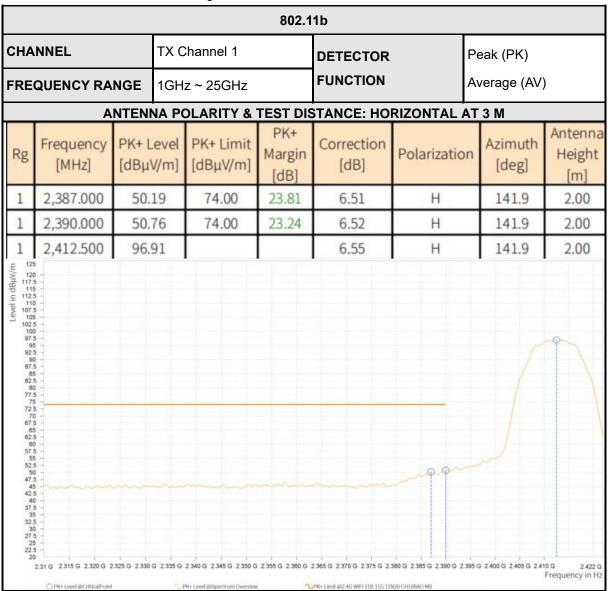

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

	802.11b										
	00Z, 11D										
CHANNEL	TX Channel 6	DETECTOR	Ougai Back (OD)								
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)								

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]				
1	53.911	27.54	40.00	12.46	-8.97	Н	359	2.00	120.000				
1	116.864	25.23	43.50	18.27	-12.18	Н	69	2.00	120.000				
1	193.591	16.80	43.50	26.70	-10.72	Н	4.9	1.00	120.000				
1	269.978	17.00	46.00	29.00	-7.60	Н	302.8	1.00	120.000				
1	380.170	19.31	46.00	26.69	-3.34	Н	69	2.00	120.000				
1	829.862	25.65	46.00	20.35	1.05	Н	355.7	2.00	120.000				

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.


СН	ΑN	INEL		TX	Channel 6			DETEC	TOR		Ouc	si-Peak (C	\D\
FRI	EQ	UENCY R	RANGE	301	MHz ~ 1GH	lz		FUNCT	TION		Qua	si-Peak (C	(P)
			ANTE	NN	IA POLARI	TY & TE	ST [DISTAN	CE: VERTICA	AL A	T 3 M		
Rg	Fr	requency [MHz]	QPK Le [dBμV/		QPK Limit [dBμV/m]	QPK Margin [dB]		rection [dB]	Polarization		muth eg]	Antenna Height [m]	Meas. BW [kHz]
1		49.837	23.07	,	40.00	16.93	-	9.71	V	29	2.2	1.00	120.000
1		78.355	15.74	ļ	40.00	24.26	-]	16.53	V	29	2.2	1.00	120.000
1		133.402	16.70)	43.50	26.80	-]	13.37	V	5	6.6	1.00	120.000
1		178.119	14.77	,	43.50	28.73	-]	12.36	V	29	2.2	1.00	120.000
1		278.175	16.05	5	46.00	29.95	-	7.36	V	29	2.2	1.00	120.000
1		505.543	20.42)	46.00	25.58	-	2.97	V	29	2.2	1.00	120.000
Level in	45 - 45 - 45 - 46 - 46 - 47 - 47 - 47 - 47 - 47 - 47		*		•	*	>	*	•			*	
-1	-10 - 12.5 - -15 - 17.5 - -20	M 40 M	50 M	60 M		00 M		200 M	300 M	400	M 500		M 800 M 1 G requency in Hz

ABOVE 1GHz WORST-CASE DATA

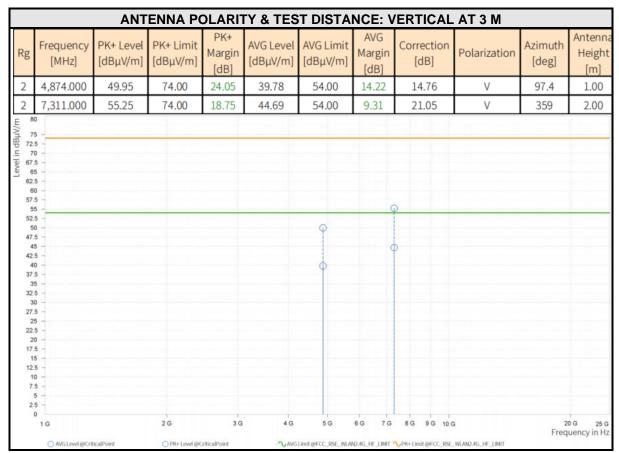
Note:

- 1. For radiated emissions testing, the full testing range of different modes have been scanned, only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

	Α	NTENNA PO	DLARITY &	TEST DIS	STANCE: HO	RIZONTAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,387.000	87.000 35.98 54.00		18.02	6.51	Н	140.8	2.00
1	2,390.000	37.59	54.00	16.41	6.52	Н	140.8	2.00
1	2,413.000	90.45			6.55	Н	140.8	2.00
E/NIGHT 1151 1151 1150 1150 1150 1150 1150 115		325 G 2.330 G 2.335 G	2.340 G 2.345 G 2.350 G	2.355 G 2.360 G 2	2.365 G 2.370 G 2.375 G 2.	90 G 2385 G 2390 G 2395 G	3 2400 G 2405 G 24	10 G 2.422 G Frequency in Hz

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB] 17.96	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]				
1	2,385.000	56.04	74.00		6.51	V						
1	2,390.000 58.31		74.00	15.69	6.52	V	291.4	2.00				
1	2,412.000	105.83			6.55	V	291.4	2.00				
# / 12 12 19 19 19 19 19 19 19 19 19 19 19 19 19	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	.325 G 2.330 G 2.335 G	2340 G 2345 G 2350 G	2.355 G 2380 G :	2.365 G 2.370 G 2.375 G 2	380 G 2385 G 2390 G 2395 G	G 2400 G 2405 G 24	10 G 2.422 G Frequency in Hz				

