

SAR TEST REPORT

Report No.: 20250417G09730X-W3

Product Name: RICO2 THERMAL IMAGING SCOPE

Main Model Name: RICO2 H75R

Series Model Name: RICO2 S75R, RICO2 L42R, RICO2 H50R

Trade Name: Nocpix

FCC ID: 2BHFB-RICO2-00

Applicant: Inlumen Technologies Co., Ltd.

Room 806, A1, Phase 3, Innovation Industrial Park, High-tech Zone, Hefei Address:

City, Anhui Province, China.

Test Date: 2024/12/17~2024/12/17, 2025/05/22~2025/05/22

Issued by: CCIC Southern Testing Co., Ltd.

Electronic Testing Building, No.43, Shahe Road, Xili Street, Lab Location:

Nanshan District, Shenzhen, Guangdong, China

Tel: 86-755-26627338 **E-Mail:** manager@ccic-set.com

This test report consists of 25 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The CCIC-SET does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Applicant: Inlumen Technologies Co., Ltd.

Room 806, A1, Phase 3, Innovation Industrial Park, High-tech Zone,

Applicant Address:
Hefei City, Anhui Province, China.

Manufacturer: Inlumen Technologies Co., Ltd.

Manufacturer Address: Room 806, A1, Phase 3, Innovation Industrial Park, High-tech Zone,

Hefei City, Anhui Province, China.

FCC 47 CFR Part 2(2.1093): Radiofrequency Radiation Exposure

Evaluation: Portable Devices;

ANSI/IEEE C95.1–2019: Safety Levels with Respect to Human

Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300

Test Standards: GHz

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques

Test Result: Pass

Tested by: (a) We; 2025-05-27

Carl Wei, Test Engineer

Reviewed by: Sun Jiaohui 2025-05-27

Sun Jiaohui, Senior Engineer

Approved by: 2025-05-27

Chris You, Manager

Contents

Test	t Report	2			
1.	Administrative Data	4			
2.	Equipment Under Test (EUT)	5			
3.	SAR Summary	7			
4.	Specific Absorption Rate (SAR)	7			
5.	Tissue check and recommend Dielectric Parameters	11			
6.	SAR measurement procedure	16			
7.	Conducted RF Output Power	17			
8.	Antenna Location:	17			
9.	Scaling Factor calculation	18			
10.	Test Results	18			
11.	Measurement Uncertainty	20			
12.	System Check Uncertainty	22			
13.	Equipment List	24			
AN	NEX A: Appendix A: SAR System performance Check Plots	25			
AN	ANNEX B: Appendix B: SAR Measurement results Plots				
AN	ANNEX C: Appendix C: Calibration reports				
AN	NEX D: Appendix D: SAR Test Setup	25			

1. Administrative Data

1.1 Testing Laboratory

_	
Test Site:	CCIC Southern Testing Co., Ltd.
Address	Electronic Testing Building, No.43, Shahe Road, Xili Street,
riuiress.	Nanshan District, Shenzhen, Guangdong, China
Accreditation:	Nanshan District, Shenzhen, Guangdong, China CCIC-SET Lab 1 Address: Electronic Testing Building, No.43, Shahe Road, Xili Street, Nanshan District, Shenzhen, Guangdong, China FCC-Registration No.: CN1283 CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN1283, valid time is until Jun. 30th, 2025. ISED Registration: 11185A, CAB number: CN0064 CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A on Aug. 04, 2016, valid time is until Jun. 30th, 2025. A2LA Code: 5721.01 CCIC-SET is a third party testing organization accredited by A2LA according to ISO/IEC 17025. The accreditation certificate number is 5721.01. CNAS L1659 CCIC Southern Testing Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. CCIC-SET Lab 4 Address: No.125, Hongmei Section, Wangsha Road, Hongmei Town, Dongguan City, Guangdong Province, China CNAS L1659
	CCIC Southern Testing Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity
	Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659.
Test Environment	Temperature (°C): 18 °C ~ 25 °C
Condition:	Relative Humidity (%): 35%~75% RH
	Atmospheric Pressure (kPa): 86KPa-106KPa

