

TEST REPORT

Applicant:	Dong Guan Qiangde Electronics Technology Co.,Ltd.	
Address:	Room501, Building3, No.60 Xinyang Middle Road, Lincun, Tangxia Town, Dongguan City, Guangdong Province	
Manufacturer:	Dong Guan Qiangde Electronics Technology Co.,Ltd.	
Address:	Room501, Building3, No.60 Xinyang Middle Road, Lincun, Tangxia Town, Dongguan City, Guangdong Province	
Factory:	Dong Guan Qiangde Electronics Technology Co.,Ltd.	
Address:	Room501, Building3, No.60 Xinyang Middle Road, Lincun, Tangxia Town, Dongguan City, Guangdong Province	
E.U.T.:	Light Stream (TM) Cloud	
Model Number:	V-20913	
Trade mark:	N/A	
FCC ID:	2BHEG-LSC	
Date of Receipt:	July 03, 2024	Date of Test: July 04, 2024 - July24, 2024
Test Specification:	FCC 47 CFR Part 15, Subpart C	
Test Result:	The equipment under test was found to be compliance with the requirements of the standards applied.	
Prepared by:	Approved & Authorized Signer:	
 Jerry Hu/Engineer	 Frank Shen/ Manager	
Issue Date: August 6, 2024		
This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Dongguan Lepont Service Co., Ltd.		

TABLE OF CONTENTS

1. GENERAL PRODUCT INFORMATION.....	4
1.1. PRODUCT FUNCTION.....	4
1.2. EUT TECHNICAL DESCRIPTION.....	4
1.3. INDEPENDENT OPERATION MODES.....	5
1.4. TEST SOFTWARE	6
1.5. GENERAL CONDITION.....	6
1.6. SUPPORT EQUIPMENT	6
2. TEST STANDARDS AND SITES	7
2.1. DESCRIPTION OF STANDARDS AND RESULTS	7
2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS.....	8
2.3. MEASUREMENT UNCERTAINTY	9
2.4. TEST FACILITY.....	9
3. SETUP OF EQUIPMENT UNDER TEST	10
3.1. RADIO FREQUENCY TEST SETUP 1	10
3.2. RADIO FREQUENCY TEST SETUP 2.....	10
3.3. CONDUCTED EMISSION TEST SETUP.....	12
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	12
4. TEST RESULTS AND MEASUREMENT DATA	13
4.1. DTS (6DB) BANDWIDTH	13
4.2. MAXIMUM PEAK CONDUCTED OUTPUT POWER	20
4.3. MAXIMUM POWER SPECTRAL DENSITY	22
4.4. UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	29
4.5. RADIATED SPURIOUS EMISSION	43
4.6. CONDUCTED EMISSION TEST.....	51
4.7. ANTENNA APPLICATION	54

Revision History of This Test Report

1. GENERAL PRODUCT INFORMATION

1.1. PRODUCT FUNCTION

Refer to Technical Construction Form and User Manual.

1.2. EUT TECHNICAL DESCRIPTION

Product Name:	Light Stream (TM) Cloud
Model No.:	V-20913
Test Model No:	V-20913
Difference:	N/A
Serial No.:	N/A
Test sample(s) ID:	LP23080282C31-S001
Sample(s) Status	Engineer sample
IEEE 802.11 WLAN Mode Supported :	<input checked="" type="checkbox"/> 802.11b <input checked="" type="checkbox"/> 802.11g <input checked="" type="checkbox"/> 802.11n(20MHz channel bandwidth)
Modulation :	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Operating Frequency Range :	<input checked="" type="checkbox"/> 2412-2462MHz for 802.11b/g/n(HT20)
Number of Channels :	<input checked="" type="checkbox"/> 11 channels for 802.11b/g/n(HT20);
Antenna Type :	PCB Antenna
Antenna Gain :	-0.58dBi
Power Supply:	AC 120V/60Hz

1.3. INDEPENDENT OPERATION MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Mode	Date Rate	Test Channel
IEEE 802.11b	1Mbps	Low/Middle/High
IEEE 802.11g	6Mbps	Low/Middle/High
IEEE 802.11n HT20	MCS0	Low/Middle/High
IEEE 802.11n HT40	MCS0	Low/Middle/High

Frequency and Channel list

Channel List			
Channel No.	Frequency (MHz)		
1	2412		
2	2417		
3	2422		
4	2427		
5	2432		
6	2437		
7	2442		
8	2447		
9	2452		
10	2457		
11	2462		
802.11b/g/n(HT20)			

1.4. TEST SOFTWARE

Software		Description
GD_RF_Test_Tool_V1.0.0		Set the COM Port Test Tool to set the corresponding Test conditions

1.5. GENERAL CONDITION

	Temperature	Humidity
Ambient Condition:	22.4 °C	51.2 %RH

1.6. SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Laptop computer	Lenovo	Xiaoxin Pro IA5HR	PF490VB0

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

2. TEST STANDARDS AND SITES

2.1. DESCRIPTION OF STANDARDS AND RESULTS

The EUT have been tested according to the applicable standards as referenced below.

FCC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(2)	DTS (6dB) Bandwidth	PASS	
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	
15.247(e)	Maximum Power Spectral Density Level	PASS	
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS	
15.247(d) 15.209	Unwanted Emission Into Restricted Frequency Bands (conducted)	PASS	
15.247(d); 15.209	Radiated Spurious Emission	PASS	
15.207	Conducted Emission Test	PASS	
15.203	Antenna Application	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS

For conducted emission at the mains terminals test(Shielded Room 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
EMI Test Receiver	Rohde & Schwarz	ESHS30	8290501003	Jan. 24, 2024	1 Year	LEP-E002	<input checked="" type="checkbox"/>
Artificial Mains Network	Baluelec	LSN016	BL0411220501 21	Nov. 15, 2023	1 Year	LEP-E067	<input checked="" type="checkbox"/>
Shielded Room 1	MR	MR-L05	LEP-E053	Nov. 17, 2022	3 Year	LEP-E053	<input checked="" type="checkbox"/>
Test software	EZ-EMC	Fala	LEPONT-03A2	N/A	N/A	N/A	<input checked="" type="checkbox"/>
For radiated(9K-30M) emission test(966 Chamber 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006	<input checked="" type="checkbox"/>
Active Loop Antenna	Schwarzbeck	FMZB 1519C	00008	Jan. 24, 2024	3 Year	LEP-E068	<input checked="" type="checkbox"/>
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	<input checked="" type="checkbox"/>
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	<input checked="" type="checkbox"/>
For radiated(30M-1G) emission test(966 Chamber 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006	<input checked="" type="checkbox"/>
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	743	Nov. 20, 2022	3 Year	LEP-E005	<input checked="" type="checkbox"/>
Signal Amplifier	HP	8447D	1726A01222	Jan. 24, 2024	1 Year	LEP-E007	<input checked="" type="checkbox"/>
6dB Attenuator	RswTech	5W 6dB	LEP-E084	Jan. 24, 2024	1 Year	LEP-E084	<input checked="" type="checkbox"/>
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	<input checked="" type="checkbox"/>
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	<input checked="" type="checkbox"/>
For radiated(1-18G) emission test(966 Chamber 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	<input checked="" type="checkbox"/>
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020	<input checked="" type="checkbox"/>
Horn antenna	Schwarzbeck	BBHA 9120D	01875	Nov. 20, 2022	3 Year	LEP-E024	<input checked="" type="checkbox"/>
Preamplifier	Schwarzbeck	BBN 9718B	00010	Jan. 24, 2024	1 Year	LEP-E025	<input checked="" type="checkbox"/>
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	<input checked="" type="checkbox"/>
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	<input checked="" type="checkbox"/>
For radiated(18-40G) emission test(966 Chamber 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	<input checked="" type="checkbox"/>
Horn antenna+Preamplifier	COM-POWER	AH840	10100020	Sep. 05, 2022	3 Year	LEP-E075	<input checked="" type="checkbox"/>
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	<input checked="" type="checkbox"/>
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	<input checked="" type="checkbox"/>
For RF test							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	<input checked="" type="checkbox"/>
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020	<input checked="" type="checkbox"/>
Vector source	Agilent	N5182A	MY47420382	Jan. 24, 2024	1 Year	LEP-E021	<input checked="" type="checkbox"/>
Analog signal source	Agilent	N5171B	MY51350292	Jan. 24, 2024	1 Year	LEP-E022	<input checked="" type="checkbox"/>
All instrument	Rohde & Schwarz	CMW 500	1201.002K50	Jan. 24, 2024	1 Year	LEP-E019	<input checked="" type="checkbox"/>
High and low temperature chamber	Math-mart	MT-1202-40	LEP-E041	Jan. 24, 2024	1 Year	LEP-E041	<input checked="" type="checkbox"/>
control unit	Tonscend	JS0806-2	10165	Jan. 24, 2024	1 Year	LEP-E034	<input checked="" type="checkbox"/>
Testing software	Tonscend	JSTS1120-3	Ver 2.6.77.0518	N/A	N/A	N/A	<input checked="" type="checkbox"/>

2.3. MEASUREMENT UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-5}$
Maximum Peak Output Power Test	$\pm 1.0\%$
Conducted Emissions Test	$\pm 3.08\text{dB}$
Radiated Emission Test	$\pm 4.60\text{dB}$
Power Density	$\pm 0.9\%$
Occupied Bandwidth Test	$\pm 2.3\%$
Band Edge Test	$\pm 1.2\%$
Antenna Port Emission	$\pm 3\text{dB}$
Temperature	$\pm 3.2\%$
Humidity	$\pm 2.5\%$
Measurement Uncertainty for a level of Confidence of 95%	

2.4. TEST FACILITY

EMC Lab. : The Laboratory has been assessed and proved to be in compliance with CNAS/CL01

The Certificate Registration Number is L10100.

The Laboratory has been assessed and proved to be in compliance with A2LA

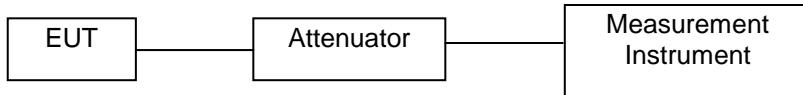
The Certificate Registration Number is 6901.01

FCC Designation No.: CN1351

Test Firm Registration No.: 397428

ISED CAB identifier: CN0151

Test Firm Registration No.: 20133


Test Location : Dongguan Lepont Testing Service Co., Ltd.

Address : Room 102, Building 11, No.7, Houjie Science And Technology Avenue, Houjie, Dongguan, Guangdong, China

3. SETUP OF EQUIPMENT UNDER TEST

3.1. RADIO FREQUENCY TEST SETUP 1

The component's antenna port(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

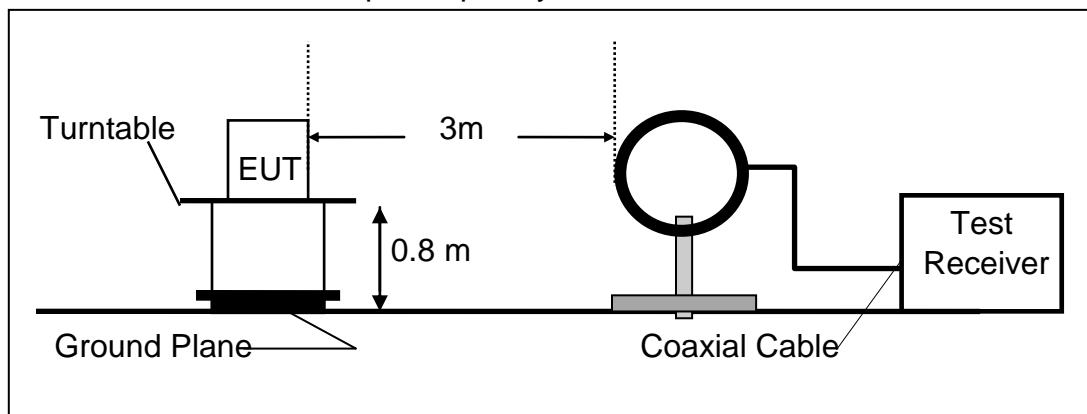
3.2. RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 32.