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
Rg Frequenc [MHz]		AVG Level [dBμV/m]		AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]			
1	2,389.000	43.67	54.00	10.33	6.51	٧	290.2	2.00			
1	2,390.000	45.07	54.00	8.93	6.52	V	290.2	2.00			
1	2,411.500	100.33			6.55	V	290.2	2.00			
E/\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	5	325 G 2330 G 2335 G	2340 G 2345 G 2350 G	2355 G 2360 G 2	2.365 G 2.370 G 2.375 G 2	380 G 2385 G 2390 G 2395 C	3 2400 G 2405 G 24	10 G 2.422 G Frequency in Hz			


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

СН	ANNEL		TX Ch	TX Channel 6 1GHz ~ 25GHz			ECTOF	₹	Peak (F	Peak (PK) Average (AV)		
FR	EQUENCY	RANGE	1GHz				CTION		Averag			
		ANTE	NNA POI	LARITY	& TEST	DISTAN	CE: HC	RIZONTA	AL AT 3 M			
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	4,874.000	50.40	74.00	23.60	39.65	54.00	14.35	14.76	Н	1	2.00	
2	7,311.000	56.38	74.00	17.62	44.69	54.00	9.31	21.05	Н	337.4	1.00	
42 4 37 3 32 27 2 22 27 17 1 12 17	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		2 G	399	46	Ф	6G 7G	8G 9G 10	G		20 G 25 G	

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

	NNEL		TX Channel 11			DETECTOR	F	Peak (PK)		
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION	A	Average (AV)		
	Α	NTENI	NA PO	LARITY &	TEST DIS	STANCE: HO	RIZONTAL A	T 3 M		
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	2,460.000	99.	99			6.80	H	140.7	2.00	
2	2,483.500	50.	77	74.00	23.23	6.80	Н	140.7	2.00	
2	2,498.500	60.	80	74.00	13.20	6.79	Н	290.2	2.00	
EL/A/14 (17.5) 12.0 (17.5) 12.0 (17.5) 12.0 (17.5) 12.5 (17.5) 12.		₩ ₩ ₩ ₩ ₩ ₩	2.462 G	2.466 G 2.476	0.6 2474.6	2478 G 24	82 G 2 486 G	2.490 G 2.494 C	25 G Frequency in Hz	

	Α	NTENNA PO	DLARITY &	TEST DIS	TANCE: HO	RIZONTAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,459.500	94.90			6.80	Ι	140.8	2.00
2	2,483.500	38.19	54.00	15.81	6.80	Ι	140.8	2.00
2	2,484.000	37.92	54.00	16.08	6.80	Н	140.8	2.00
E / 125 125 125 126 117.5 117.5 110.0 115.5 100.0			2.466 G 2.470 AVG Lovel @Spectrum Overvier		2.478 G 2.4		2.490 G 2.494 G	2.5 G Frequency in Hz

		ANTENNA	POLARITY 8		ISTANCE: V	ERTICAL AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenn Height [m]
2	2,462.000	106.91			6.81	٧	67.9	2.00
2	2,483.500	57.10	74.00	16.90	6.80	٧	67.9	2.00
2	2,485.500	55.89	74.00	18.11	6.80	V	67.9	2.00
87	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Θ				φ ο		

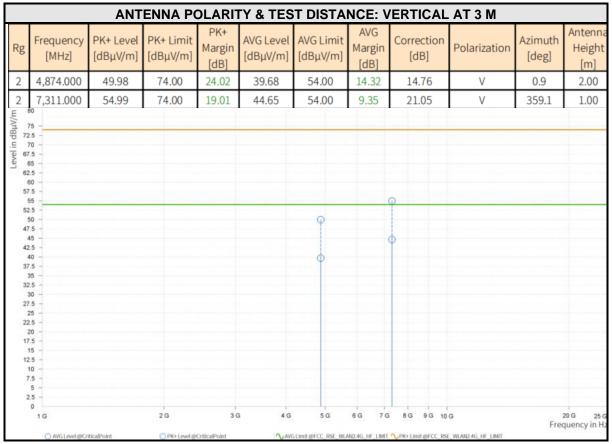
		ANTENNA I	POLARITY &	& TEST D	ISTANCE: V	ERTICAL AT 3	М	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,461.000	102.16			6.81	V	66.6	2.00
2	2,483.500	44.47	54.00	9.53	6.80	٧	66.6	2.00
2	2,484.000	44.15	54.00	9.85	6.80	V	66.6	2.00
E 125 120		58 G 2482 G	2.466 G 2.470	DG 2474 G	2478 G 2/	162 G 2.486 G	2.490 G 2.494 (3 2.5 G Frequency in Hz

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

					802.1	1g				
СНА	NNEL		TX C	Channel 1		DETECTOR		Peak (PK)		
FRE	EQUENCY RANGE 1G			1GHz ~ 25GHz		FUNCTION		Average (AV)		
	Α	NTENI	NA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	n Azimuth [deg]	Antenna Height [m]	
1	2,389.000	58.	40	74.00	15.60	6.51	Н	161	2.00	
1	2,390.000	54.	68	74.00	19.32	6.52	Н	161	2.00	
1	2,412.000	102	.86			6.55	Н	161	2.00	
102.5 100.0 97.5 92.5 92.5 92.5 82.5 82.5 7.5 72.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 60.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72							~~^^			
25 22.5 20		325 G 2 330 C		2 340 G 2 345 G 2 350 G		2.365 G 2.370 G 2.375 G 2:		395 G 2400 G 2405 G 24	10 G 2.422 C Frequency in H	

	Α	NTENNA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	36.27	54.00	17.73	6.51	Ι	138.4	2.00
1	2,390.000	36.37	54.00	17.63	6.52	Н	138.4	2.00
1	2,410.000	87.99			6.55	Н	355.8	2.00
E / 122 122 122 122 102 102 102 102		.325 G 2330 G 2335 G	2.340 G 2.345 G 2.350 G	9 2355 G 2360 G	2365 G 2370 G 2375 G 2	2.380 G 2.385 G 2.390 G 2.396	G 2400 G 2405 G 2	410 G 2.422 Frequency in I

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M													
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]					
1	2,389.500	60.85	74.00	13.15	6.51	٧	4.9	1.00					
1	2,390.000	60.84	74.00	13.16	6.52	V	151	1.00					
1	2,418.000	106.83			6.56	V	74.6	1.00					
E / 12/14 PD U 119/04 PD U 119		325 G 2.330 G 2.335 G :	2340 G 2345 G 2350 G	2355 G 2380 G 2	2365 G 2370 G 2375 G 23	80 G 2385 G 2390 G 2395 G		0 G 2.422 C Frequency in H.					


ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M													
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]					
1	2,388.000	41.70	54.00	12.30	6.51	٧	289	2.00					
1	2,390.000	43.10	54.00	10.90	6.52	V	289	2.00					
1	2,409.500	97.25			6.55	V	289	2.00					
87 8 82 8 87 77 77 67 66 62 62 65 52 52 47 4 4 4 22 4 3 3 3 2 7 2 7	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	2325 G 2330 G 2335 G	2.340 G 2.345 G 2.350 G	9 2 355 G 2 380 G	2365 G 2370 G 2375 G 2	380 G 2385 G 2390 G 2395	3 2400 G 2405 G 24	10 G 2.422 C Frequency in H					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

CH	ANNEL		TX Ch	annel 6	3	DET	ECTOR	2	Peak (F	PK)	
FRE	EQUENCY	RANGE	1GHz	~ 25GH	Ηz	FUN	CTION		Average	e (AV)	
		ANTE	NNA POI	ARITY	4 TEST	DISTAN	CE: HC	RIZONTA	L AT 3 M		
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,874.000	49.82	74.00	24.18	39.59	54.00	14.41	14.76	Н	0.9	2.00
2	7,311.000	55.30	74.00	18.70	44.73	54.00	9.27	21.05	Н	269.9	2.00
2.	0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2G	300	3 4G	Ф Ф	66 76	86 96 10	G.		20 G 25 G

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

СНА	NNEL		TX C	Channel 11		DETECTOR		Peak (PK)	
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV)
	Al	NTENI	NA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL A	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	n Azimuth [deg]	Antenna Height [m]
2	2,456.500	99.	23			6.79	Н	84.6	2.00
2	2,483.500	50.	73	74.00	23.27	6.80	H	355.1	2.00
2	2,485.000	49.	72	74.00	24.28	6.80	Н	84.6	2.00
100 97.5 9.5 92.5 92.5 90.8 87.5 82.5 82.5 77.5 72.5 72.5 52.5 62.5 62.5 40.3 37.5 30.3 32.5 32.5 32.5 25.5 25.5 25.5 25.5 25							Φ		
20		8G 2	1.462 G	2.466 G 2.470) G 2.474 G	2.478 G 2.4	182 G 2.486 G	2.490 G 2.494 G	2.5 G Frequency in Hz

	Α	NTENNA PO	DLARITY &	TEST DIS	STANCE: HO	RIZONTAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,456.500	86.18			6.79	Н	300.5	1.00
2	2,483.500	36.28	54.00	17.72	6.80	Ι	286.6	2.00
2	2,485.000	35.48	54.00	18.52	6.80	Н	286.6	2.00
E 125 126 127 127 		58 G 2.462 G	2.466 G 2.470	DG 2474 G	2478 G 24	82 G 2488 G 2	2.490 G 2.494 G	3 2.5 G Frequency in Hz

_		ANTENNA	OLAKITT		ISTANCE. VI	ERTICAL AT 3	IVI	
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenn Height [m]
2	2,462.500	108.12			6.81	V	289	2.00
2	2,483.500	61.88	74.00	12.12	6.80	V	289	2.00
2	2,484.500	59.13	74.00	14.87	6.80	V	212.5	2.00
125 125 120 117.		8 G 2.452 G	2466 G 247	0 G 2474 G	2478 G 2	482 G 2 488 G	2490 G 2494	G 2

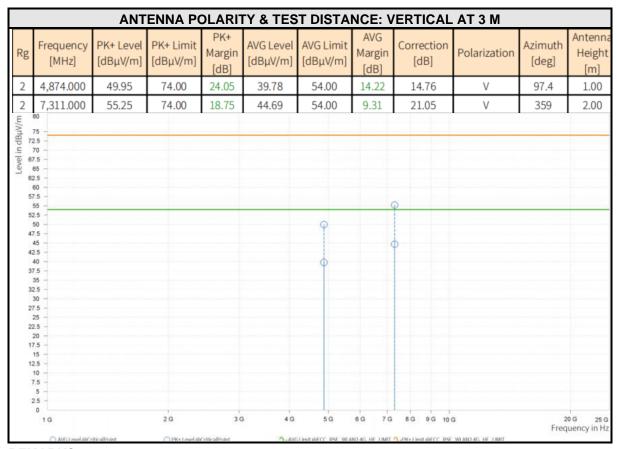
		ANTENNA I	POLARITY 8	& TEST D	ISTANCE: VI	ERTICAL AT 3	M	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,459.500	97.35			6.80	٧	57.1	2.00
2	2,483.500	42.39	54.00	11.61	6.80	٧	287.8	2.00
2	2,485.000	41.67	54.00	12.33	6.80	V	287.8	2.00
E/\(\frac{1}{2}\) 1202 1102 1102 1102 1102 1102 1102 110		⊕ 86 2.482 G	2.466 G 2.470	16 24746	2.478 G 2.4	62 G 2 486 G 2	2.490 G 2.494 C	2.5 G