2. Equipment Under Test (EUT)

Identification of the Equipment under Test

Device type:	portable device
Exposure category:	uncontrolled environment / general population
Product Name:	RICO2 THERMAL IMAGING SCOPE
Trade Name:	Nocpix
Main Model Name:	RICO2 H75R
Series Model Name:	RICO2 S75R, RICO2 L42R, RICO2 H50R
Operating Band(s):	WIFI 2.4G
Test Band(s):	WIFI 2.4G
Test modulation:	WIFI 2.4G (DSSS, OFDM),
WIFI	2412 - 2462 MHz
Antenna type:	Internal antenna
	Model No: IBP-5
	Typical Capacity: 4400mAh
Battery options:	Rated Voltage: 3.6 V
	Max Charge Voltage: 4.2V
	Manufacturer: Jinqu New Energy (Zhejiang) Co.,Ltd.
MAX. SAR Value:	Body:0.149 W/Kg(1g SAR-0mm, Limit:1.6W/Kg)

Note:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The differences between RICO2 H75R, RICO2 L42R and RICO2S75R are mainly the PIN number changes of the main control board connector and the movement board, as shown in the figure below. The RICO2 H50R have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with RICO2 H75R. In addition, the lens size of the different models is also different.

	main control board	movement board			
RICO2 H75R					

RICO2 L42R RICO2 S75R 3. This report is based on the 20241117G25242X-W3 report. EUT changed the laser module, and

This report is based on the 20241117G25242X-W3 report. EUT changed the laser module, and
everything else remained the same. According to the change of EUT, SAR needs to be tested
differently.

3. SAR Summary

Highest Standalone SAR Summary

Exposure	Frequency	Scaled	Highest Scaled
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)
Body(0mm)	WIFI 2.4G	0.149	0.149

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4.2 Applicable Standards and Limits

4.2.1 Applicable Standards

FCC 47 CFR Part 2(2.1093)	Radiofrequency Radiation Exposure Evaluation: Portable Devices			
ANSI/IEEE	Safety Levels with Respect to Human Exposure to Electric, Magnetic, and			
C95.1-2019	Electromagnetic Fields, 0 Hz to 300 GHz			
	IEEE Recommended Practice for Determining the Peak Spatial-Average			
IEEE 1528-2013	Specific Absorption Rate (SAR) in the Human Head from Wireless			
	Communications Devices: Measurement Techniques			
KDB 248227 D01	v02r02 802.11 WIFI SAR			
KDB 447498 D01	v06 General RF Exposure Guidance			
KDB 616217 D04	v01r02 SAR for laptop and tablets			
KDB 648474 D04	v01r03 Handset SAR			
KDB 865664 D01	v01r04 SAR Measurement 100MHz to 6GHz			
KDB 865664 D02	v01r02 SAR Exposure Reporting			
KDB 941225 D01	v03r01 3G SAR Procedures			
KDB 941225 D05	v02r05 SAR for LTE Devices			
KDB 941225 D05A	v01r02 LTE Rel.10 KDB Inquiry Sheet			
KDB 941225 D06	v02r01 Hotspot Mode			

4.2.2 RF exposure Limits

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR* (Brain/Body)	1.60 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g
Spatial Peak SAR*** (Limbs)	4.00 mW/g

The limit applied in this test report is shown in bold letters.

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
 - ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

4.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g.,

DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

 \pm 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range $1.5 \mu W/g$ to 100 mW/g;

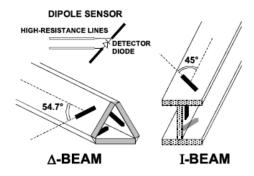
Linearity: $\pm 0.5 \text{ dB}$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

5. Tissue check and recommend Dielectric Parameters

5.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

Ingredients		Frequency (MHz)										
(% by weight)	45	50	83	35	91.	5	19	900	24	50	26	00
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.46	52.4	41.05	56.0	54.9	40.4	62.7	73.2	55.24	64.49
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.5	0.024
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	44.45	32.25
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.2	52.5	39.0	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.80	1.78	1.96	2.16