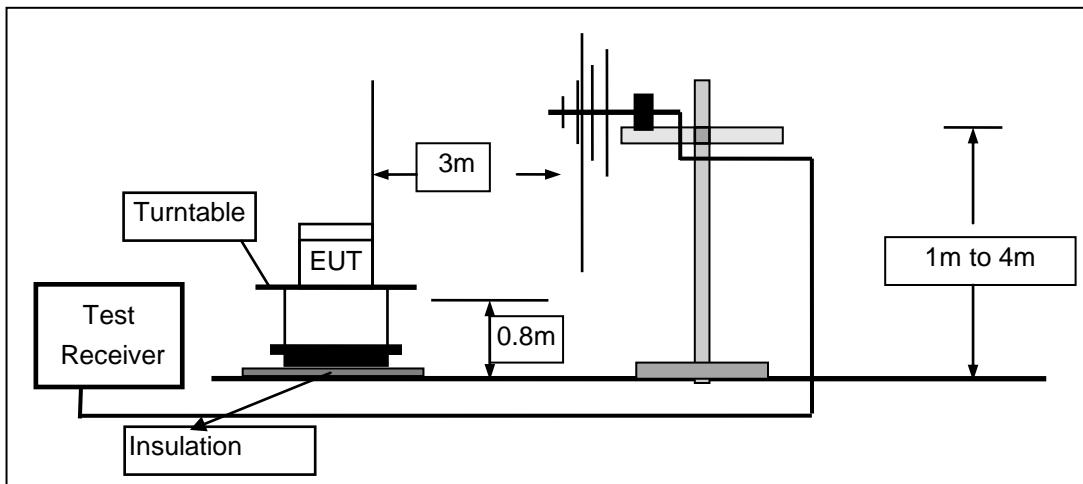
Below 30MHz:

The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

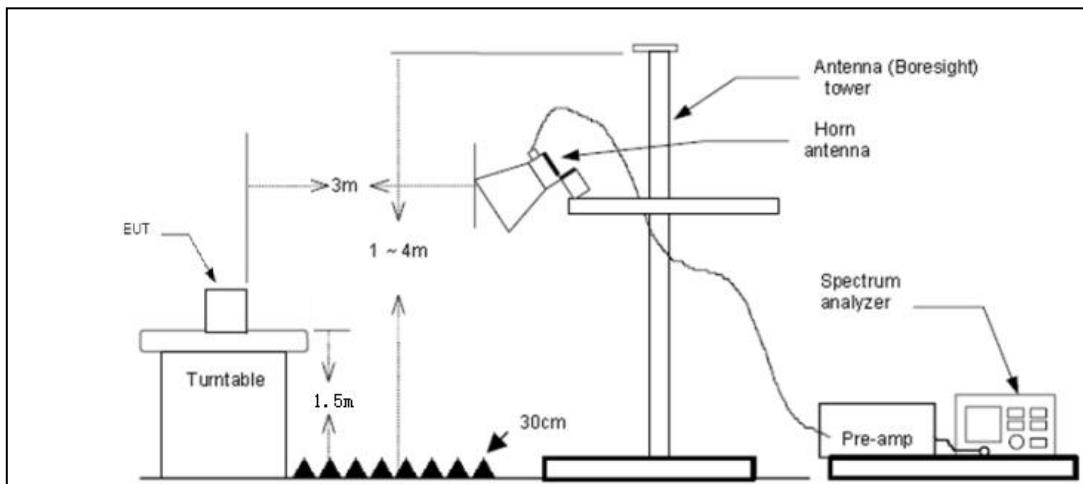
Above 30MHz:


The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

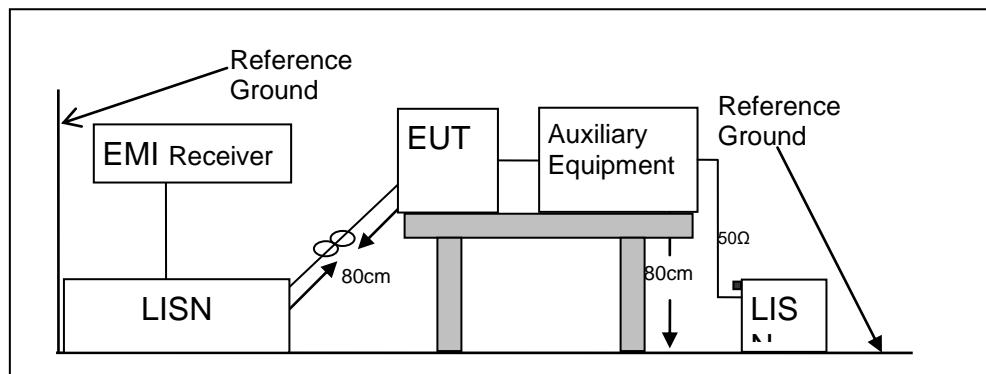

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

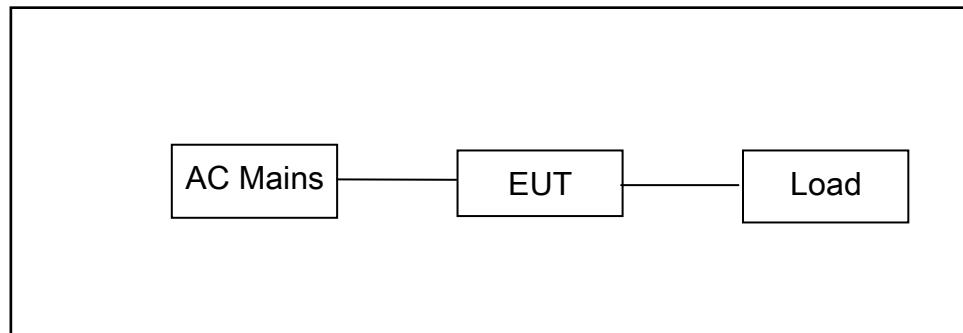

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



3.3. CONDUCTED EMISSION TEST SETUP


The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

4. TEST RESULTS AND MEASUREMENT DATA

4.1. DTS (6dB) BANDWIDTH

4.1.1. Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.1.2. Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

4.1.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.1.4. Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the VBW $\geq 3 \times$ RBW (about 300 kHz).

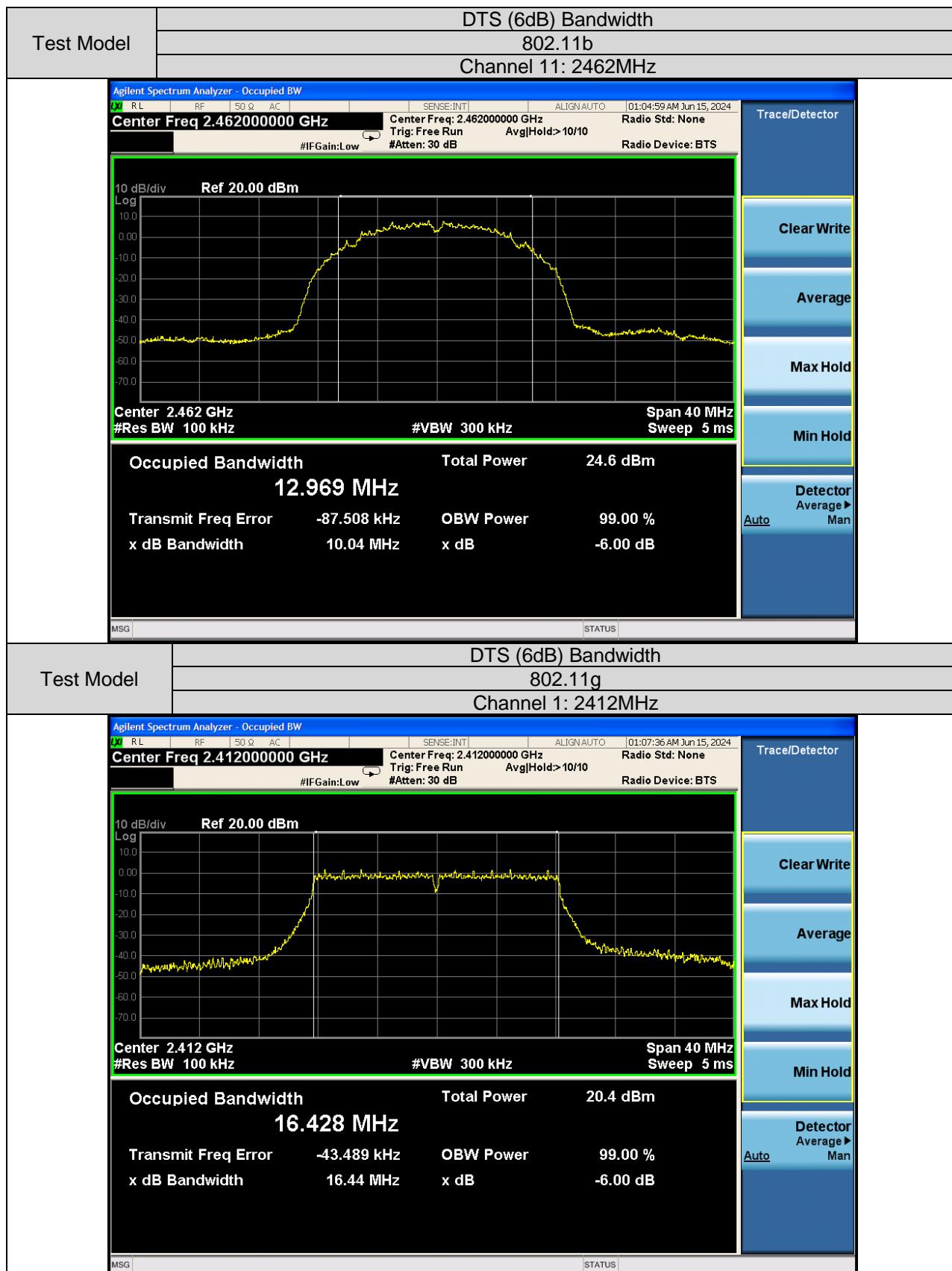
Set Span=2 times OBW

Set Detector = Peak.

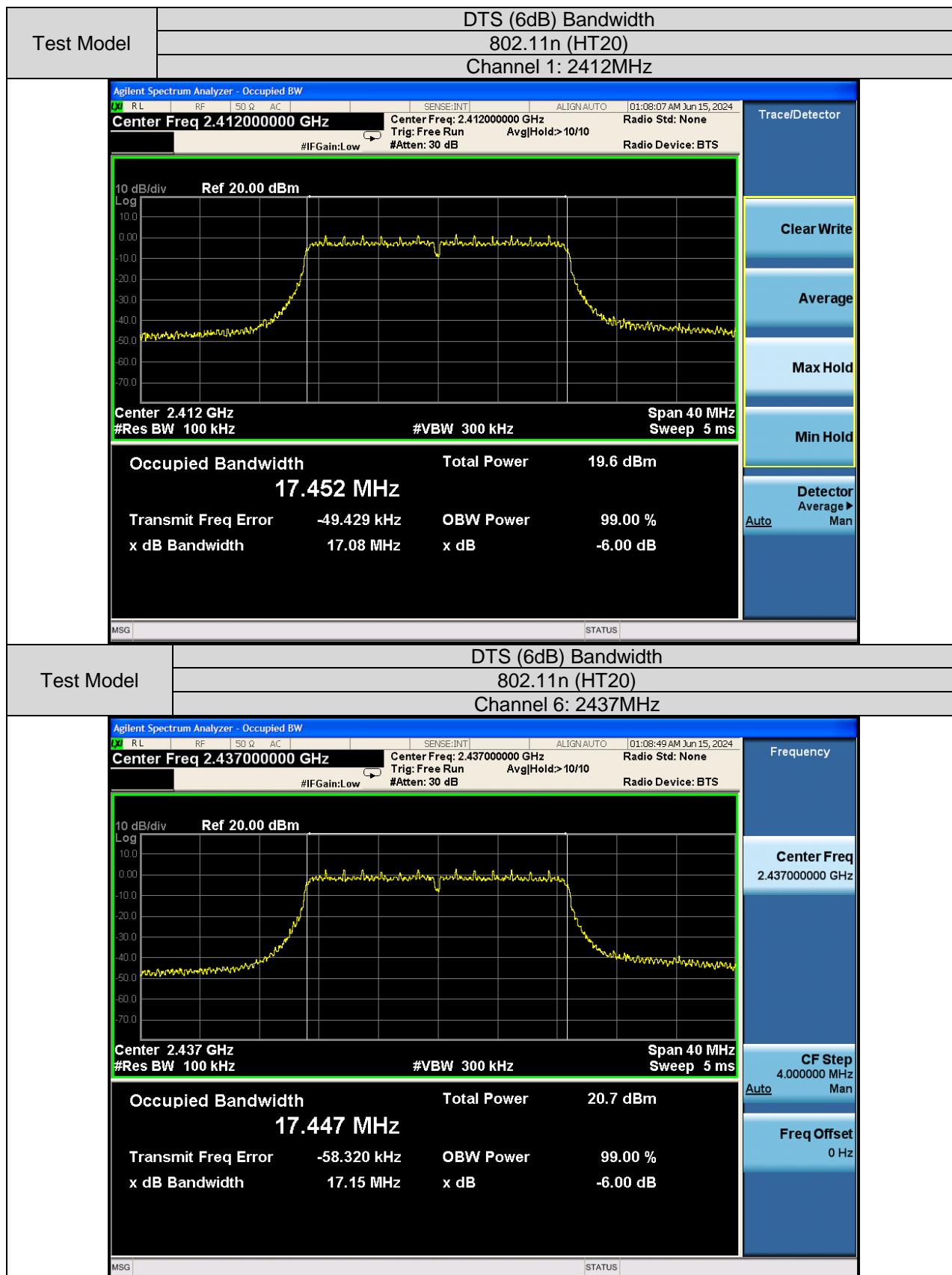
Set Trace mode = max hold.