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

				8	302.11n (2	20MHz)			
СНА	NNEL		TX C	Channel 1		DETECTOR		Peak (PK)	
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV)
	Α	NTENI	NA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	Azimuth [deg]	Antenna Height [m]
1	2,387.000	50.	19	74.00	23.81	6.51	Н	141.9	2.00
1	2,390.000	50.	76	74.00	23.24	6.52	Н	141.9	2.00
1	2,412.500	96.5	91			6.55	Н	141.9	2.00
102.5 100.6									Φ \
25 22.5 20				2.340 G 2.345 G 2.350 G		2.365 G 2.370 G 2.375 G 2.		2.395 G 2.400 G 2.405 G 2.	410 G 2.422 Frequency in H

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]						
1	2,387.000	35.98	54.00	18.02	6.51	Η	140.8	2.00						
1	2,390.000	37.59	54.00	16.41	6.52	Н	140.8	2.00						
1	2,413.000	90.45			6.55	Н	140.8	2.00						
E/\(\lambda\)/18 u i java i 100	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	325 G 2330 G 2335 G	2.340 G 2.345 G 2.350 G	2355 G 2360 G 2	2.365 G 2.370 G 2.375 G 2	380 G 2385 G 2390 G 2395 G	G 2400 G 2405 G 24	10 G 2.422 G Frequency in Hz						

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]					
1	2,385.000	56.04	74.00	17.96	6.51	٧	291.4	2.00					
1	2,390.000	58.31	74.00	15.69	6.52	V	291.4	2.00					
1	2,412.000	105.83			6.55	V	291.4	2.00					
E 12 12 12 12 13 14 15 15 15 15 15 15 15													


		ANTENNA I	POLARITY 8	& TEST D	ISTANCE: VI	ERTICAL AT 3	М	
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.000	43.67	54.00	10.33	6.51	٧	290.2	2.00
1	2,390.000	45.07	54.00	8.93	6.52	V	290.2	2.00
1	2,411.500	100.33			6.55	٧	290.2	2.00
E/NT8P ut 12.5 117			2.340 G 2.345 G 2.350 G	2355 G 2360 G 2	2.365 G 2.370 G 2.375 G 2.	380 G 2385 G 2390 G 2395 G	3 2.400 G 2.405 G 2.4	10 G 2.422 G Frequency in Hz

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

СН	ANNEL		TX Ch	annel 6	6	DET	ECTOR	2	Peak (F	PK)	
FRE	EQUENCY	RANGE	1GHz	~ 25GI	Ηz	FUN	ICTION		Averag	e (AV)	
		ANTE	NNA PO	LARITY	& TEST	DISTAN	ICE: HC	RIZONTA	AL AT 3 M		
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBμV/m]	AVG Limit [dBµV/m]	Margin	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,874.000	50.40	74.00	23.60	39.65	54.00	14.35	14.76	Н	1	2.00
2	7.311.000	56.38	74.00	17.62	44.69	54.00	9.31	21.05	Н	337.4	1.00
622 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50					Φ		Φ			
	1 G		2 G	3 (3 4 G	5 G	6G 7G	8G 9G 10	G		20 G 25 Quency in H

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

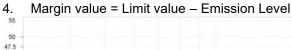
СНА	NNEL		TX C	Channel 11		DETECTOR		Peak (PK)	
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV	")
	Α	NTENI	NA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL A	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	Azimuth [deg]	Antenna Height [m]
2	2,469.500	100	.50			6.81	Η	83.3	2.00
2	2,483.500	61.	89	74.00	12.11	6.80	Н	83.3	2.00
2	2,490.500	59.	91	74.00	14.09	6.80	Н	355	2.00
E/Nt/8p u laval 110.5 95.5 92.5 5.25.5 22.				Φ.					
20	452 G 2.45	88 G 2	.462 G	2.466 G 2.470	G 2.474 G	2.478 G 2.4	82 G 2.486 G	2.490 G 2.494	g 2.5 G Frequency in Hz

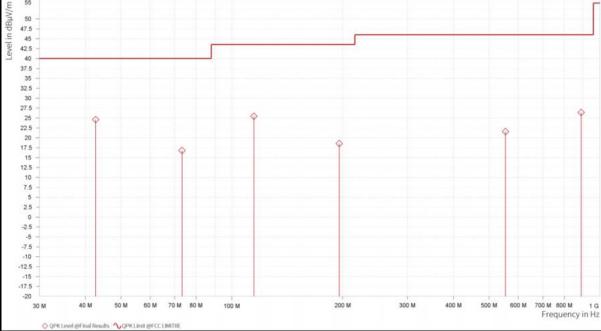
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]				
2	2,467.000	90.07			6.82	Н	287.8	2.00				
2	2,483.500	38.25	54.00	15.75	6.80	Н	131.2	2.00				
2	2,484.500	37.63	54.00	16.37	6.80	Н	131.2	2.00				
E 1200 1200 1200 1200 1200 1200 1200 120			Φ			ΦΦ						

-		ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
Rg .	uency Hz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]						
2 2,46	9.000	108.96			6.82	V	285.4	2.00						
2 2,48	3.500	69.21	74.00	4.79	6.80	V	232.3	1.00						
2 2,48	4.000	69.51	74.00	4.49	6.80	V	232.3	1.00						
E 125 126 117.5 110 110 110 110 107.5 102.5 103.5 103.5 104.5 104.5 104.5 104.5 105.	245	86 G 2.452 G	2.466 G 2.470	0G 2474 G	2.478 G 2.4	GP 2486 G 2	.490 G 2.494 G	2.5 G						

2 2,44 2 2,44	quency MHz] 67.000 83.500 84.500	AVG Level [dBμV/m] 96.87 45.51 44.71	AVG Limit [dBμV/m] 54.00 54.00	AVG Margin [dB] 8.49 9.29	Correction [dB] 6.82 6.80 6.80	Polarization V V	Azimuth [deg] 286.6 230 230	Antenna Height [m] 2.00 1.00
2 2,44 2 2,44 2 2,44 117.5 117	83.500	45.51			6.80	V	230	1.00
2 2,44 125 1120 1115 1115 1125 1125 1125 1100 1025 1005 1025 1000 1025 1025							_	
125 120 – 1175 – 1175 – 1125 – 1125 – 110 – 100 –	84.500	44.71	54.00	9.29	6.80	V	230	1.00
120			Φ					
77.5 - 77.5 - 72.5 - 72.5 - 72.5 - 70.0 - 77.5 - 62.5 - 60.0 - 77.5 - 55.5 - 52.5 - 70.0 - 77.5 - 75						P-0-		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