MSL/HSL750 (Body and Head liquid for 650 – 850 MHz)

Item	Head Tissue Simulation Liquid HSL750						
	Muscle(body)Tissue	Muscle(body)Tissue Simulation Liquid MSL750					
H2O	Water, 35 – 58%	Water, 35 – 58%					
Sucrese	Sugar, white, refined	l, 40-60%					
NaCl	Sodium Chloride, 0-	Sodium Chloride, 0-6%					
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), <0.3%						
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing						
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,						
	0.1-0.7%						
Frequency (MHz)	Head ϵr Head $\sigma(S/m)$ Body ϵr Body $\sigma(S/m)$						
750	41.9 0.89 55.2 0.97						

Note: The liquid of 700MHz&2600MHz typical liquid composition is provided by SATIMO.

Frequency:5200/5400/5600/5800MHz				
Ingredients (% by weight)				
Water	78			
Mineral oil	11			
Emulsifiers	9			
Additives and Salt	2			

Table 2 Recommended Tissue Dielectric Parameters

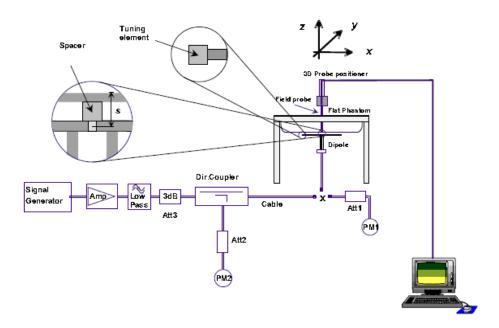
En and an OMIL	Head Tissue			
Frequency (MHz)	$\mathcal{E}_{ m r}$	σ(S/m)		
150	52.3	0.76		
300	45.3	0.87		
450	43.5	0.87		
835	41.5	0.90		
900	41.5	0.97		
915	41.5	0.98		
1450	40.5	1.20		
1610	40.3	1.29		
1800-2000	40.0	1.40		
2450	39.2	1.80		
3000	38.5	2.40		
5800	35.3	5.27		

5.2 Simulate liquid

Liquid check results:

Table 3: Dielectric Performance of Tissue Simulating Liquid

/	Frequency	Permittivity ε	Conductivity σ (S/m)	Liquid Temp. $(^{\circ}\mathbb{C})$	Test Date
Target value	2450MH-	39.2±5% (37.24~41.16)	1.80±5% (1.71~1.89)	21.0	2024/12/17
Validation value	2450MHz	39.02	1.77	21.9	2024/12/17


/	Frequency	Permittivity ε	Conductivity σ (S/m)	Liquid Temp. (°C)	Test Date
Target value	2450MHz	39.2±5% (37.24~41.16)	1.80±5% (1.71~1.89)	21.6	2025/05/22
Validation value	2450MHz	38.52	1.78	21.6	2023/03/22

SAR System validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.01W (10 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

Table 4: system validation (1g) System Check Results

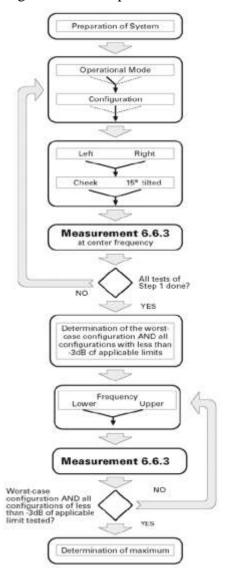
Frequency	Duty cycle	Target value (1-g) (W/Kg)	10mW Test value (1-g) (W/Kg)	Test SAR Normalized to 1W(w/Kg)	Test Date
2450MHz	1:1	51.74 W/kg±10% (46.566~56.914)	0.5094	50.94	2024/12/17

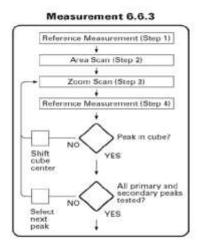
Note:

- 1. Target value was referring to the measured value in the calibration certificate of reference dipole.
- 2. All SAR values are normalized to 1W forward power.