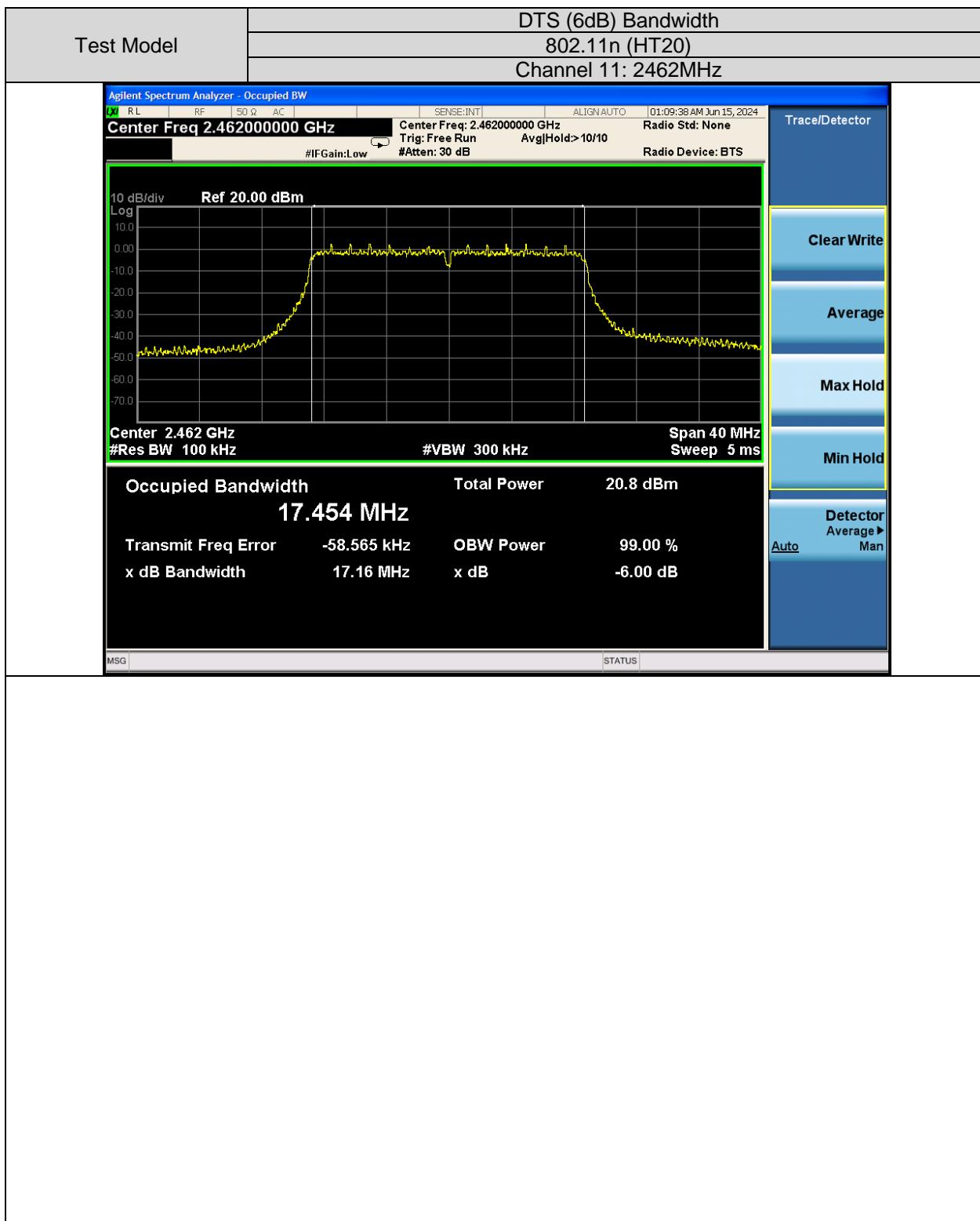
Set Sweep = auto couple.

Allow the trace to stabilize.


Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

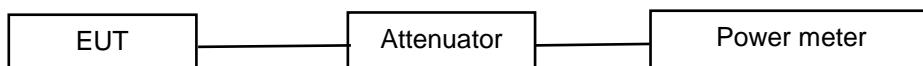

Test Results:


Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (kHz)	Verdict
802.11b	1	2412	9.989	>500	PASS
	6	2437	9.992	>500	PASS
	11	2462	10.04	>500	PASS
802.11g	1	2412	16.44	>500	PASS
	6	2437	16.44	>500	PASS
	11	2462	16.41	>500	PASS
802.11n (HT20)	1	2412	17.08	>500	PASS
	6	2437	17.15	>500	PASS
	11	2462	17.16	>500	PASS

4.2. MAXIMUM PEAK CONDUCTED OUTPUT POWER

4.2.1. Applicable Standard

According to FCC Part 15.247(b)(1) and KDB 558074 D01 15.247 Meas Guidance v05r02


4.2.2. Conformance Limit

The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

4.2.3. Test Configuration

Test according to clause 4.2.4 radio frequency test setup 1

4.2.4. Test Procedure

■ According to FCC Part15.247(b)(3)

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Set the RBW \geq DTS bandwidth (about 1MHz).

Set VBW = $3 \times$ RBW (about 3MHz)

Set the span \geq 3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

■ According to FCC Part 15.247(b)(4):

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- Place the EUT on the desktop and set it to launch mode. Remove the antenna from the EUT and connect the low-loss RF cable from the antenna port to the power meter. Measure the peak power of each channel.

Test Results

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
802.11b	1	2412	15.23	30	PASS
	6	2437	14.68	30	PASS
	11	2462	14.91	30	PASS
802.11g	1	2412	16.43	30	PASS
	6	2437	16.09	30	PASS
	11	2462	17.15	30	PASS
802.11n (HT20)	1	2412	17.48	30	PASS
	6	2437	17.52	30	PASS
	11	2462	17.89	30	PASS

4.3. MAXIMUM POWER SPECTRAL DENSITY

4.3.1. Applicable Standard

According to FCC Part15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.3.2. Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.3.4. Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

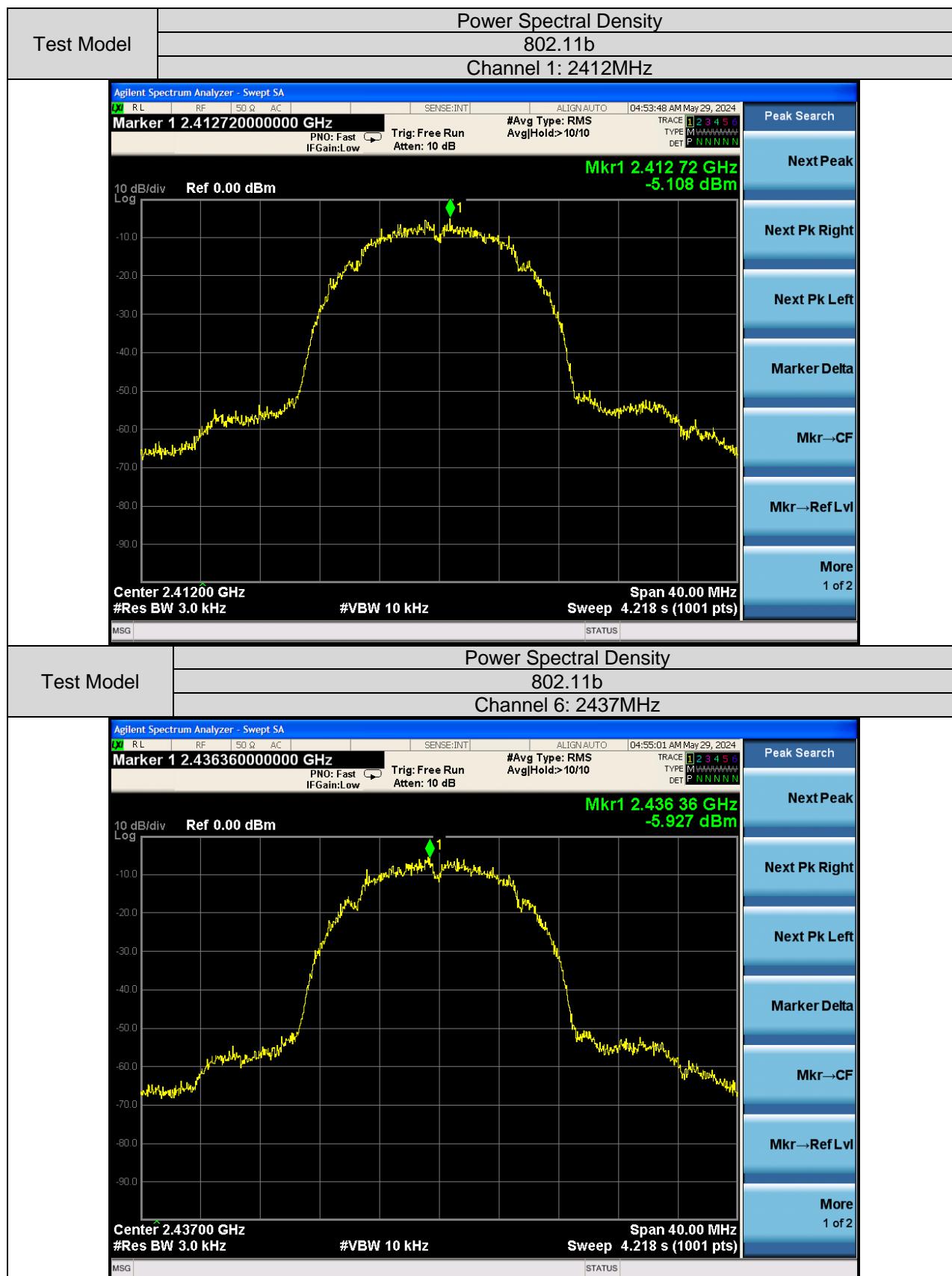
Set the RBW to: 3 kHz

Set the VBW to:10 kHz.