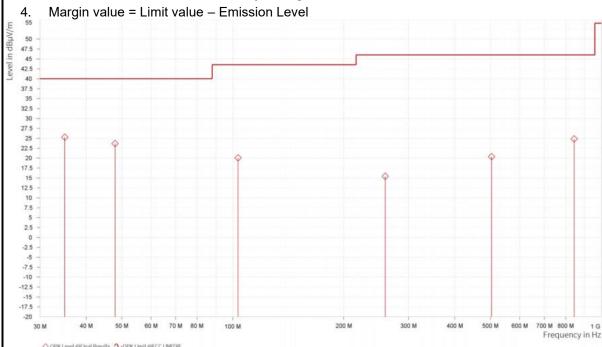



BELOW 1GHz WORST-CASE DATA

	BT-LE_1M									
CHANNEL	TX Channel 19	0DETECTOR	Ougai Pagis (OP)							
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)							

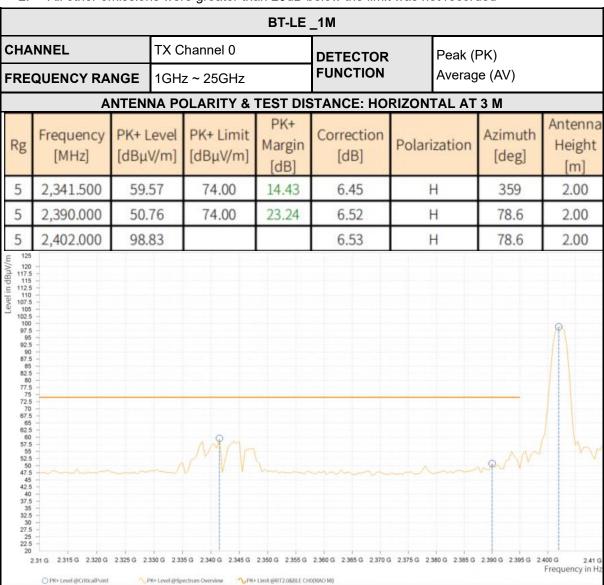
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]					
1	42.659	24.58	40.00	15.42	-9.23	Ι	359.1	1.00	120.000					
1	73.214	16.78	40.00	23.22	-14.92	Ι	293.4	1.00	120.000					
1	114.875	25.43	43.50	18.07	-11.97	Ι	69.1	2.00	120.000					
1	195.822	18.56	43.50	24.94	-10.31	Н	293.4	1.00	120.000					
1	553.994	21.55	46.00	24.45	-3.13	Н	5	1.00	120.000					
1	889.566	26.40	46.00	19.60	2.27	Н	1	1.00	120.000					

- Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) 1.
- Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier 2. Factor(dB)
- The other emission levels were very low against the limit. 3.



СНА	ANNEL	T	Channel 1	9	DETECTO	OR .	Oursi D	Quasi-Peak (QP)			
FRE	QUENCY R	ANGE 30	MHz ~ 1GH	łz	FUNCTIO	N	Quasi-Peak (QP)				
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]		
1	34.996	25.25	40.00	14.75	-13.44	V	143.9	1.00	120.000		
1	47.945	23.66	40.00	16.34	-9.57	V	359	2.00	120.000		
1	103.332	20.05	43.50	23.45	-11.00	V	300.5	1.00	120.000		
1	259.163	15.40	46.00	30.60	-8.16	V	66.6	2.00	120.000		
1	503.360	20.37	46.00	25.63	-3.02	V	143.9	1.00	120.000		
1	843.297	24.82	46.00	21.18	1.05	V	0.9	2.00	120.000		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.



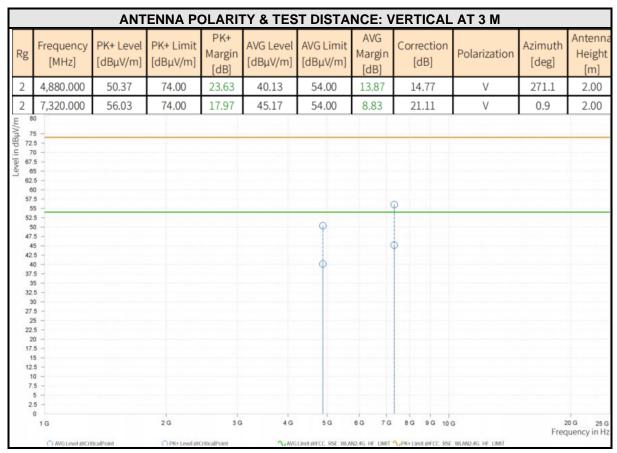
ABOVE 1GHz TEST DATA

Note:

- 1. For radiated emissions testing , the full testing range of different modes have been scanned , only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]				
5	2,358.500	37.89	54.00	16.11	6.47	Н	8.3	2.00				
5	2,390.000	34.87	54.00	19.13	6.52	Н	47.5	2.00				
5	2,402.000	82.04			6.53	Н	4.2	1.00				
E/\(\lambda\)/11 117 110 100 100 100 100 100 100 100 1	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	2.325 G 2.330 G 2.33		2.350 G 2.355 G		2375 G 2380 G 2385 G	2390 G 2395 G 2	400 G 2.41 G Frequency in Hz				

		ANTENNA I	POLARITY 8	& TEST D	ISTANCE: V	ERTICAL AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,345.000	62.06	74.00	11.94	6.45	٧	140.3	1.00
5	2,390.000	53.49	74.00	20.51	6.52	V	357.2	1.00
5 = 125	2,402.000	97.85			6.53	V	4.9	1.00
E 125 125		2.325 G 2.330 G 2.33		2.350 G 2.355 G		2.375 G 2.380 G 2.385 G	2.390 G 2.395 G 2.	400 G 2.41 G Frequency in Hz


		ANTENNA I	POLARITY 8	& TEST D	ISTANCE: VI	ERTICAL AT 3	М	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,364.500	38.01	54.00	15.99	6.48	V	0.9	2.00
5	2,390.000	35.69	54.00	18.31	6.52	V	1	2.00
5	2,402.000	82.33			6.53	V	88.9	1.00
E /122 122 122 122 122 122 123 110 110 110 110 110 110 110 110 110 11		2.325 G 2.330 G 2.33	5 G 2340 G 2345 G	2350 G 2355 G	2360 G 2385 G 2370 G	2.375 G 2.380 G 2.385 G		00 G 2.41 G

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value—Emission level.
- 3. 2402MHz: Fundamental frequency.