System Check Results

Frequency	Duty cycle	Target value (1-g) (W/Kg)	10mW Test value (1-g) (W/Kg)	Test SAR Normalized to 1W(w/Kg)	Test Date
2450MHz	1:1	51.74 W/kg±10% (46.566~56.914)	0.5219	52.19	2025/05/22


Note:


- 1. Target value was referring to the measured value in the calibration certificate of reference dipole.
- 2. All SAR values are normalized to 1W forward power.

6. SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

7. Conducted RF Output Power

7.1 WIFI Conducted Power

WIFI 2.4G Output power

2.4G WIFI	Output Power (dBm)					
Channel/Freq.(MHz)	802.11b	802.11g	802.11n20			
1/2412.0	10.17	10.58	10.80			
6/2437.0	10.80	11.78	11.41			
11/2462.0	11.02	11.59	11.76			

Note:

- 1. Per KDB248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate

8. Antenna Location:

9. Scaling Factor calculation

Operation Mode	Channel /Frequency	Output Power(dBm)	Tune up Power in tolerance(dBm)	Max. Tune up(dBm)	Scaling Factor
WIFI 2.4G 802.11g	1/2412.0	10.58	11.5 ± 1.0	12.50	1.556
	6/2437.0	11.78	11.5 ± 1.0	12.50	1.180
	11/2462.0	11.59	11.5 ± 1.0	12.50	1.233

10. Test Results

Results overview of WIFI 2.4G

Body(0mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	Limit (W/kg)	SAR Plot.
Front Upward	6/2437.0	802.11g	< 0.001	/	1.180	< 0.001	1.6	/
Back Upward	6/2437.0	802.11g	< 0.001	/	1.180	< 0.001	1.6	/
Left	6/2437.0	802.11g	< 0.001	/	1.180	< 0.001	1.6	/
Right	6/2437.0	802.11g	0.037	-0.85	1.180	0.044	1.6	/
Тор	6/2437.0	802.11g	< 0.001	/	1.180	< 0.001	1.6	/
Bottom	6/2437.0	802.11g	< 0.001	/	1.180	< 0.001	1.6	/
Right	1/2412.0	802.11g	0.040	1.47	1.556	0.062	1.6	/
Right	11/2462.0	802.11g	0.042	-0.16	1.233	0.052	1.6	1
Difference test on the Right	11/2462.0	802.11g	0.089	-0.55	1.233	0.110	1.6	/
Difference test on the Right	1/2412.0	802.11g	0.096	-2.07	1.556	0.149	1.6	/
Difference test on the Right	6/2437.0	802.11g	0.098	0.49	1.180	0.116	1.6	2

Note:

- 1. The maximum SAR value of each test band is marked bold.
- 2. When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v06)
 - \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
 - $\bullet \le 0.6$ W/kg, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz

3. *: Due the antenna location and antenna performance results the SAR value lower than the lowest system limit, then we show "<0.001 W/Kg" in the report.							
25 est o joient mine, alen ive blow - 0.001 m/12g in the report.							

11. Measurement Uncertainty

COMOSAR SAR measurement uncertainty

Ambiente temperature: $18 - 25 \,^{\circ}\text{C} \,\&\, \Delta T \leq 2 \,^{\circ}\text{C}$