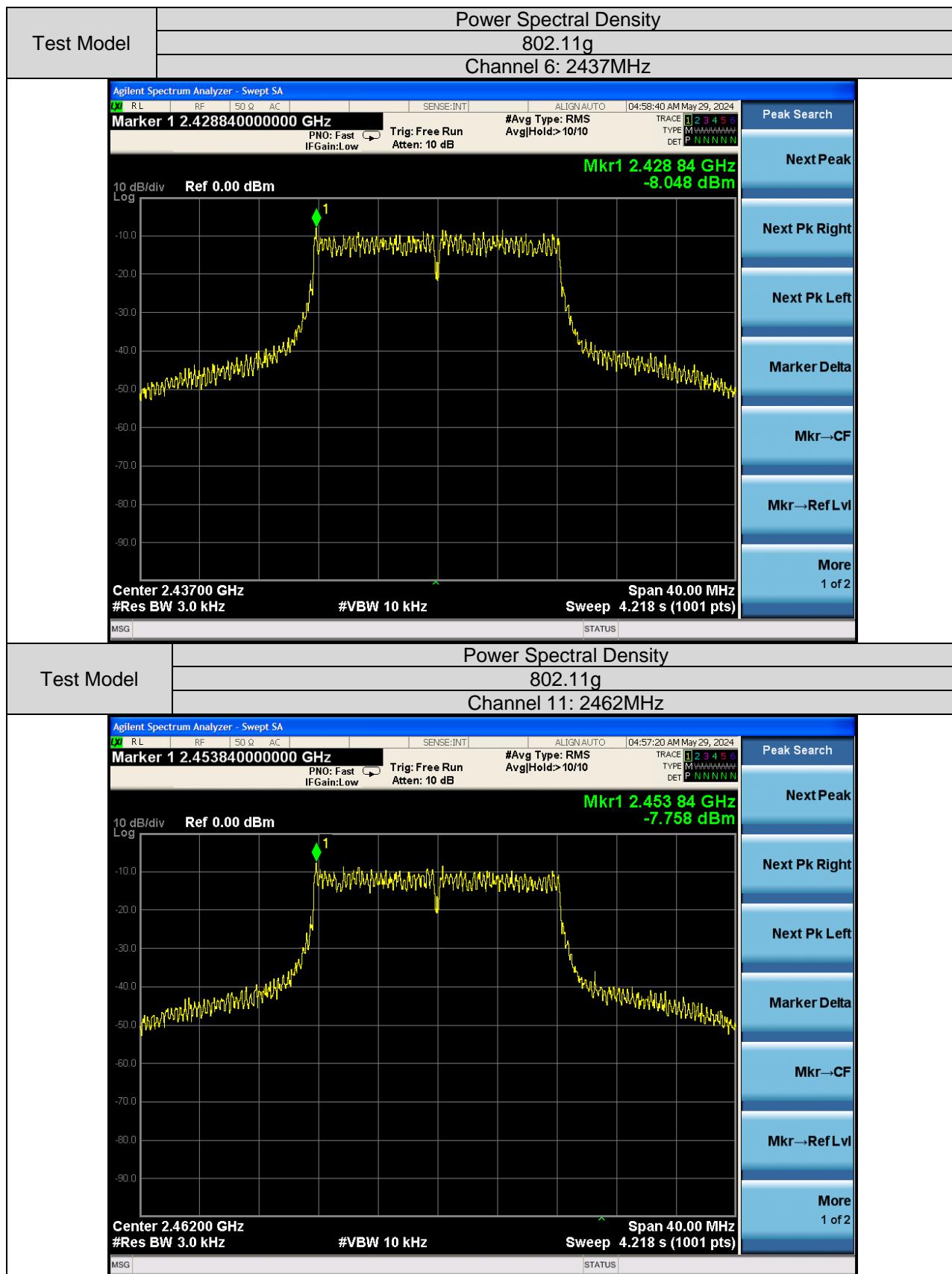
Set Detector =Peak.

Set Sweep time = auto couple.

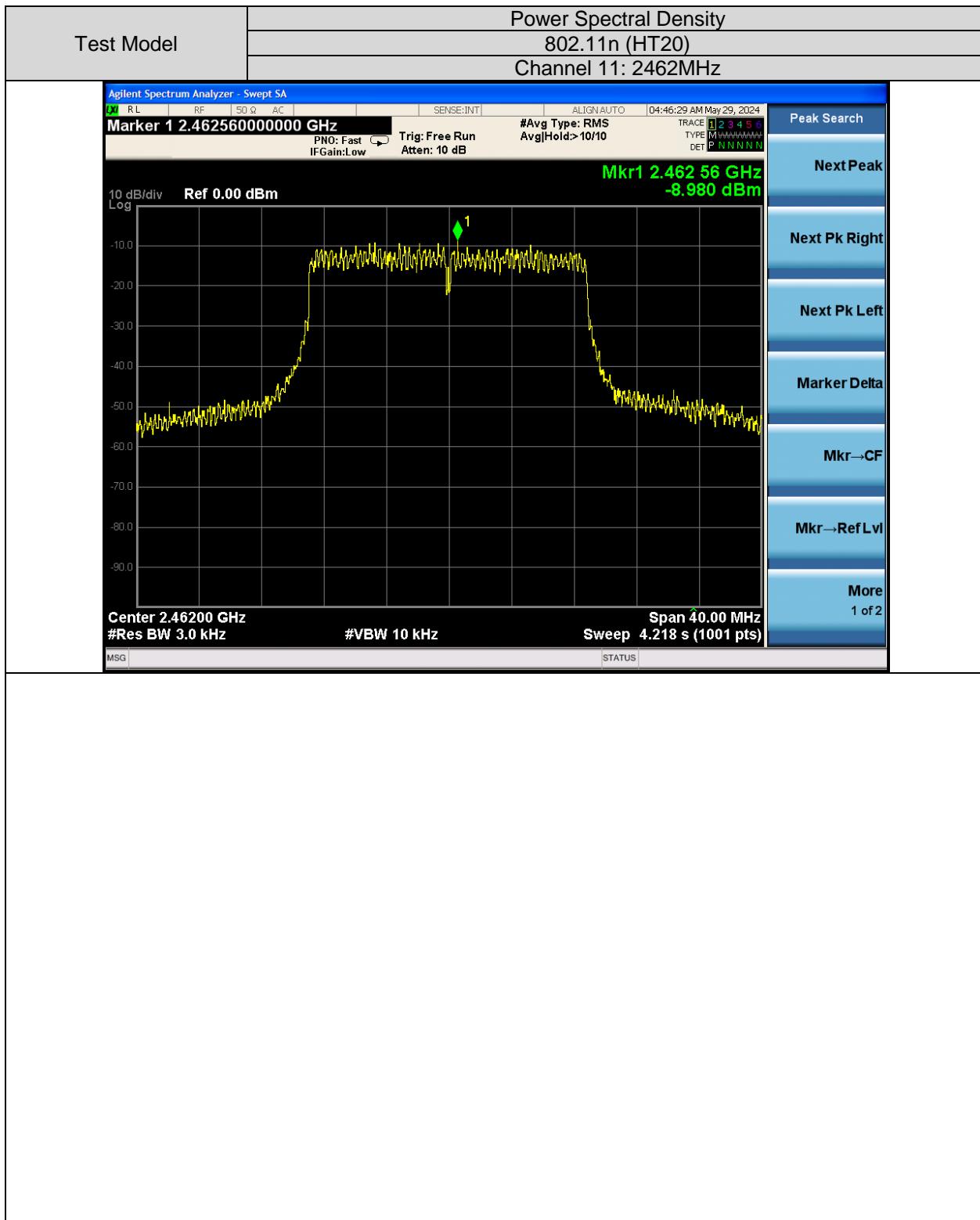
Set Trace mode = max hold.


Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.


Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
802.11b	1	2412	-5.108	8	PASS
	6	2437	-5.927	8	PASS
	11	2462	-5.012	8	PASS
802.11g	1	2412	-8.764	8	PASS
	6	2437	-8.048	8	PASS
	11	2462	-7.758	8	PASS
802.11n (HT20)	1	2412	-9.340	8	PASS
	6	2437	-9.138	8	PASS
	11	2462	-8.980	8	PASS


Note: the test RF cable loss is 0.5 dB that had added the result.

Test Model	Power Spectral Density									
	802.11n (HT20)									
	Channel 1: 2412MHz									
<p>Marker 1 2.406920000000 GHz</p> <p>Ref 0.00 dBm</p> <p>10 dB/div</p> <p>Center 2.41200 GHz</p> <p>#Res BW 3.0 kHz</p> <p>#VBW 10 kHz</p> <p>Span 40.00 MHz</p> <p>Sweep 4.218 s (1001 pts)</p> <p>MSG STATUS</p>										
Test Model	Power Spectral Density									
Test Model	802.11n (HT20)									
Test Model	Channel 6: 2437MHz									
<p>Marker 1 2.432560000000 GHz</p> <p>Ref 0.00 dBm</p> <p>10 dB/div</p> <p>Center 2.43700 GHz</p> <p>#Res BW 3.0 kHz</p> <p>#VBW 10 kHz</p> <p>Span 40.00 MHz</p> <p>Sweep 4.218 s (1001 pts)</p> <p>MSG STATUS</p>										

4.4. UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

4.4.1. Applicable Standard

According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.4.2. Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.4.4. Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to ≥ 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW $\geq 3 \times$ RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

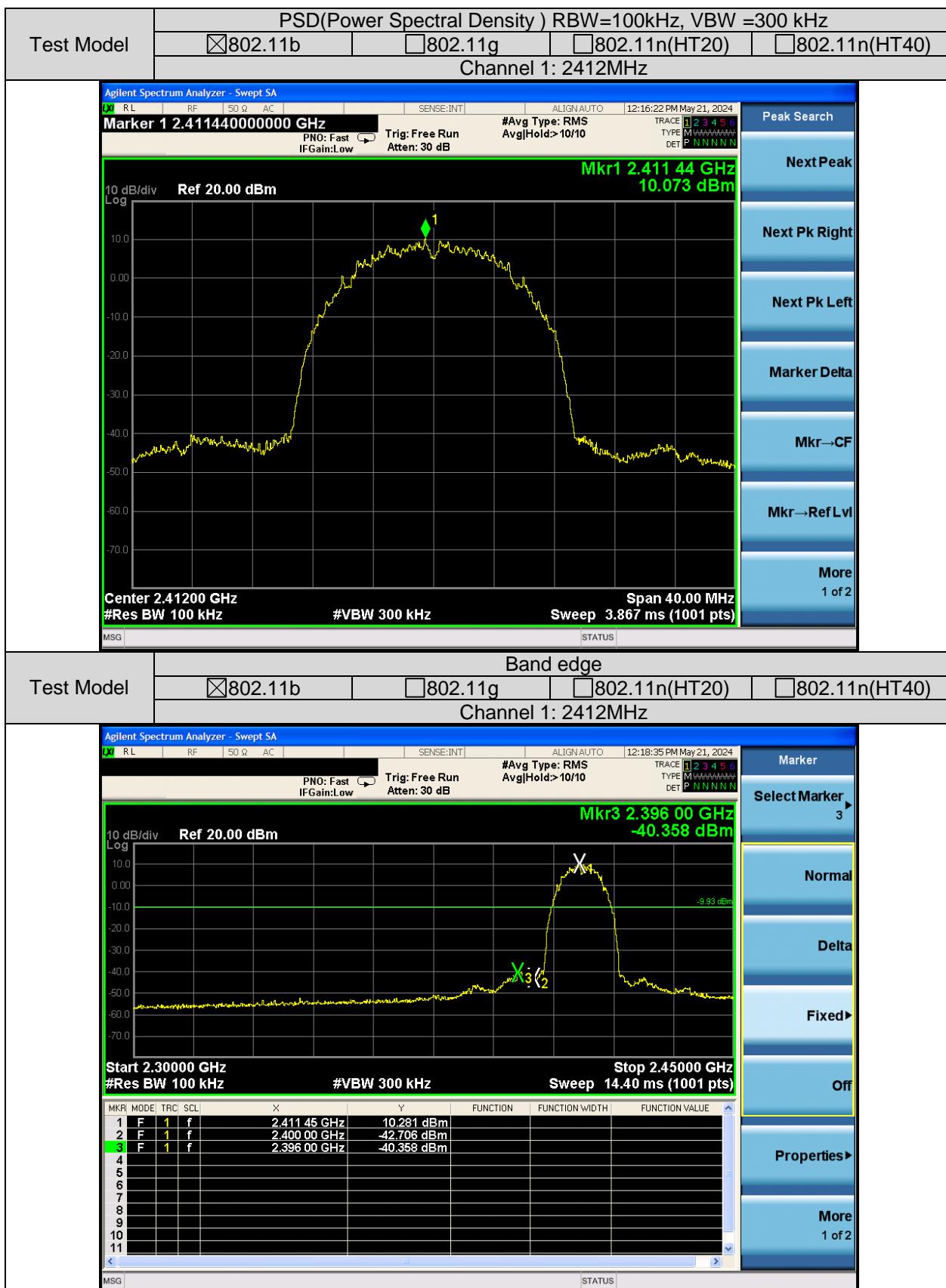
Set the VBW =300 kHz.

