

FCC RF EXPOSURE REPORT

FCC ID: 2BH7FER605WV2

Project No. : 2502G005
Equipment : AC1200 Gigabit VPN Gateway
Brand Name : tp-link
Test Model : ER605W
Series Model : N/A
Applicant : TP-Link Systems Inc.
Address : 10 Mauchly, Irvine, CA 92618
Manufacturer : TP-Link Systems Inc.
Address : 10 Mauchly, Irvine, CA 92618
Date of Receipt : Feb. 12, 2025
Date of Test : Feb. 14, 2025 ~ Jun. 10, 2025
Issued Date : Jun. 24, 2025
Report Version : R00
Test Sample : Engineering Sample No.: SSL2025021245
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091
FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.(Dongguan).

Prepared by : chella zheng
Chella Zheng

Approved by : Chay . Cai
Chay Cai

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China
Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2502G005	R00	Original Report.	Jun. 24, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

For 2.4GHz:

Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-Link Systems Inc.	3101507460	Dipole	N/A	2.76
2	TP-Link Systems Inc.	3101507459	Dipole	N/A	3.22

Note:

- 1) This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain.
For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=3.22.
For power spectral density measurements, Directional gain(each angle)=
 $10\log[(10^{G1/20}+10^{G2/20}+\dots+10^{GN/20})^2/N] \text{dBi} = 10\log[(10^{0.23/20}+10^{3.22/20})^2/2] = 4.857.$
- 2) The antenna gain is provided by the manufacturer.

For 5GHz:

Antenna P/N		3101504478	3101507461
Antenna Manufacturer		TP-Link Systems Inc.	
Ant. Type		Dipole	
Ant. Connector		N/A	
Antenna No.		1	2
5G Wifi	5150~5250MHz	2.20	2.21
	5725~5850MHz	2.83	1.59
Beamforming Gain		3	

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT} +Array Gain.
For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the UNII-1 Directional gain=2.21, the UNII-3 Directional gain=2.83.
For power spectral density measurements, Directional gain(each angle)=
 $= 10\log[(10^{G1/20}+10^{G2/20}+\dots+10^{GN/20})^2/N] \text{dBi}$
For the UNII-1 Directional gain(each angle)= $10\log[(10^{2.2/20}+10^{1.8/20})^2/2] = 5.01.$
For the UNII-3 Directional gain(each angle)= $10\log[(10^{2.83/20}+10^{0.98/20})^2/2] = 4.962.$
- 2) Beamforming Gain: 3 dB. So the UNII-1 Directional gain=2.21+3=5.51, the UNII-3 Directional gain=2.83+3=5.83.
- 3) The antenna gain is provided by the manufacturer.

3. CALCULATED RESULT

For 2.4GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.22	2.0989	23.99	250.6109	0.10470	1	Complies

For 5GHz UNII-1:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
2.21	1.6634	24.79	301.3006	0.09976	1	Complies

For 5GHz UNII-3:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
2.83	1.9187	28.02	633.8697	0.24208	1	Complies

For the max simultaneous transmission MPE:

Ratio		Total	Limit of Ratio	Test Result
2.4GHz	5GHz			
0.10470	0.24208	0.34678	1	Complies

Note:

- (1) The calculated distance is 20 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)