Humedity: 30 – 70%

Frequenc	cy range: 150 MHz – 7500 MHz	Z									
Symbol	Input quantity Xi (source of uncertainty)	PDFi	Unc. a(x _i) [±%]	Div. qi	u(x _i)= a(xi)/qi	c _i 1g	c _i 10 g	u(y)= c _i *u(xi) 1g [± %]	u(y)= c _i *u(xi) 10g [± %]	V i	Frequency range[MHz]
Measurement System errors											
CF	Probe calibration	N _a	11.00	2.00	5.50	1.00	1.00	5.50	5.50	∞	150 – 450
	1 1050 Gallistation	(k=2)	14.00 2.30	2.00	7.00 1.33	1.00	1.00	7.00 1.33	7.00 1.33	∞	600 – 7500
CF _{drift}	Probe calibration drift	R	4.00	1.73	2.31	1.00	1.00	2.31	2.31	∞ ∞	150 – 450 600 – 7500
	Probe linearity	R	4.70	1.73	2.71	1.00	1.00	2.71	2.71	∞	000 7000
LIN	Detection limit	R	1.00	1.73	0.58	1.00	1.00	0.58	0.58	∞	
BBS	Broadband signal	R	0.00	1.73	0.00	1.00	1.00	0.00	0.00	8	
IGO	Axial Isotropy	R	3.50	1.73	2.02	0.71	0.71	1.43	1.43	∞	
ISO	Hemispherical Isotropy	R	5.90	1.73	3.41	0.71	0.71	2.41	2.41	∞	450 7500
	Boundary effect	R	1.00	1.73	0.58	1.00	1.00	0.58	0.58	∞	150 – 7500
DAE	Integration time	R	1.40	1.73	0.81	1.00	1.00	0.81	0.81	∞	
	Response time Readout electronics	R N	0.00	1.73	0.00	1.00	1.00	0.00	0.00	∞ ∞	-
	Noise	R	3.00	1.73	1.73	1.00	1.00	1.73	1.73		-
AMB	Reflections	R	3.00	1.73	1.73	1.00	1.00	1.73	1.73	∞	
			1.40	1.73	0.81	0.14	0.14	0.12	0.12	∞	≥150 & ≤3000
	Positioner Mechanical Tolerance	R	3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>3000 & ≤6000
			3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>6000 & ≤10000
Δxyz	Decitioning with respect to		1.40	1.73	0.81	0.14	0.14	0.12	0.12	8	≥150 & ≤3000
	Positioning with respect to	R	3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>3000 & ≤6000
	PhantomShell		3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>6000 & ≤10000
DAT	Data processing errors	R	2.30	1.73	1.33	1.00	1.00	1.33	1.33	∞	150 – 7500
DAI	Bata processing errors			<u> </u>	nd Dipoles		1.00	1.00	1.00		100 7000
				1			l	l	ı	l	T
LIQ(σ,ε)	Conductivity measurement	N	4.07	1.00	4.07	0.79	0.77	3.22	3.13	9	
21 ((0,0)	Permitivity measurement	N	5.06	1.00	5.06	0.23	0.26	1.16	1.32	9	
LIQ(T _c)	Liquid Conductivity - Temperature Uncertainty	R	2.50	1.73	1.44	0.79	0.77	1.14	1.11	∞	150 – 7500
LIQ(1 _c)	Liquid Permittivity - Temperature Uncertainty	R	2.50	1.73	1.44	0.23	0.26	0.33	0.38	∞	
			2.90	1.73	1.67	0.00	0.00	0.00	0.00	∞	≥150 & ≤3000
EPS	Shell permittivity	R	2.90	1.73	1.67	0.25	0.25	0.42	0.42	∞	>3000 & ≤6000
			2.90	1.73	1.67	0.50	0.50	0.84	0.84	∞	>6000 & ≤10000
	Distance between the radiating		2.70	1.00	2.70	2.00	2.00	5.40	5.40	∞	≥150 & ≤3000
DIS	element of the DUT and the	N	2.70	1.00	2.70	2.00	2.00	5.40	5.40	∞	>3000 & ≤6000
	phantom medium		3.20	1.00	3.20	2.00	2.00	6.40	6.40	8	>6000 & ≤10000
$\mathbf{D}_{\mathrm{xyz}}$	Repeatability of positioning the DUT or source against the phantom	N	2.60	1.00	2.60	1.00	1.00	2.60	2.60	13	
н	Device holder effects	N	3.00	1.00	3.00	1.00	1.00	3.00	3.00	23	150 – 7500
MOD	Effect of operating mode on probe sensitivity	R	8.20	1.73	4.73	1.00	1.00	4.73	4.73	∞	