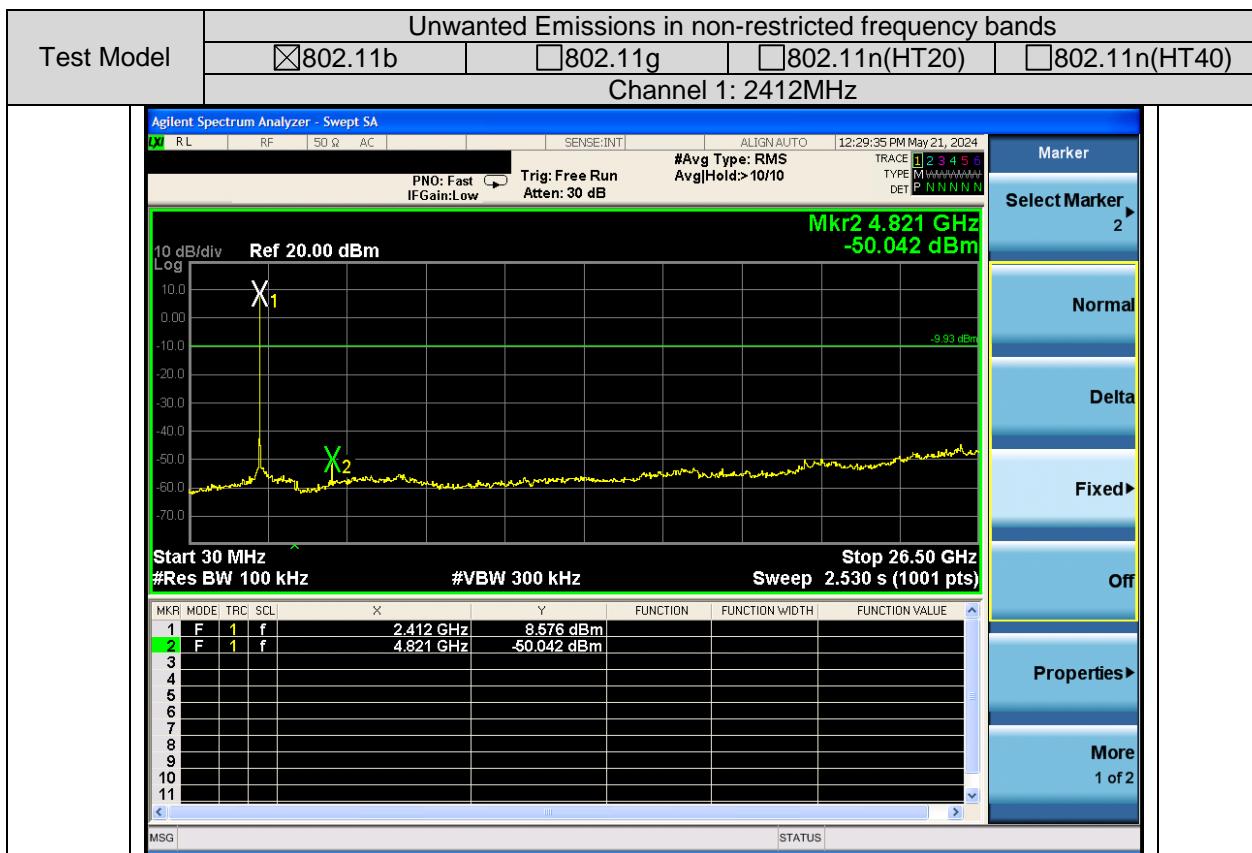
Set Detector = Peak

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.


Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements . Report the three highest emissions relative to the limit.

Test Results

All the antennas and modulation modes were tested, and the worst data for is shown in the table below.

Note: the test RF cable loss is 0.5 dB, we checked all test conducted spurious test data with this loss that complied with FCC rule requirement.

Unwanted Emissions in non-restricted frequency bands

Test Model

<input checked="" type="checkbox"/> 802.11b	<input type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
---	----------------------------------	--	--

Channel 6: 2437MHz

Agilent Spectrum Analyzer - Swept SA

XL RL RF 50 Ω AC SENSE:INT ALIGN: AUTO 11:10:50 AM May 30, 2024

PNO: Fast Trig: Free Run #Avg Type: RMS

IFGain: Low Atten: 30 dB Avg|Hold>100/100

TRACE 1 2 3 4 5 6

TYPE M

DET P N N N N N

10 dB/div Ref 20.00 dBm

Log

Mkr2 4.871 GHz -43.964 dBm

-11.09 dBm

Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Stop 26.50 GHz Sweep 2.530 s (1001 pts)

X1

X2

Y

MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE

1	F	1	f	2.436 GHz	7.462 dBm		
2	F	1	f	4.871 GHz	-43.964 dBm		
3							
4							
5							
6							
7							
8							
9							
10							
11							

MSG STATUS

Trace On

More 1 of 3

Agilent Spectrum Analyzer - Swept SA

Test Model: 802.11b 802.11g 802.11n(HT20) 802.11n(HT40)

PSD(Power Spectral Density) RBW=100kHz, VBW =300 kHz

Marker 1 2.461480000000 GHz

Ref 20.00 dBm

10 dB/div Log

Center 2.46200 GHz #Res BW 100 kHz

Span 40.00 MHz Sweep 3.867 ms (1001 pts)

Trig: Free Run Atten: 30 dB

#Avg Type: RMS Avg|Hold>100/100

11:13:25 AM May 30, 2024

SENSE:INT ALIGN: AUTO

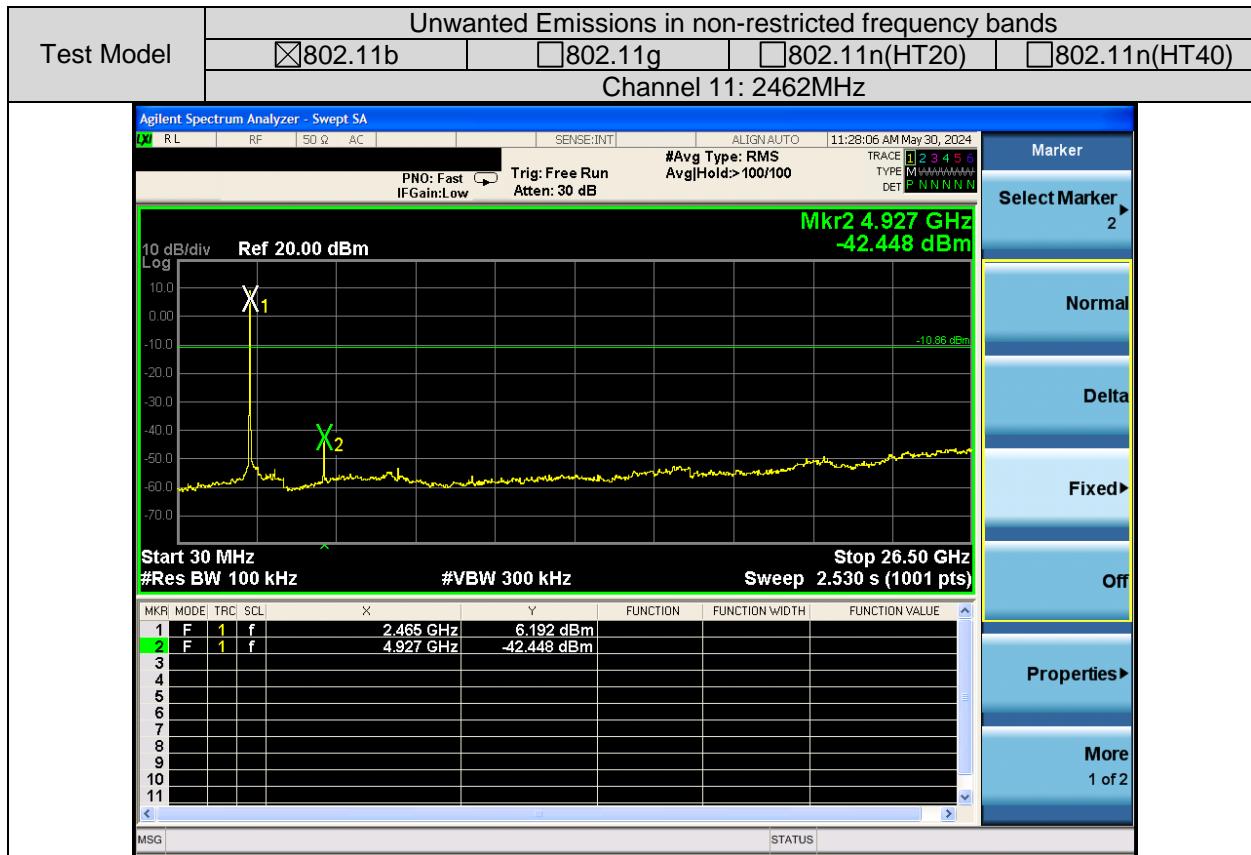
TRACE 1 2 3 4 5 6 TYPE M DET P N N N N N

Mkr1 2.46148 GHz 9.144 dBm

Peak Search

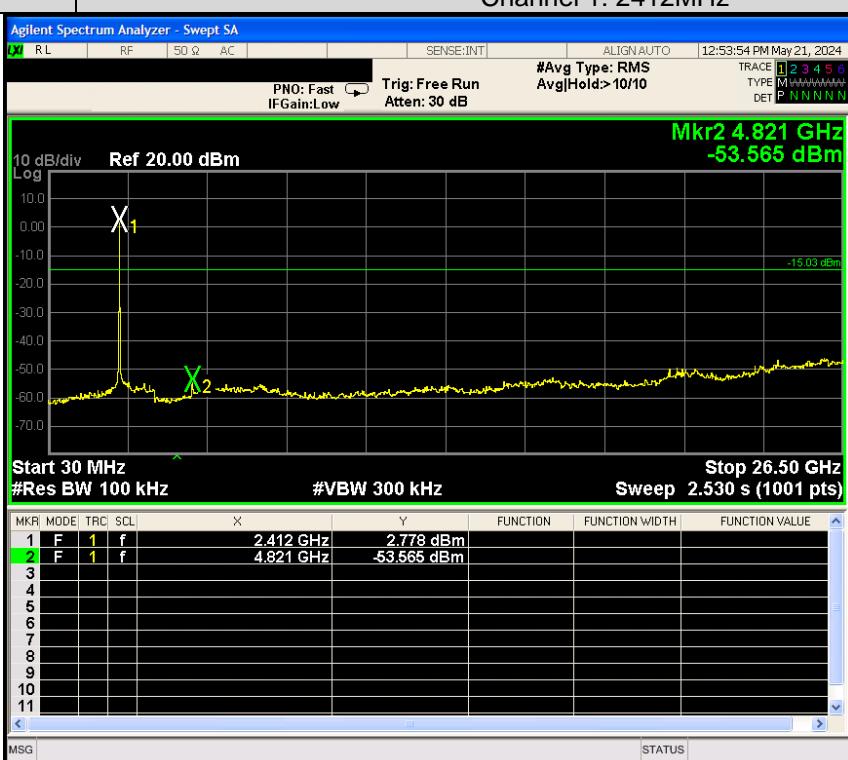
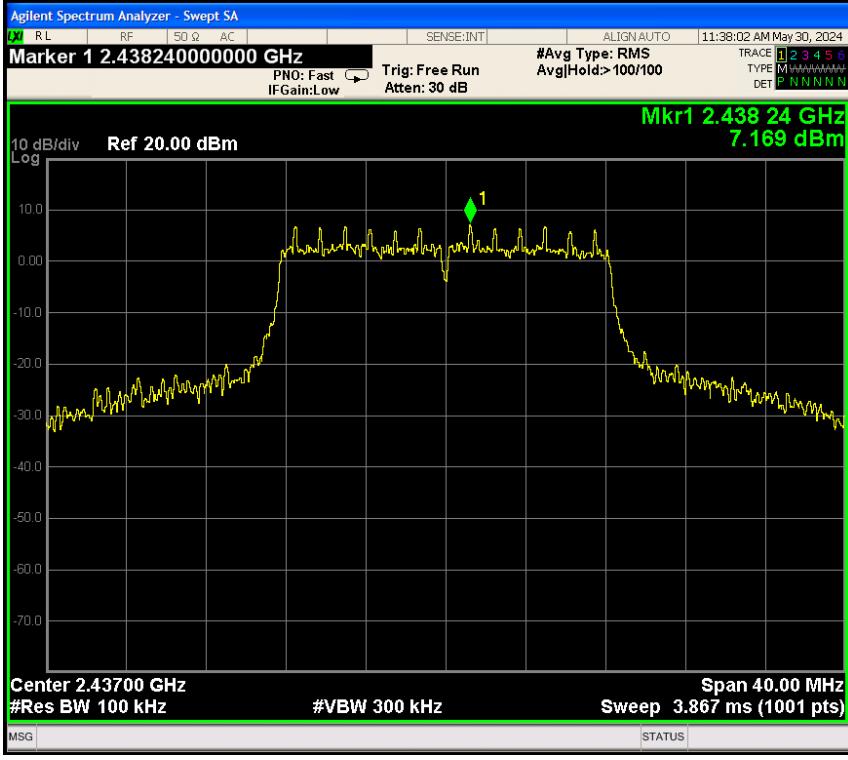
Next Peak