CHANNEL	TX Ch	annel 1	9	DETEC	TOR	F	Peak (PK)					
FREQUENC	Y RANGE	1GHz	~ 25GH	lz	FUNCT	ION	P	Average (AV	")	l		
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
2 4,880.000	50.29	74.00	23.71	39.96	54.00	14.04	14.77	Н	88.9	1.00		
2 7,320.000	55.95	74.00	18.05	45.01	54.00	8.99	21.11	Н	30.7	2.00		
80		2G	36	46	Ф Ф	6G 7G	86 96 10			20 G 25 G		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value—Emission level.
- 3. 2440MHz: Fundamental frequency.

СНА	NNEL		TX C	Channel 39		DETECTOR		Peak	(PK)	
FRE	REQUENCY RANGE 1		1GH	z ~ 25GHz		FUNCTION		Average (AV) ONTAL AT 3 M Parization Azimuth [deg] Antenna Height [m] H 291.3 2.00		
	А	NTEN	NA PO	OLARITY &	TEST DIS	STANCE: HO	RIZONT	AL AT	3 M	
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polariz	ation		
6	2,480.000	93.	70			6.81	Н		291.3	2.00
6	2,483.500	56.	19	74.00	17.81	6.80	Н		4.9	1.00
6	2,497.750	58.9	94	74.00	15.06	6.79	Н		212	1.00
102.5 100.0 97.5 95.5 92.5 92.5 87.5 82.5 82.5 82.5 77.5 77.5 77.5 77.5 96.2.5 90.2.5 90.2.5 40.3 77.5 52.5 50.3 77.5 50.2.5 90.							~~~	···	~~~~	γ
20	475 G 2.478	IG 2.4	80 G	2.482 G 2.484 G		2.488 G 2.490 G	2.492 G	2.494 G	2.496 G	2.498 G 2.5 G Frequency in Hz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]				
6	2,480.000	79.10			6.81	Н	290.2	2.00				
6	2,483.500	34.68	54.00	19.32	6.80	Η	290.2	2.00				
6	2,494.250	35.74	54.00	18.26	6.79	Н	146.7	2.00				
본 / 1221 1721 1721 1721 1721 1721 1721 1721	5	3 G 2480 G	2.482 G 2.484 G	2.486 G	2.488 G 2.490 G	2492 G 2494 G		2.498 G 2.5 G Frequency in Hz				

		ANTENNA I	POLARITY 8	R TEST D	ISTANCE: V	ERTICAL AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	95.83			6.81	٧	359	2.00
6	2,483.500	63.43	74.00	10.57	6.80	V	0.9	2.00
6	2,484.000	64.30	74.00	9.70	6.80	V	90.6	2.00
E / 122 2019 11219 11711		8 G 2.480 G	2.482 G 2.484 G	2.486 G	2.488 G 2.490 G	2492 G 2494 G	3 2.496 G	2498 G 2.5 G Frequency in H

Rg Frequency AVG Level AVG Limit [dBμV/m] Margin [dB] Polarization Azimuth Heigh [mg] 6 2,480.000 80.93 6.81 V 359 2.00 6 2,483.500 37.32 54.00 16.68 6.80 V 7.8 2.00 6 2,485.500 37.50 54.00 16.50 6.80 V 7.8 2.00 6 2,485.500 37.50 54.00 16.50 6.80 V 7.8 2.00 6 2,485.500 37.50 54.00 16.50 6.80 V 7.8 2.00 7 8 9 9 9 9 9 9 9 9 9			ANTENNA I	POLARITY 8	k TEST D	ISTANCE: VI	ERTICAL AT 3	М	
6 2,483.500 37.32 54.00 16.68 6.80 V 7.8 2.00 6 2,485.500 37.50 54.00 16.50 6.80 V 7.8 2.00	Rg				Margin		Polarization		Antenna Height [m]
6 2,485.500 37.50 54.00 16.50 6.80 V 7.8 2.00	6	2,480.000	80.93			6.81	V	359	2.00
123	6	2,483.500	37.32	54.00	16.68	6.80	V	7.8	2.00
120 1175 - 1175	6	2,485.500	37.50	54.00	16.50	6.80	V	7.8	2.00
Frequency in	102.5 100.97.5 97.5 92.5 92.5 85.8 82.5 85.7 77.5 70 67.5 60.5 55.5 50.0 47.5 52.5 40.0 47.5 32.5 40.0 47.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 5		9 G 2480 G	2.482 G 2.484 G		2488 G 2490 G	2492 G 2494 G	3 2490 G	2.498 G 2.5 G Frequency in Hz

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value–Emission level.
- 3. 2480MHz: Fundamental frequency.

3.3 6 dB BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

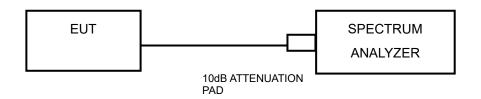
The minimum 6dB Bandwidth Measurement is 0.5 MHz.