Report No. 20250417G09730X-W3

RF _{drift}	Variation in SAR due to drift in output of DUT	R	5.00	1.73	2.89	1.00	1.00	2.89	2.89		
Corrections to the SAR result											
C(ε',σ)	Phantom deviation from target (ϵ', σ)	N	1.90	1.00	1.90	1.00	1.00	1.90	1.90	450 7500	
C(R)	SAR scaling	R	5.00	1.73	2.89	1.00	1.00	2.89	2.89	150 – 7500	
		ı	•	ı				12.54	12.53	150 – 450	
··(ACAD)	,	Combine	ed uncertain	t.				13.40	13.40	≥600 & ≤3000	
u(∆SAR)	`	COITIDIITE	eu uncenan	ity				13.44	13.43	>3000 & ≤6000	
								13.89	13.88	>6000 & ≤7500	
								25.08	25.07	150 – 450	
U	Evn	anded i	uncertainty	(Q5% cc	nfidanca	intaryal)		26.80	26.79	≥600 & ≤3000	
U	Ехр	anueu t	incertainty	(33 % CC	minuence	ilitei vaij		26.87	26.86	>3000 & ≤6000	
								27.77	27.76	>6000 & ≤7500	

12. System Check Uncertainty

COMOSAR System validation uncertainty

Ambiente temperature: $18 - 25 \,^{\circ}\text{C} \,\&\, \Delta T \leq 2 \,^{\circ}\text{C}$

Humedity: 30 – 70%

Symbol	Input quantity Xi (source of uncertainty)	PDFi	Unc. a(x _i) [±%]	Div. q _i	u(x _i)= a(xi)/qi	c _i 1g	c _i 10 g	u(y)= c _i *u(xi) 1g [± %]	u(y)= c _i *u(xi) 10g [± %]	V i	Frequency range[MHz]
			Mea	sureme	nt System	errors					
CF	Probe calibration	N	11.00	2.00	5.50	1.00	1.00	5.50	5.50	∞	150 – 450
CF	Frobe Calibration	(k=2)	14.00	2.00	7.00	1.00	1.00	7.00	7.00	∞	600 – 7500
CF _{drift}	Probe calibration drift	R	2.30 4.00	1.73	1.33 2.31	1.00	1.00 1.00	1.33 2.31	1.33 2.31	8	150 – 450 600 – 7500
LIN	Probe linearity	R	4.70	1.73	2.71	1.00	1.00	2.71	2.71	8	
LIII	Detection limit	R	1.00	1.73	0.58	1.00	1.00	0.58	0.58	8	
ISO	Axial Isotropy	R	3.50	1.73	2.02	0.71	0.71	1.43	1.43	∞	
100	Hemispherical Isotropy	R	5.90	1.73	3.41	0.71	0.71	2.41	2.41	∞	
•	Boundary effect Integration time	R R	1.00 1.40	1.73	0.58 0.81	1.00	1.00 1.00	0.58 0.81	0.58 0.81	∞ ∞	150 – 7500
DAE	Response time	R	0.00	1.73	0.00	1.00	1.00	0.00	0.00	8	
	Readout electronics	N	0.50	1.00	0.50	1.00	1.00	0.50	0.50	∞	
	Noise	R	3.00	1.73	1.73	1.00	1.00	1.73	1.73	∞	
AMB	Reflections	R	3.00	1.73	1.73	1.00	1.00	1.73	1.73	∞	
			1.40	1.73	0.81	0.14	0.14	0.12	0.12	∞	≥150 & ≤3000
	Positioner Mechanical Tolerance	R	3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>3000 & ≤6000
	1 Ostronor Wednamear Folchance	11	3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>6000 & ≤1000
Δ xyz			1.40	1.73	0.81	0.14	0.14	0.12	0.12	8	≥150 & ≤3000
	Positioning with respect to										
	PhantomShell	R	3.28	1.73	1.89	0.33	0.33	0.62	0.62	∞	>3000 & ≤6000
D. 1 / II	Data managing amana		3.28	1.73	1.89	0.33	0.33	0.62	0.62	8	>6000 & ≤1000
DAT	Data processing errors	R	2.30	1.73	1.33	1.00	1.00	1.33	1.33	∞	150 – 7500
			Pl	nanom a	nd Dipoles	erros					
.ΙQ(σ,ε)	Conductivity measurement	N	4.07	1.00	4.07	0.79	0.77	3.22	3.13	9	
21(0,0)	Permitivity measurement	N	5.06	1.00	5.06	0.23	0.26	1.16	1.32	9	
LIQ(T _c)	Liquid Conductivity - Temperature Uncertainty	R	2.50	1.73	1.44	0.79	0.77	1.14	1.11	8	150 – 7500
LIQ(I _c)	Liquid Permittivity - Temperature Uncertainty	R	2.50	1.73	1.44	0.23	0.26	0.33	0.38	8	
			2.90	1.73	1.67	0.00	0.00	0.00	0.00	8	≥150 & ≤3000
EPS	Shell permittivity	R	2.90	1.73	1.67	0.25	0.25	0.42	0.42	∞	>3000 & ≤6000
	Did to the state of the state o		2.90	1.73	1.67 2.70	2.00	0.50 2.00	0.84 5.40	0.84 5.40	8	>6000 & ≤1000 ≥150 & ≤3000
DIS	Distance between the radiating element of the DUT and the	N	2.70	1.00	2.70	2.00	2.00	5.40	5.40	∞	>3000 & ≤600
	phantom medium		3.20	1.00	3.20	2.00	2.00	6.40	6.40	8	>6000 & ≤1000
¥74.¥	Deviation of experimental antennas	N	10.00	1.73	5.77	1.00	1.00	5.77	5.77		
VAL	Other uncertainty contributions	R	2.00	1.00	2.00	1.00	1.00	2.00	2.00		
P _{in}	Uncertainty in accepted power	R	3.00	1.73	1.73	1.00	1.00	1.73	1.73		
			Corr	ections	to the SA	R result					
C(ε',σ)	Phantom deviation from target (ϵ', σ)	N	1.90	1.00	1.90	1.00	1.00	1.90	1.90		150 – 7500
(ΔSAR)			d uncertain	L.				11.95	11.94		150 – 450