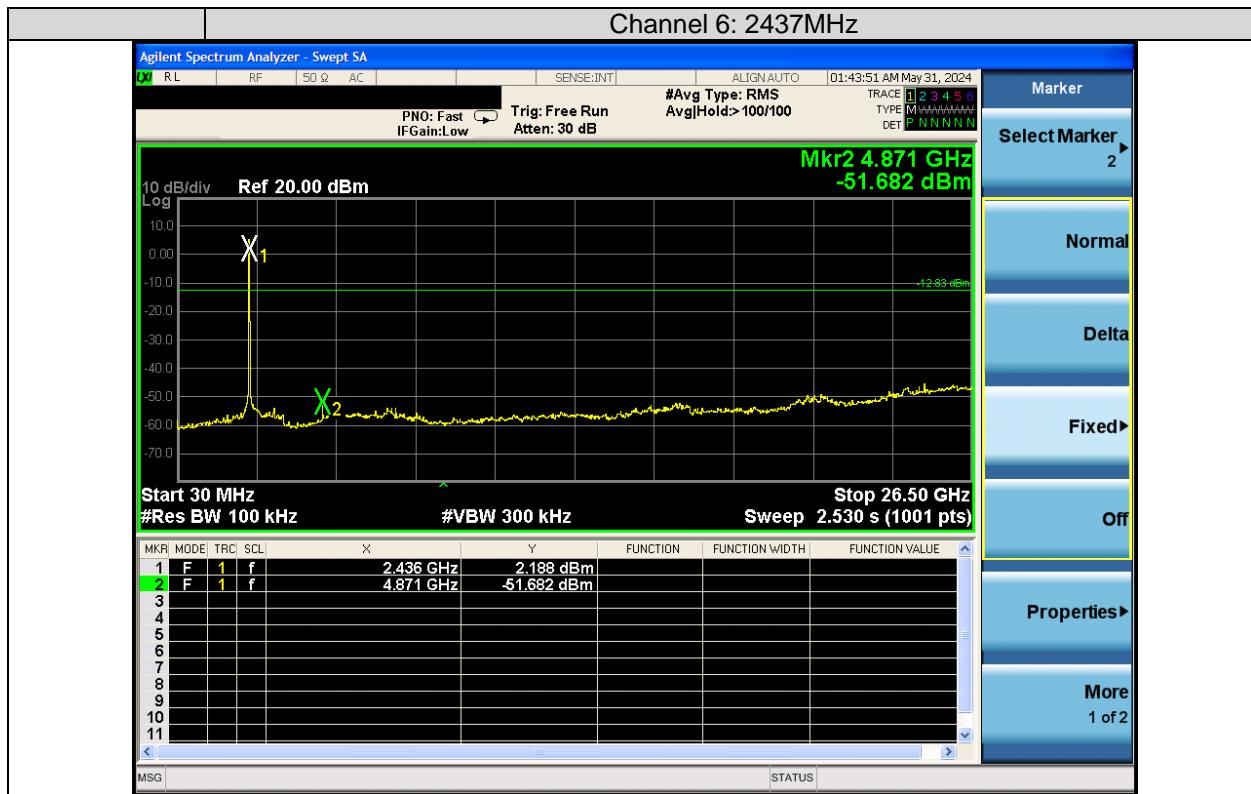
Next Pk Right


Next Pk Left

Marker Delta

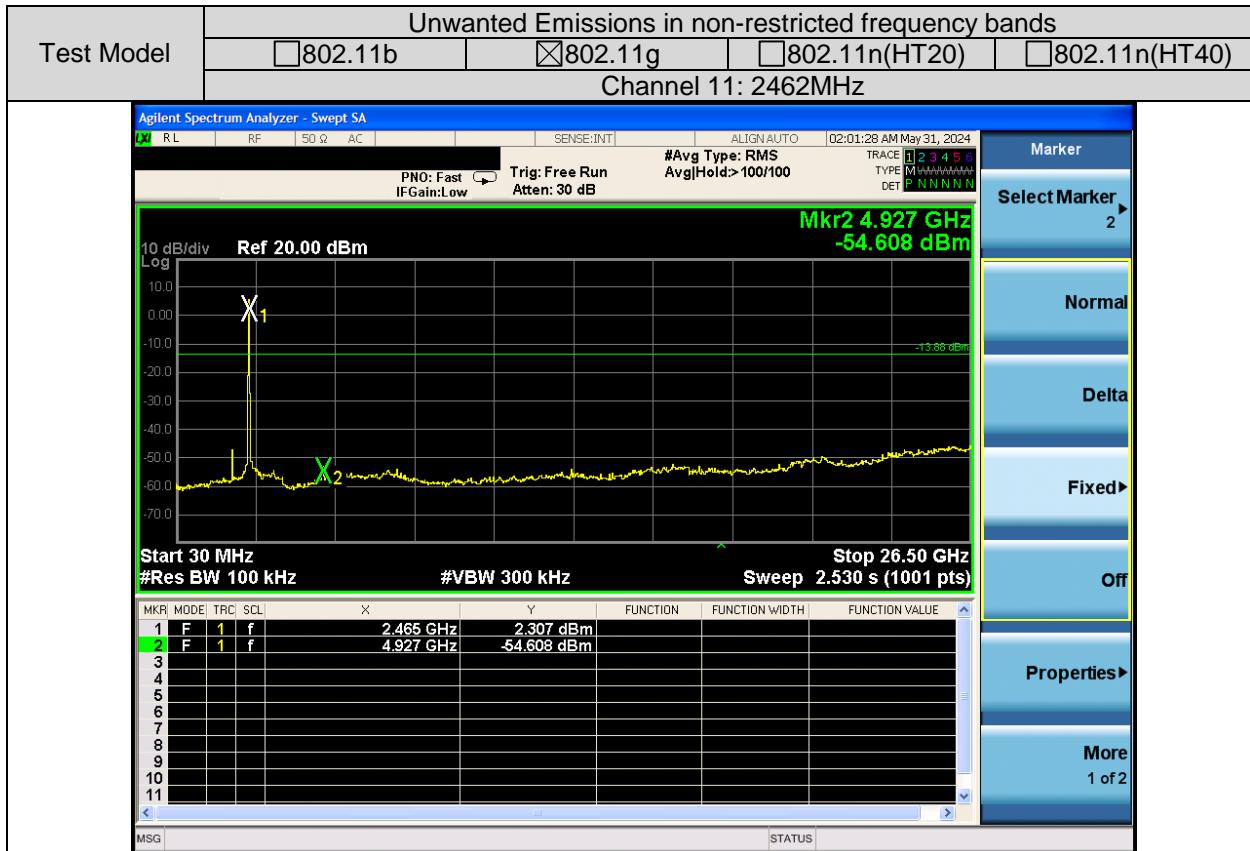
Mkr→CF



Mkr→Ref Lvl


More 1 of 2

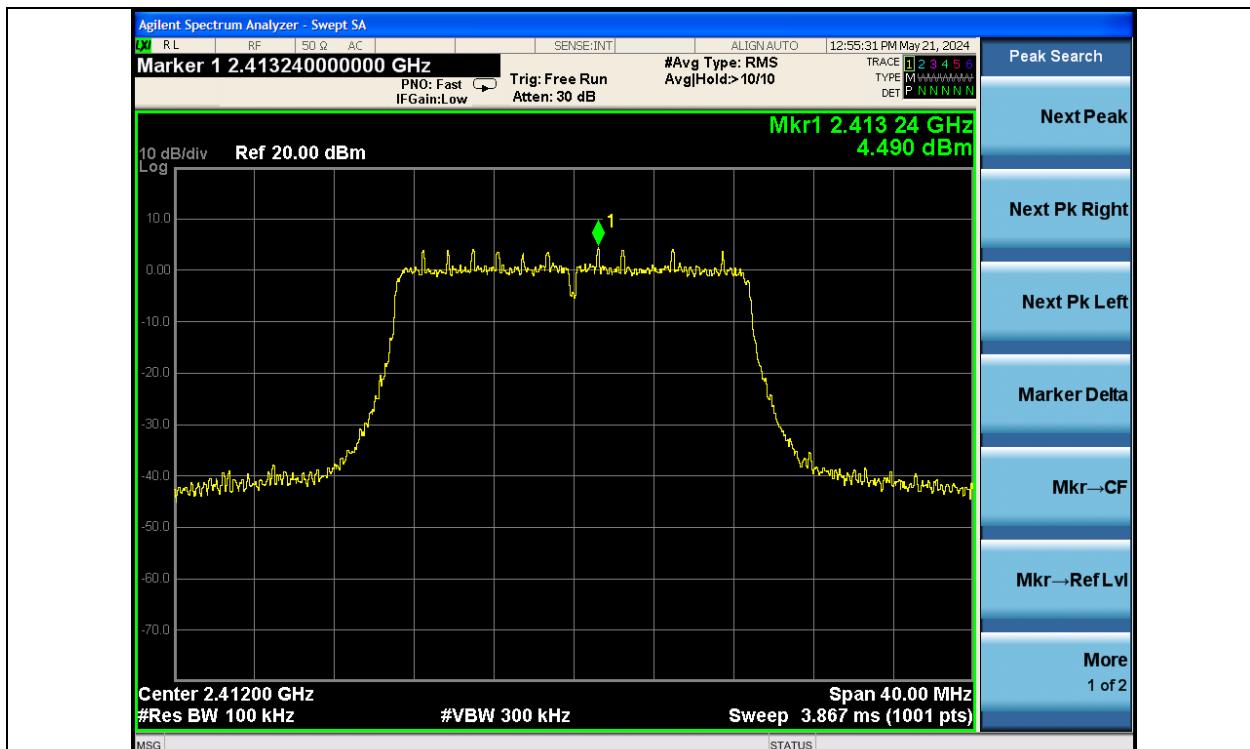


Unwanted Emissions in non-restricted frequency bands


Test Model	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Channel 1: 2412MHz				
	<p>Agilent Spectrum Analyzer - Swept SA</p> <p>Marker 2 4.821 GHz -53.565 dBm</p> <p>Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (1001 pts)</p> <p>Marker 1 2.412 GHz 2.778 dBm</p> <p>Marker 2 4.821 GHz -53.565 dBm</p> <p>Marker 3 5.278 GHz -53.565 dBm</p> <p>Marker 4 5.734 GHz -53.565 dBm</p> <p>Marker 5 6.190 GHz -53.565 dBm</p> <p>Marker 6 6.646 GHz -53.565 dBm</p> <p>Marker 7 7.102 GHz -53.565 dBm</p> <p>Marker 8 7.558 GHz -53.565 dBm</p> <p>Marker 9 8.014 GHz -53.565 dBm</p> <p>Marker 10 8.470 GHz -53.565 dBm</p> <p>Marker 11 8.926 GHz -53.565 dBm</p>			
Test Model				
	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Channel 6: 2437MHz				
	<p>Agilent Spectrum Analyzer - Swept SA</p> <p>Marker 1 2.438240000000 GHz 7.169 dBm</p> <p>Start 2.43700 GHz Stop 2.43824 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.867 ms (1001 pts)</p> <p>Marker 1 2.43824 GHz 7.169 dBm</p> <p>Marker 2 2.43825 GHz -53.565 dBm</p> <p>Marker 3 2.43826 GHz -53.565 dBm</p> <p>Marker 4 2.43827 GHz -53.565 dBm</p> <p>Marker 5 2.43828 GHz -53.565 dBm</p> <p>Marker 6 2.43829 GHz -53.565 dBm</p> <p>Marker 7 2.43830 GHz -53.565 dBm</p> <p>Marker 8 2.43831 GHz -53.565 dBm</p> <p>Marker 9 2.43832 GHz -53.565 dBm</p> <p>Marker 10 2.43833 GHz -53.565 dBm</p> <p>Marker 11 2.43834 GHz -53.565 dBm</p>			
Test Model				
	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Unwanted Emissions in non-restricted frequency bands				
	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)

Test Model	PSD(Power Spectral Density) RBW=100kHz, VBW =300 kHz			
	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
	Channel 11: 2462MHz			

Test Model	Band edge			
	<input type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
	Channel 11: 2462MHz			