3.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Feb.24,24	Feb.23,26
Open SwitCH and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal Generator	R&S	SMBV100B	102176	Feb.15,24	Feb.14,26
Signal Generator	R&S	SMB100A03	182185	Feb.15,24	Feb.14,26
Wideband Radio Communication	R&S	CMW500	169399	Jun.25,24	Jun.24,26
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539- 00-1	SEP-03-20-069	Apr.27,24	Apr.26,26
CABLE	R&S	J12J103539- 00-1	SEP-03-20-070	Apr.27,24	Apr.26,26
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsCH	VT4002	58566078100050	May.30,24	May.29,26
Power Meter	R&S	NRX	102380	Feb.15,24	Feb.14,26
Power Meter probe	R&S	NRP6A	102942	Feb.15,24	Feb.14,26

NOTE:

- 1. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.



3.3.3 TEST PROCEDURE

- 1. Set RBW = shall be in the range of 1%-to-5% of the OBW but not less than 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

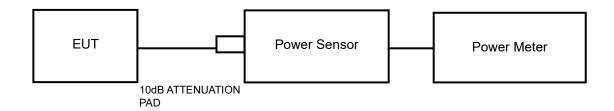
No deviation.

3.3.5 TEST SETUP

3.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest Channel frequencies individually.

3.3.7 TEST RESULTS



3.4 CONDUCTED OUTPUT POWER

3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

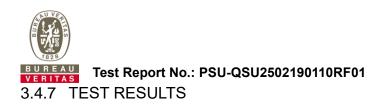
For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURES


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

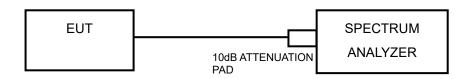
3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

3.4.7.1 MAXIMUM PEAK OUTPUT POWER


3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

3.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.5.4 TEST PROCEDURE

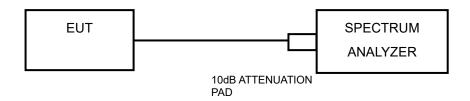
- 1. Set the span to 1.5 times the DTS bandwidth
- 2. Set the RBW = 3 kHz, VBW ≥ 3 x RBW, Detector = peak.
- 3. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.5.5 DEVIATION FROM TEST STANDARD

No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.



3.6 OUT OF BAND EMISSION MEASUREMENT

3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest CHannel frequencies individually.

3.6.7 TEST RESULTS

The spectrum plots are attaCHed on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

3.7 ANTENNA REQUIREMENTS

3.7.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.7.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

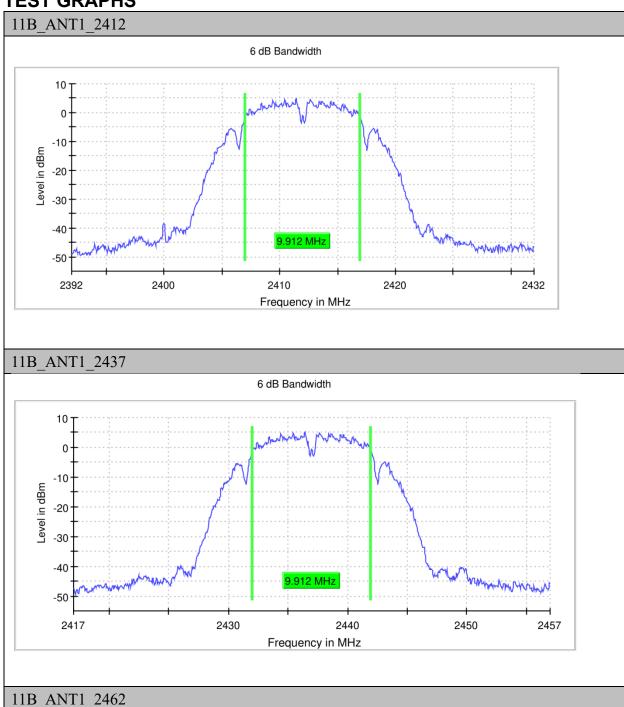
4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

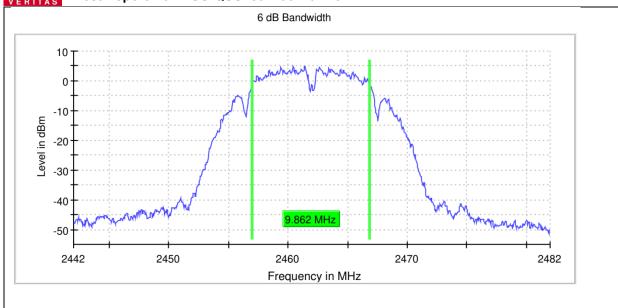
5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

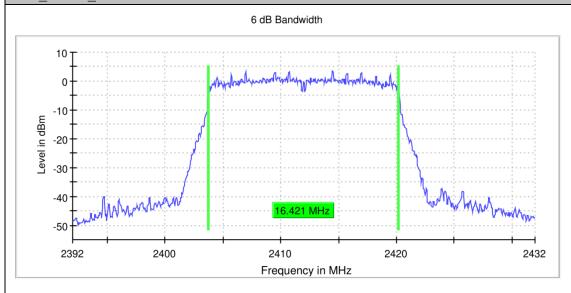
No any modifications are made to the EUT by the lab during the test.

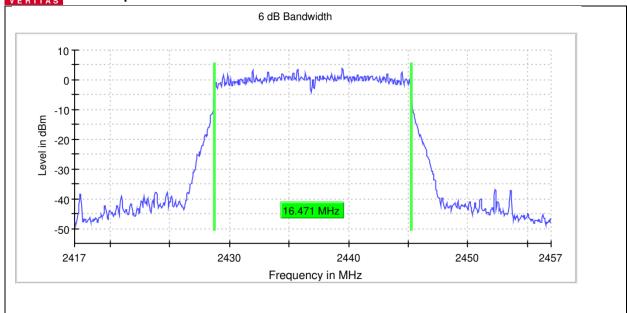
6 APPENDIX A:WIFI

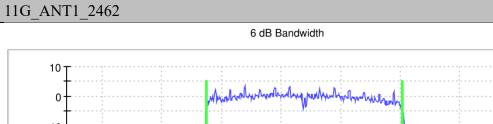

DTS BANDWIDTH

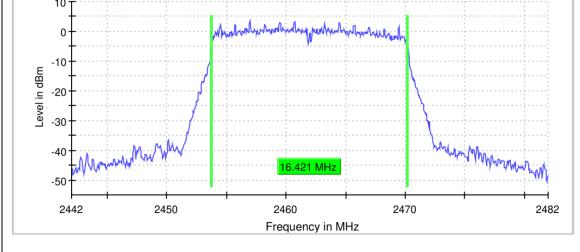
TEST RESULT


TestMod e	Antenn	Frequency[MH z]	DTS BW [MHz]	FL[MHz]	FH[MHz	Limit[M Hz]	Verdic t
11B	ANT1	2412	9.912	2407.019	2416.931	0.5	PASS
	ANT1	2437	9.912	2432.019	2441.931	0.5	PASS
	ANT1	2462	9.862	2457.019	2466.881	0.5	PASS
11G	ANT1	2412	16.421	2403.765	2420.186	0.5	PASS
	ANT1	2437	16.471	2428.765	2445.236	0.5	PASS
	ANT1	2462	16.421	2453.765	2470.186	0.5	PASS
11N20- SISO	ANT1	2412	17.171	2403.414	2420.585	0.5	PASS
	ANT1	2437	17.171	2428.414	2445.585	0.5	PASS
	ANT1	2462	17.021	2453.414	2470.435	0.5	PASS

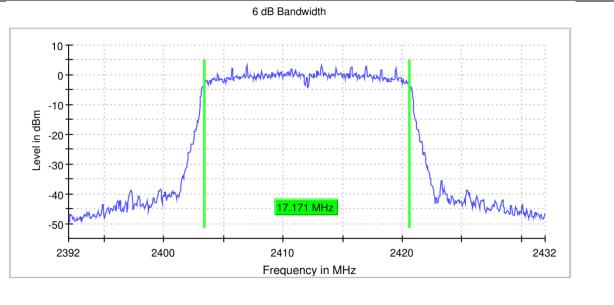

TEST GRAPHS

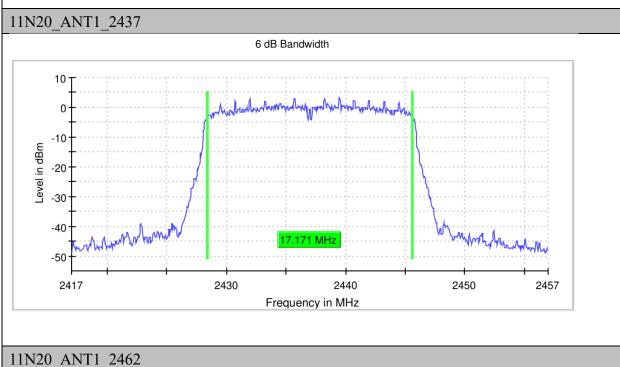


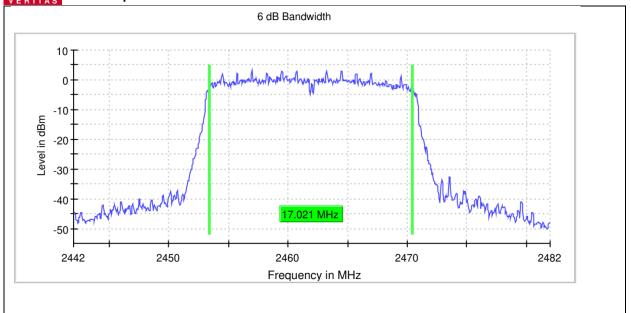




11G_ANT1_2437



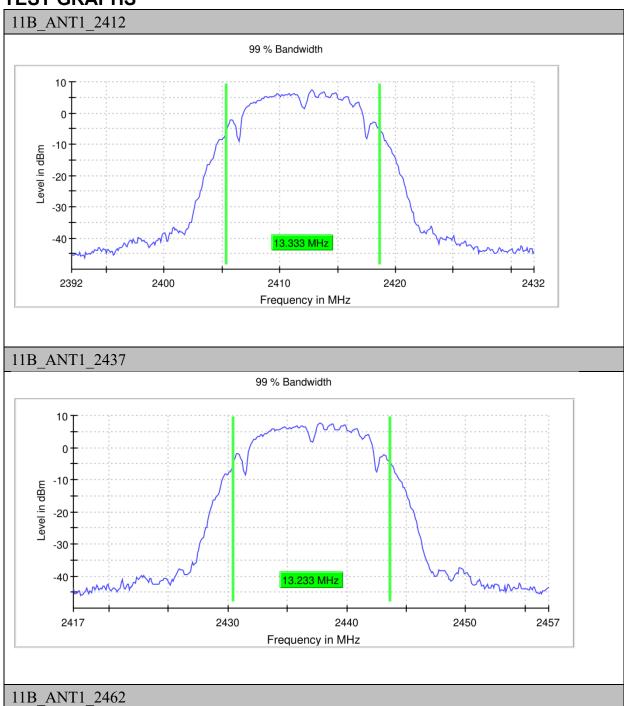



11N20_ANT1_2412

20M

RBW 200.000 kHz

VBW 1.000 MHz


OBW BANDWIDTH

TEST RESULT

TestMod e	Antenn	Frequency[MHz]	OBW BW [MHz]	FL[MHz	FH[MHz	Limit[MHz]	Verdict
11B	ANT1	2412	13.333	2405.33 3	2418.66 6		PASS
	ANT1	2437	13.233	2430.43 4	2443.66 7		PASS
	ANT1	2462	13.333	2455.33 3	2468.66 6		PASS
11G	ANT1	2412	16.441	2403.83	2420.27 1		PASS
	ANT1	2437	16.441	2428.83	2445.27		PASS
	ANT1	2462	16.541	2453.72 9	2470.27 0		PASS
11N20	ANT1	2412	17.444	2403.32 8	2420.77		PASS
	ANT1	2437	17.444	2428.32 8	2445.77		PASS
	ANT1	2462	17.444	2453.22 8	2470.67		PASS

TEST GRAPHS