		Report No. 202504	17G09730X-W3
		12.85 12.84 12.89 12.88	≥600 & ≤3000
		12.89 12.88	>3000 & ≤6000
		13.35 13.35	>6000 & ≤7500
		23.90 23.88	150 - 450 ≥600 & ≤3000 >3000 & ≤6000
**	Funended uncertainty (050/ confidence interval)	25.70 25.69	≥600 & ≤3000
U	Expanded uncertainty (95% confidence interval)	25.70 25.69 25.77 25.76	>3000 & ≤6000
		26.71 26.70	>6000 & ≤7500

13. Equipment List

This table is a complete overview of the SAR measurement equipment. Devices used during the test described are marked \boxtimes .

	EQUIPMENT	Model	Serial number	Calibration Date	Due Date
\boxtimes	SAR Probe	SSE2	3723-EPGO-433	2024/04/17	2025/04/16
	SAR Probe	SSE2	3223-EPGO-422	2025/04/15	2026/04/14
	Dipole	SID2450	SN 09/13 DIP2G450-220	2023/05/24	2026/05/23
\boxtimes	Multimeter	Keithley-2000	4014020	2025/01/14	2026/01/13
\boxtimes	Network Analyzer	ZVB8	100343	2024/10/22	2025/10/21
	Signal Generator	SMB 100A	177649	2025/01/06	2026/01/05
	Power Meter	NRP2	103434	2024/06/19	2025/06/18

ANNEX A:	Appendix A:	SAR Sy	ystem performance	Check Plots
T TT 11 1 TT T T T T T T T T T T T T T	TIPPOINGINI		, stelli periorimanee	

(Please See Appendix A)

ANNEX B: Appendix B: SAR Measurement results Plots

(Please See Appendix B)

ANNEX C: Appendix C: Calibration reports

(Please See Appendix C)

ANNEX D: Appendix D: SAR Test Setup

(Please See Appendix D)

—End of the Report—