Test Model

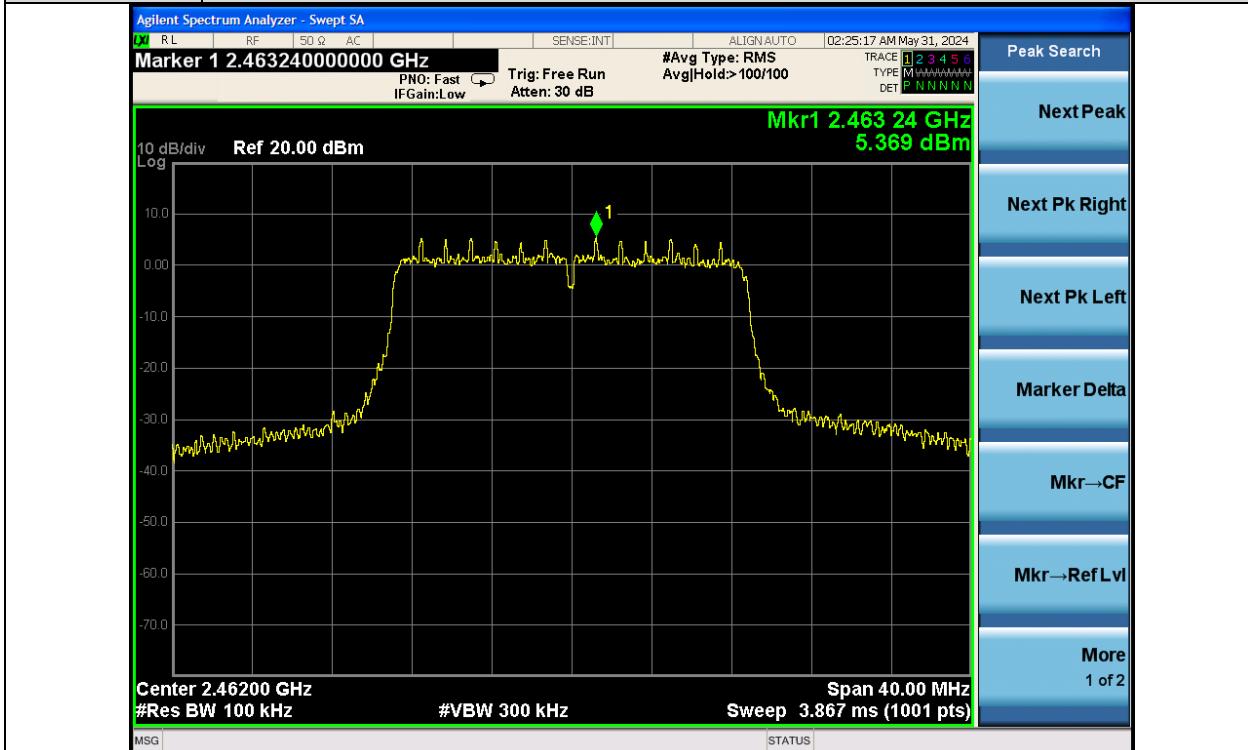
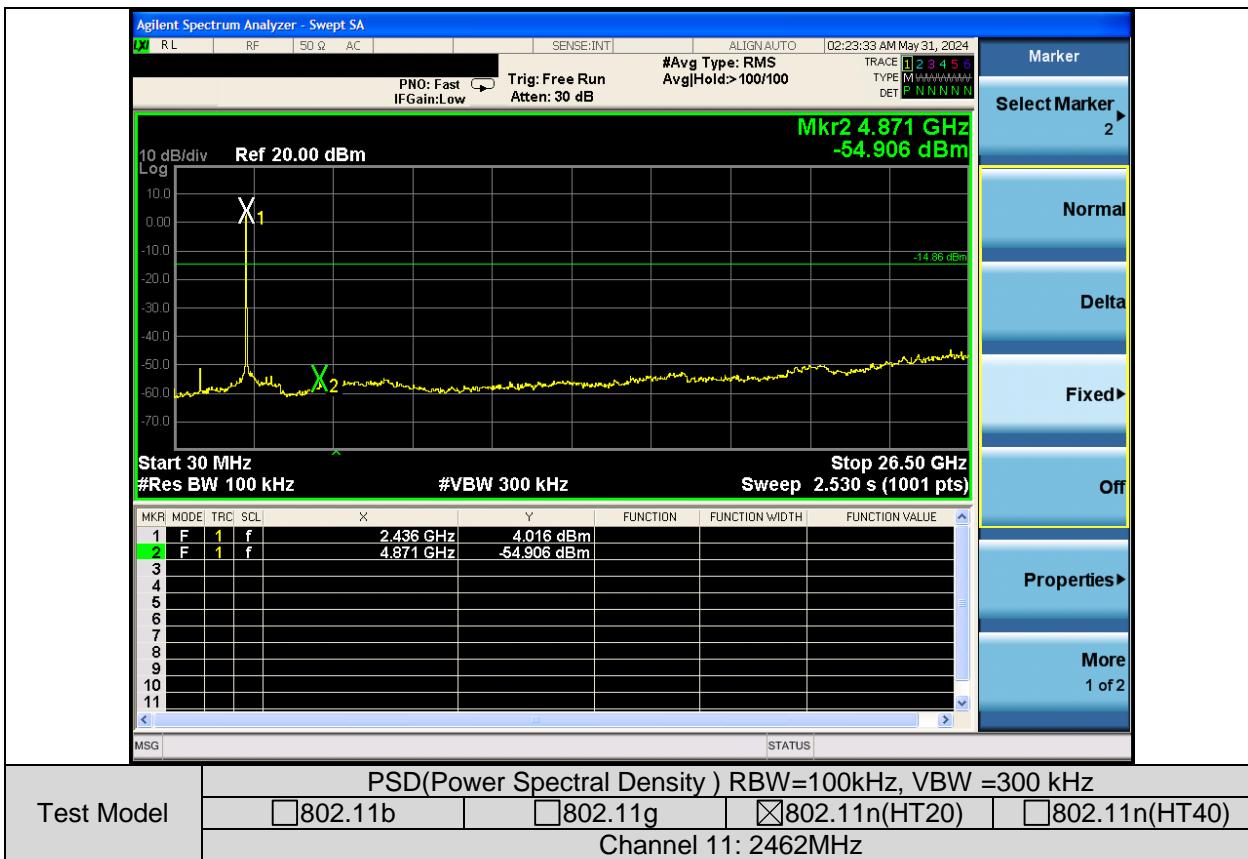
PSD(Power Spectral Density) RBW=100kHz, VBW =300 kHz

<input type="checkbox"/> 802.11b	<input type="checkbox"/> 802.11g	<input checked="" type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
----------------------------------	----------------------------------	---	--

Channel 1: 2412MHz

Test Model	Band edge			
	<input type="checkbox"/> 802.11b	<input type="checkbox"/> 802.11g	<input checked="" type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Channel 1: 2412MHz				

Test Model	Unwanted Emissions in non-restricted frequency bands			
	<input type="checkbox"/> 802.11b	<input type="checkbox"/> 802.11g	<input checked="" type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Channel 1: 2412MHz				

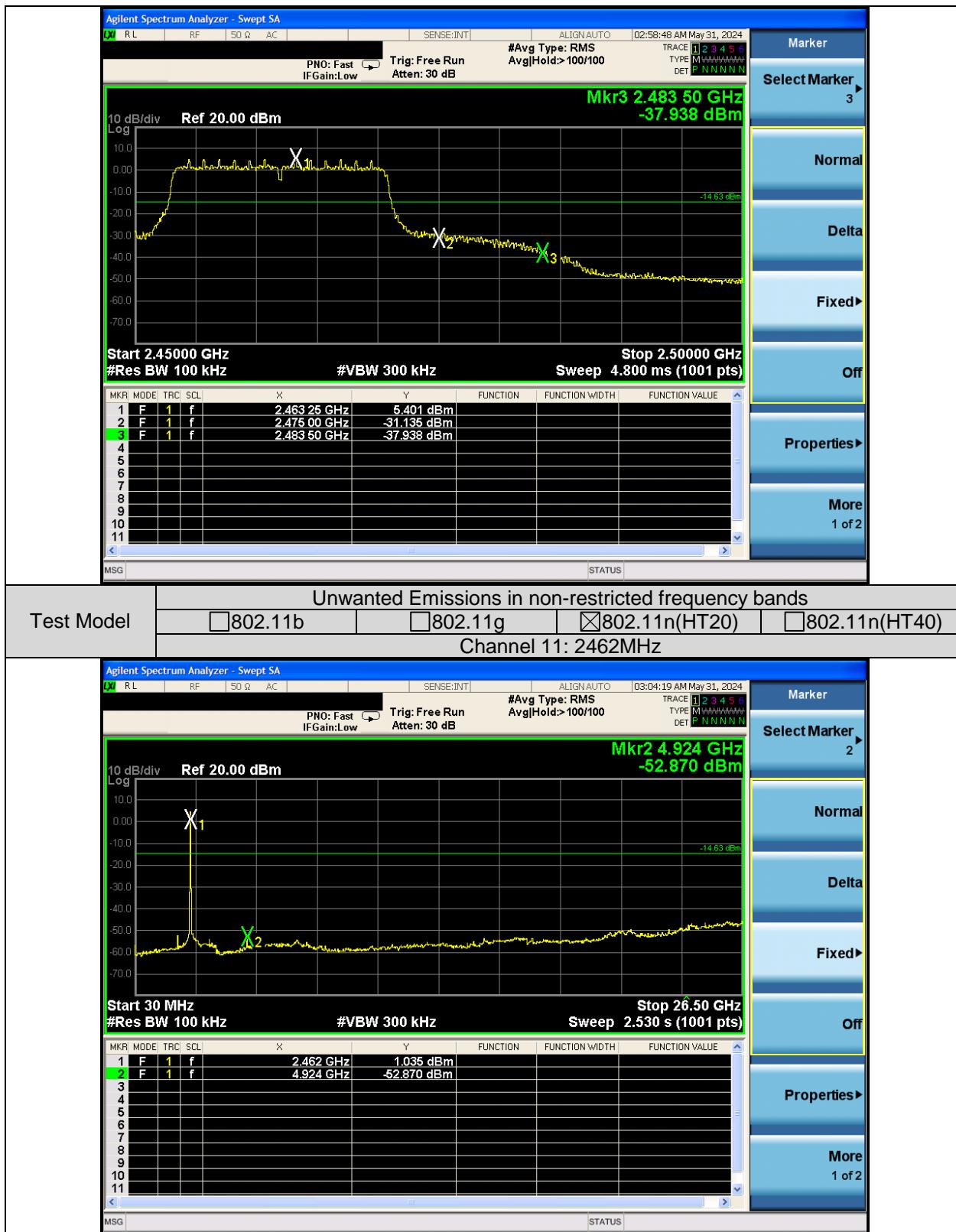



Test Model

Unwanted Emissions in non-restricted frequency bands

802.11b 802.11g 802.11n(HT20) 802.11n(HT40)

Channel 6: 2437MHz



Test Model

Band edge

802.11b 802.11g 802.11n(HT20) 802.11n(HT40)

Channel 11: 2462MHz

4.5. RADIATED SPURIOUS EMISSION

4.5.1. Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01
 15.247 MEAS GUIDANCE v05r02

4.5.2. Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.5252 5	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (μ V/m)	Field Strength ($\text{dB}\mu$ V/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (μ V/m)	300
0.490-1.705	24000/F(KHz)	20 log (μ V/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

4.5.3. Test Configuration

Test according to clause 3.2 radio frequency test setup 2

4.5.4. Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 9kHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the

hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from $20\log(\text{dwell time}/100 \text{ ms})$, in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

Test Results:

■ **Spurious Emission below 30MHz (9KHz to 30MHz)**

Frequency (MHz)	Factor (dB)	Meter Reading (dB μ V)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type	Ant. Pol.
							H/V
--	--	--	--	--	--	--	--

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor = $40\log(\text{Specific distance/ test distance})(\text{ dB})$;

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ **Spurious Emission Above 1GHz (1GHz to 25GHz)**

All modes 2.4G 802.11b/g/n have been tested, and the worst result recorded was report as below:

Test mode:		802.11b		Frequency:		Channel 1: 2412MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	Ant. Pol.
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)		H/V
4825	55.1	0.98	56.08	74	-17.92	peak	V
4842	45.78	0.98	46.76	54	-7.24	AVG	V
7236	38.96	7.66	46.62	74	-27.38	peak	V
7239	29.34	7.67	37.01	54	-16.99	AVG	V
4825	47.35	0.98	48.33	74	-25.67	peak	H
4842	36.43	0.98	37.41	54	-16.59	AVG	H
7236	38.68	7.66	46.34	74	-27.66	peak	H
7239	28.79	7.67	36.46	54	-17.54	AVG	H

Test mode:		802.11b		Frequency:		Channel 6: 2437MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	Ant. Pol.
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)		H/V
4876	53.48	0.99	54.47	74	-19.53	peak	V
4893	42.92	1	43.92	54	-10.08	AVG	V
1782	54.1	-4.89	49.21	74	-24.79	peak	V
1799	44.4	-4.85	39.55	54	-14.45	AVG	V
7311	38.42	7.64	46.06	74	-27.94	peak	V
7307	28.51	7.64	36.15	54	-17.85	AVG	V
4876	53.19	0.99	54.18	74	-19.82	peak	H
4893	42.98	1	43.98	54	-10.02	AVG	H
1765	57.72	-4.93	52.79	74	-21.21	peak	H
1782	44.92	-4.89	40.03	54	-13.97	AVG	H
7311	38.78	7.64	46.42	74	-27.58	peak	H
7307	28.37	7.64	36.01	54	-17.99	AVG	H

Test mode:		802.11b		Frequency:		Channel 11: 2462MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	Ant. Pol.
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)		H/V
4927	51.81	1	52.81	74	-21.19	peak	V
4944	40.29	0.99	41.28	54	-12.72	AVG	V
7386	37.97	7.6	45.57	74	-28.43	peak	V
7426	28.29	7.59	35.88	54	-18.12	AVG	V
4927	48.48	1	49.48	74	-24.52	peak	H
4944	37.63	0.99	38.62	54	-15.38	AVG	H
7386	38.41	7.6	46.01	74	-27.99	peak	H
7426	28.39	7.59	35.98	54	-18.02	AVG	H

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown “ -- ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 2.4G 802.11b/g/n have been tested, and the worst result recorded was report as below:

Test mode: 802.11 b Frequency: Channel 1: 2412MHz

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2389.99	H	62.72	74	41.10	54
2389.63	V	56.34	74	37.30	54

Test mode: 802.11 b Frequency: Channel 11: 2462MHz

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2483.56	H	70.79	74	50.43	54
2484.25	V	63.35	74	45.60	54

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All antenna modes 2.4G 802.11b/g/n have been tested, and the worst result 802.1g recorded was report as below:

Test Mode:	802.11b	2412MHz	Test Voltage:	AC 120V/60Hz
Temperature:	24.5°C		Phase:	Vertical
Relative Humidity:	52%		Pressure:	101.4KPa

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	MK.	Remark
1	58.6126	11.52	16.18	27.70	40.00	-12.30	QP		
2	41.5670	11.87	16.44	28.31	40.00	-11.69	QP	*	
3	32.5198	9.96	16.68	26.64	40.00	-13.36	QP		
4	72.0841	8.38	18.04	26.42	40.00	-13.58	QP		
5	120.2766	9.25	15.17	24.42	43.50	-19.08	QP		
6	151.0663	7.37	18.25	25.62	43.50	-17.88	QP		

Test Mode:	802.11b	2412MHz	Test Voltage:	AC 120V/60Hz
Temperature:	24.5°C		Phase:	Horizontal
Relative Humidity:	52%		Pressure:	101.4KPa

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	MK.	Remark
1	140.8351	6.75	23.30	30.05	43.50	-13.45	QP		
2	204.2377	10.83	20.44	31.27	43.50	-12.23	QP	*	
3	188.4125	9.17	22.00	31.17	43.50	-12.33	QP		
4	72.5914	8.23	19.18	27.41	40.00	-12.59	QP		
5	80.0805	6.16	19.32	25.48	40.00	-14.52	QP		
6	175.6516	8.83	18.53	27.36	43.50	-16.14	QP		

4.6. CONDUCTED EMISSION TEST

4.6.1. Applicable Standard

According to FCC Part 15.207(a)

4.6.2. Conformance Limit

Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

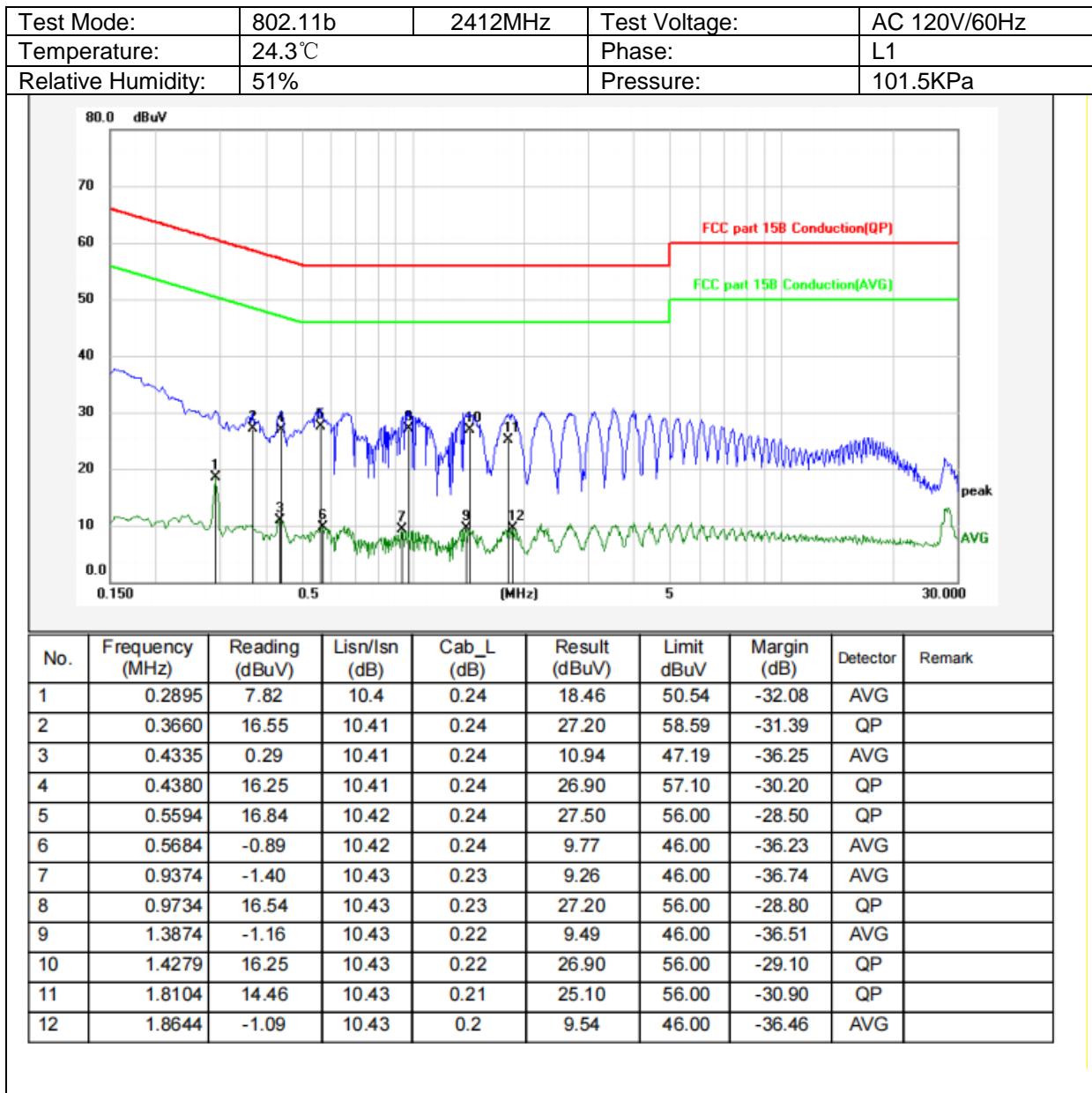
Note: 1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Remark: Test results were obtained from the following equation:

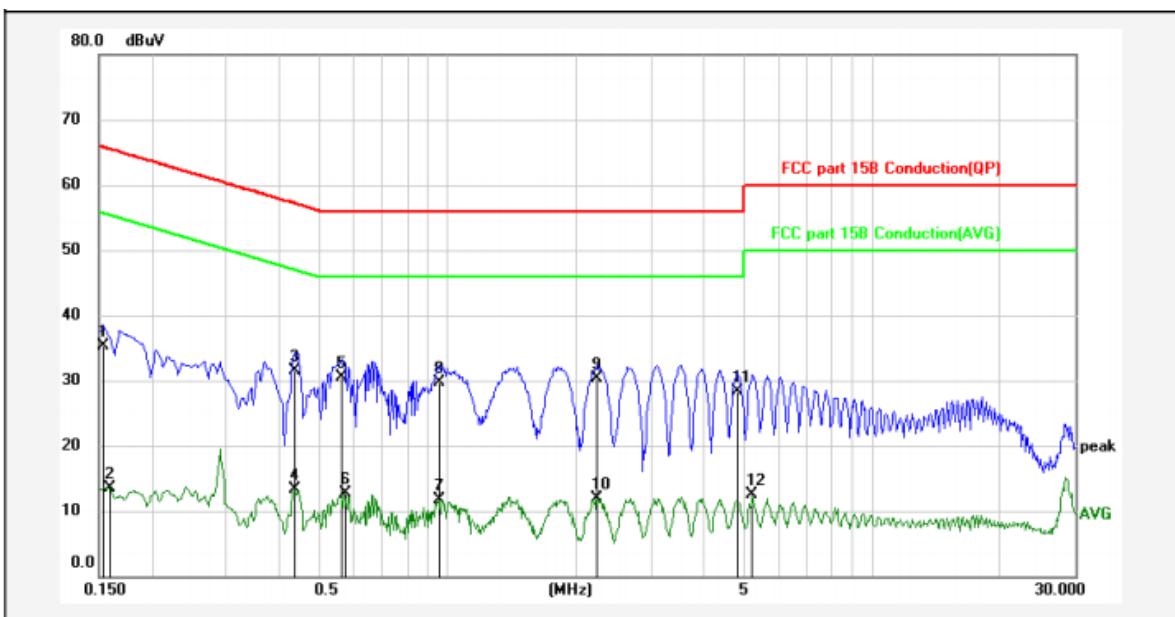
$$\begin{aligned}\text{Measurement (dB}\mu\text{V)} &= \text{LISN Factor (dB)} + \text{Cable Loss (dB)} + \text{Reading (dB}\mu\text{V)} \\ \text{Margin (dB)} &= \text{Measurement (dB}\mu\text{V)} - \text{Limit (dB}\mu\text{V)}\end{aligned}$$

4.6.3. Test Configuration

Test according to clause 3.3 conducted emission test setup


4.6.4. Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.


Maximum procedure was performed on the highest emissions to ensure EUT compliance.
Repeat above procedures until all frequency measured were complete.

Test Results :

All antenna modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

Test Mode:	802.11b	2412MHz	Test Voltage:	AC 120V/60Hz
Temperature:	24.3°C		Phase:	N
Relative Humidity:	51%		Pressure:	101.5KPa

No.	Frequency (MHz)	Reading (dBuV)	Lisn/Isn (dB)	Cab_L (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1545	24.72	10.36	0.22	35.30	65.75	-30.45	QP	
2	0.1590	2.92	10.37	0.22	13.51	55.52	-42.01	AVG	
3	0.4335	20.85	10.41	0.24	31.50	57.19	-25.69	QP	
4	0.4335	2.73	10.41	0.24	13.38	47.19	-33.81	AVG	
5	0.5639	19.94	10.42	0.24	30.60	56.00	-25.40	QP	
6	0.5685	2.12	10.42	0.24	12.78	46.00	-33.22	AVG	
7	0.9510	1.08	10.43	0.23	11.74	46.00	-34.26	AVG	
8	0.9555	19.14	10.43	0.23	29.80	56.00	-26.20	QP	
9	2.2380	19.77	10.43	0.2	30.40	56.00	-25.60	QP	
10	2.2380	1.22	10.43	0.2	11.85	46.00	-34.15	AVG	
11	4.8120	17.60	10.49	0.21	28.30	56.00	-27.70	QP	
12	5.2080	1.81	10.49	0.21	12.51	50.00	-37.49	AVG	

4.7. ANTENNA APPLICATION

4.7.1. Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.7.2. Result

PASS.

The EUT has 1 antenna: an PCB Antenna for WIFI 2.4G, antenna has a gain of -0.58dBi;

Note:which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT -----